Types of Scaling

- Session scaling; global mean scaling; block effect; mean intensity scaling

- Purpose remove intensity differences between runs (i.e., the mean of the whole time series).
 - whole time series may have different mean value
 - must compensate for between run variance
- Usually scaled to mean of 100 (or 50 or similar).

Types of Scaling

· Global scaling; proportional scaling; scaling

• i.e. dividing the intensity values for each scan by the mean value for all voxels (or the global brain mean intensity) for this scan.

• Purpose: remove global drifts and improve sensitivity.

• Danger to applying global scaling. The global brain mean must be independent of the task activity (i.e., does not correlate with it).

• If violated, applying global scaling can dramatically the outcome of the statistical analysis, and can be the cause of multiple Type I and Type II errors.

Condition	Pearson's R	p value
rhyme	54	.00. .00
letter	.49	
line	.20	.23

Proportional Scaling

• Consider **voxel1**: a voxel of no interest that is not influenced by the task.

• If the global brain mean correlates with the task and voxels1 is divided by it, then voxel1/global, the transformed voxel's timecourse, would appear to negatively correlate with the task and its significant deactivation may lead us to identify it as a voxel of interest (Type I error).

Table 1. Representative Z-scores from Experiment 1.				
	Z-scores from analyses of target responses relative to baseline:			
Location [x y z]	no scaling	proportional scaling	adjusted proportional scaling	
Right Anterior Temporal Lobe [48 16 -16]	10.98	9.87	11.42	
Left Anterior Temporal Lobe [-56 12 -16]	11.59	10.90	12.28	
Supplementary Motor Area [-4 -12 52]	12.79	10.39	13.17	
Right Cerebellum [16 -56 -24]	12.60	9.26	12.62	

References

- Macey,PM, et al (2004) A method for removal of global effects from fMRI time series. NeuroImage 22. 360-366.
- Aguirre, G. K., Zarahn, E., & D'Esposito, M. (1998). The inferential impact of global signal covariates in functional neuroimaging analyses. Neuroimage, 8(3), 302-306.
- Andersson, J. L. (1997). How to estimate global activity independent
 of changes in local activity. Neuroimage, 6(4), 237-244.
- Andersson, J. L., Ashburner, J., & Friston, K. (2001). A global estimator unbiased by local changes. Neuroimage, 13(6 Pt 1), 1193-1206.
- Desjardins, A. E., Kiehl, K. A., & Liddle, P. F. (2001). Removal of confounding effects of global signal in functional magnetic resonance imaging analyses. Neuroimage, 13, 751-758.