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• Introduction
• General linear model(s) for fMRI

– Time series
– Haemodynamic response
– Low frequency noise
– Two GLMs fitted in 2-stage procedure

• Summary

Overview
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• Design matrix – the model
– Effects of interest
– Confounds (aka effects of no interest)
– Residuals (error measures of the whole model)

• Estimate effects and error for data
– Specific effects are quantified as contrasts of parameter 

estimates (aka betas)
• Statistic 

– Compare estimated effects – the contrasts – with 
appropriate error measures

– Are the effects surprisingly large?

GLM review



fMRI analysis

• Data can be filtered to remove low-frequency (1/f) 
noise

• Effects of interest are convolved with 
haemodynamic (BOLD) response function (HRF), 
to capture sluggish nature of response 

• Scans must be treated as a timeseries, not as
independent observations 
– i.e. typically temporally autocorrelated (for TRs<8s)
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Add high pass filter

This means ‘taking out’ 
fluctuations below the 

specified frequency
SPM implements by fitting 

low frequency fluctuations as 
effects of no interest
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Raw fMRI timeseries

Fitted & adjusted data
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Raw fMRI timeseries

Residuals highpass filtered (and 
scaled)

fitted high-pass filter

Adjusted data

fitted box-car

Fitted & adjusted data
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1. Stimulus function is not 
expected BOLD response

2. Data is serially correlated
What‘s wrong with 

this model?
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fMRI analysis

• Data can be filtered to remove low-frequency (1/f) 
noise

• Effects of interest are convolved with 
haemodynamic (BOLD) response function 
(HRF), to capture sluggish nature of response

• Scans must be treated as a timeseries, not as
independent observations 
– i.e. typically temporally autocorrelated (for TRs<8s)



Boxcar function convolved with HRF
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Convolved fit Residuals (less structure) 

Convolution with HRF



fMRI analysis

• Data can be filtered to remove low-frequency (1/f) 
noise

• Effects of interest are convolved with 
haemodynamic (BOLD) response function (HRF), 
to capture sluggish nature of response 

• Scans must be treated as a timeseries, not as
independent observations 
– i.e. typically temporally autocorrelated (for TRs<8s



Temporal autocorrelation

• Because scans are not independent measures, the 
number of degrees of freedom is less than the 
number of scans

• This means that under the null hypothesis the data 
are less free to vary than might be assumed

• A given statistic, e.g. T value, is therefore less 
surprising and so less significant than we think…

…the next talk
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Single subject design matrix
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Group level design matrix
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Summary

• For fMRI studies the GLM specifically needs to 
take account of
– Low frequency noise
– The sluggish haemodynamic response
– The temporally autocorrelated nature of the timeseries 

of scans

• A computationally efficient 2-stage GLM is used
– Continued in next talk


