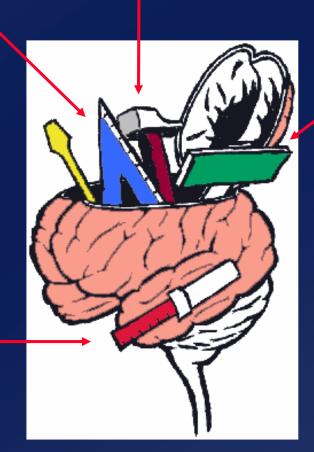
SPM short course at Yale – April 2005 Linear Models and Contrasts

T and F tests : (orthogonal projections)

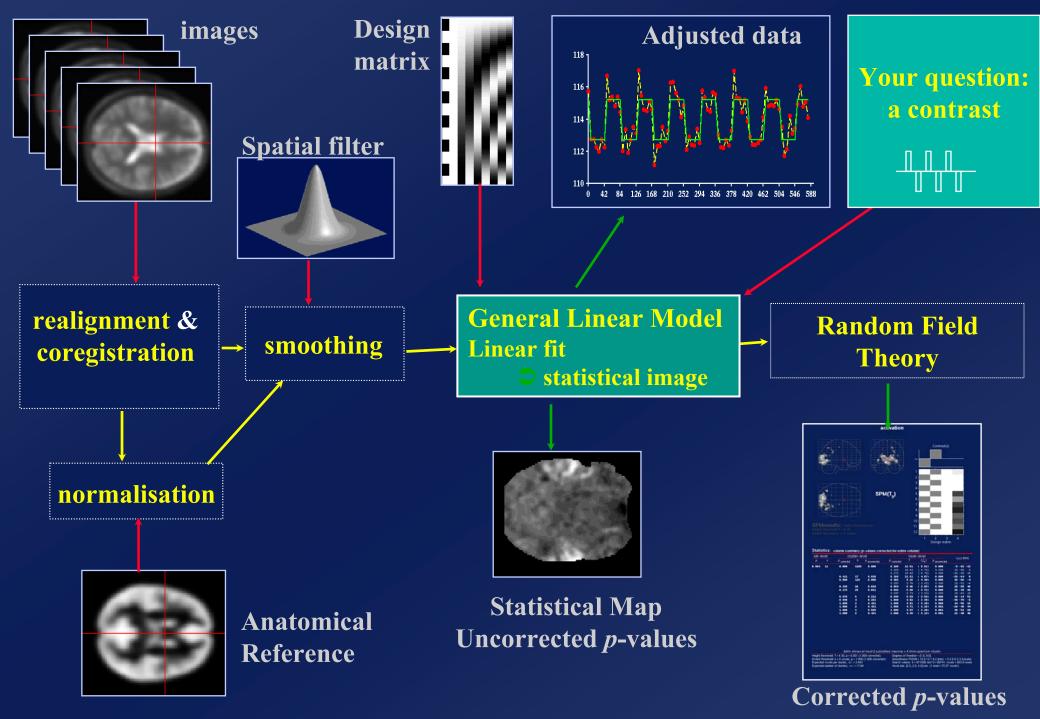
Hammering a Linear Model

Use for Normalisation



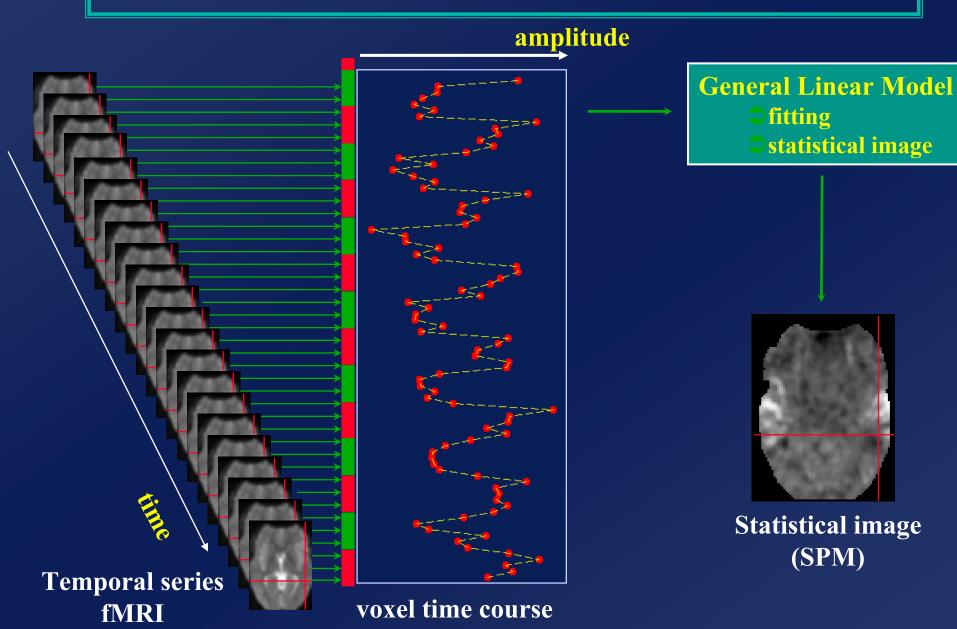
The random field theory

Jean-Baptiste Poline Orsay SHFJ-CEA www.madic.org

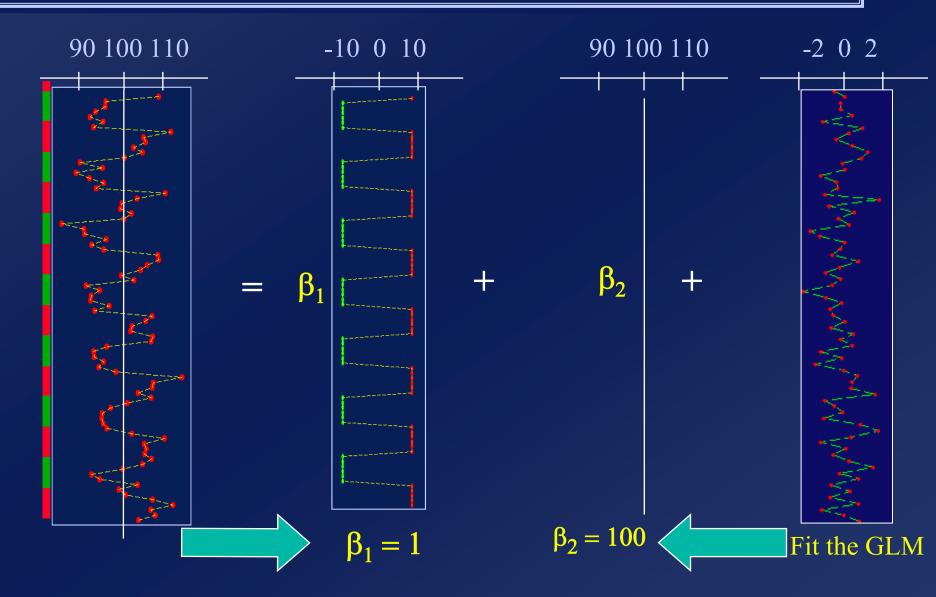


- Make sure we know all about the estimation (fitting) part
- Make sure we understand the testing procedures : t- and F-tests
- ◆ A bad model ... And a better one
- Correlation in our model : do we mind ?
- ◆ A (nearly) real example

One voxel = One test (t, F, ...)

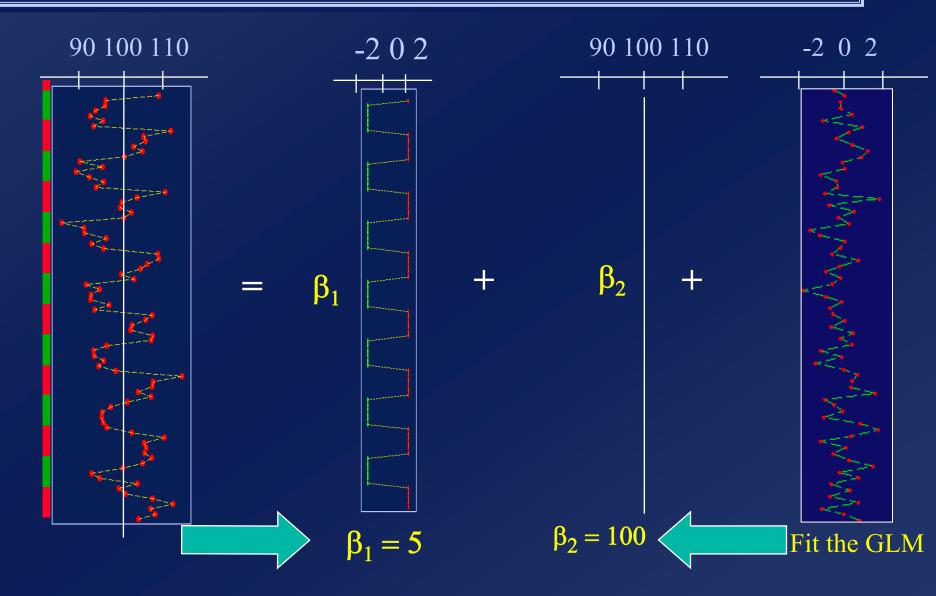


Regression example...



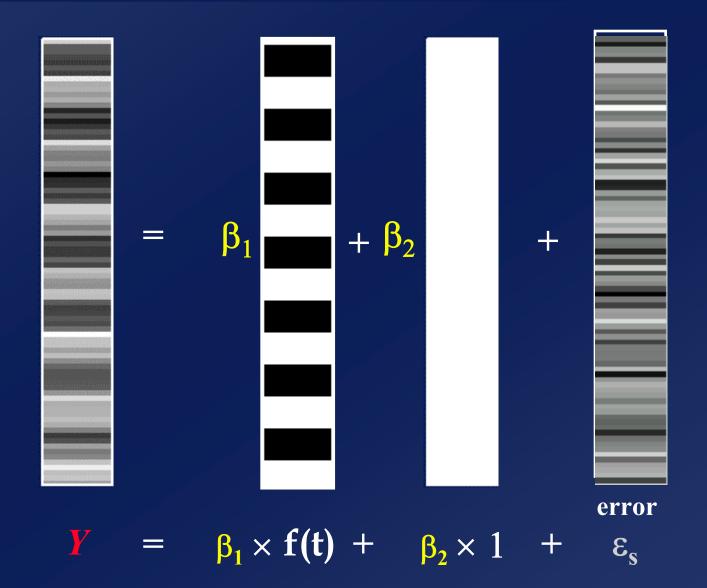
voxel time series box-car reference function Mean value

Regression example...

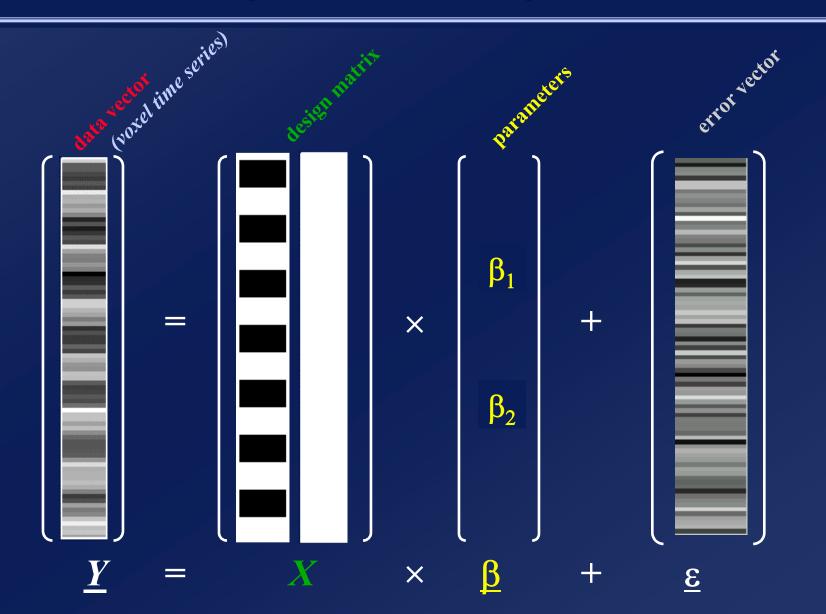


voxel time series **box-car reference function** Mean value

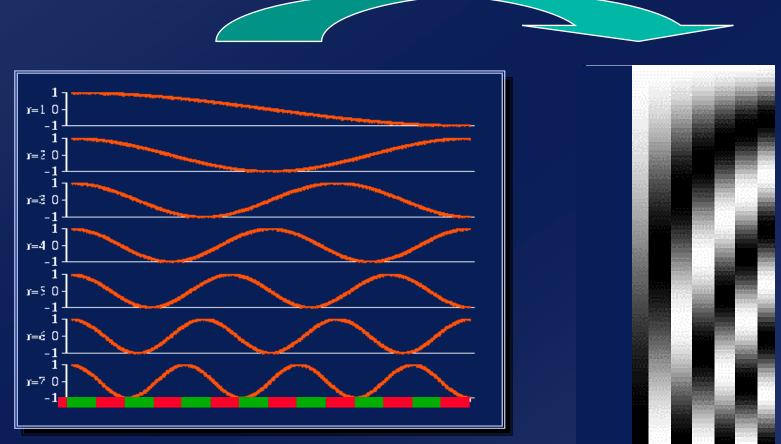
... revisited : matrix form



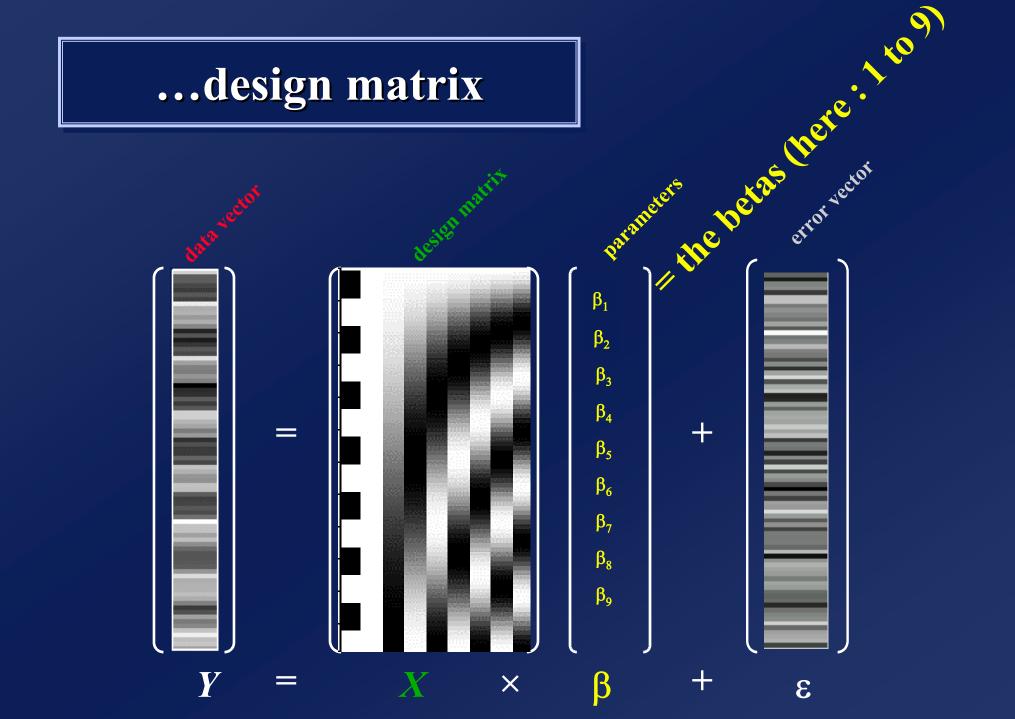
Box car regression: design matrix...



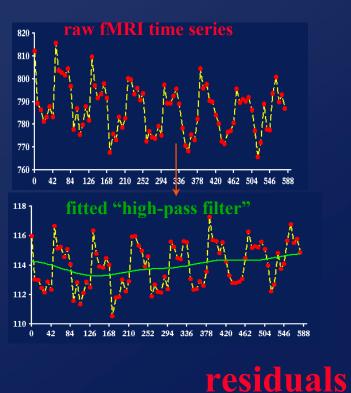
Add more reference functions ...

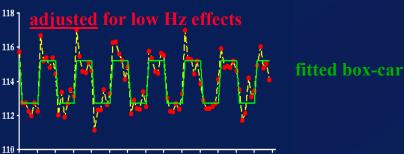


Discrete cosine transform basis functions

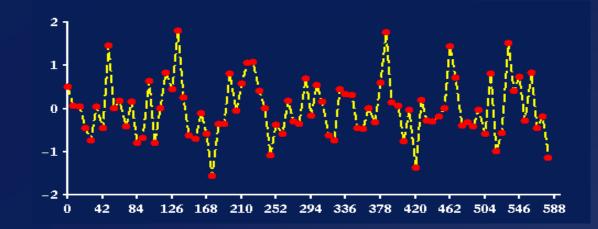


Fitting the model = finding some estimate of the betas = minimising the sum of square of the residuals S²





0 42 84 126 168 210 252 294 336 378 420 462 504 546 588



 $=s^2$

the squared values of the residuals

number of time points minus the number of estimated betas

Summary ...

• We put in our model regressors (or covariates) that represent how we think the signal is varying (of interest and of no interest alike)

• Coefficients (= parameters) are estimated using the Ordinary Least Squares (OLS) or Maximum Likelihood (ML) estimator.

• These estimated parameters (the "betas") **depend** on the scaling of the regressors. But entered with SPM, regressors are normalised and comparable.

◆ The residuals, their sum of squares and the resulting tests (t,F),
 do not depend on the scaling of the regressors.

• Make sure we all know about the estimation (fitting) part

• *Make sure we understand t and F tests*

- ◆ A (nearly) real example
- A bad model ... And a better one
- Correlation in our model : do we mind ?

T test - one dimensional contrasts - SPM{*t*}

A contrast = a linear combination of parameters: $c' \times \beta$

box-car amplitude > 0 ? = β₁ > 0 ? =>

Compute $1xb_1 + 0xb_2 + 0xb_3 + 0xb_4 + 0xb_5 + \dots$ and

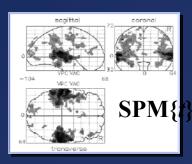
divide by estimated standard deviation

contrast of estimated parameters T = variance estimate

c' = 1 0 0 0 0 0 0 0

 $b_1 b_2 b_3 b_4 b_5 \dots$

$$T = \frac{c'b}{s^2c'(X'X)^+c}$$



How is this computed ? (t-test)

contrast of estimated **parameters** variance

estimate

- *Estimation* [*Y*, *X*] [*b*, *s*] $Y = X\beta + \varepsilon$
- $b = (X'X)^+ X'Y$
- e = Y Xb
- $s^{2} = (e'e/(n p))$
- *Test* [*b*, *s*², *c*] [*c* '*b*, *t*] $Var(c'b) = s^2 c (X'X)^+ c$

 $t = c'b / sqrt(s^2c'(X'X)^+c)$

 $\varepsilon \sim \sigma^2 N(0,I)$ (Y: at one position)

(b: estimate of β) -> beta??? images

(e: estimate of ε)

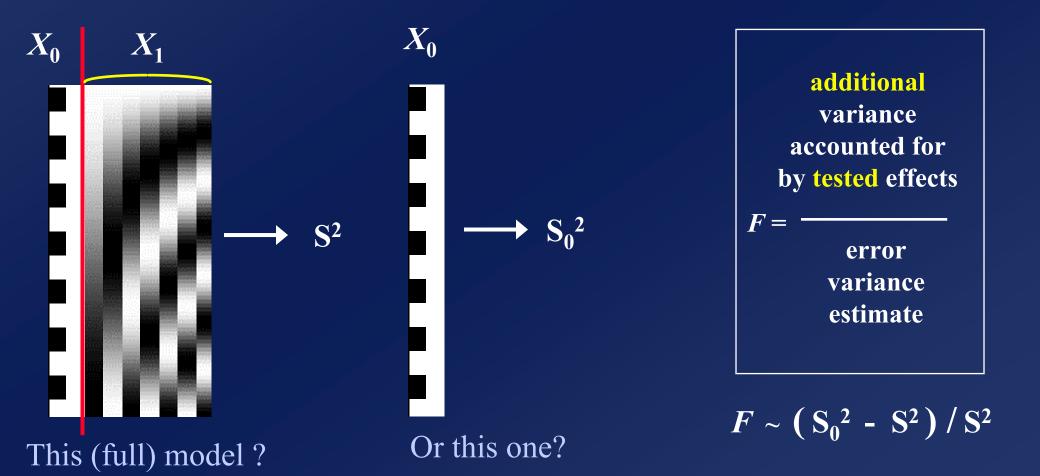
(s: estimate of σ , n: time points, p: parameters) -> 1 image ResMS

(compute for each contrast c)

 $(c'b \rightarrow images spm_con???$ compute the t images -> images spm_t??? under the null hypothesis H_0 : $t \sim Student-t(df)$

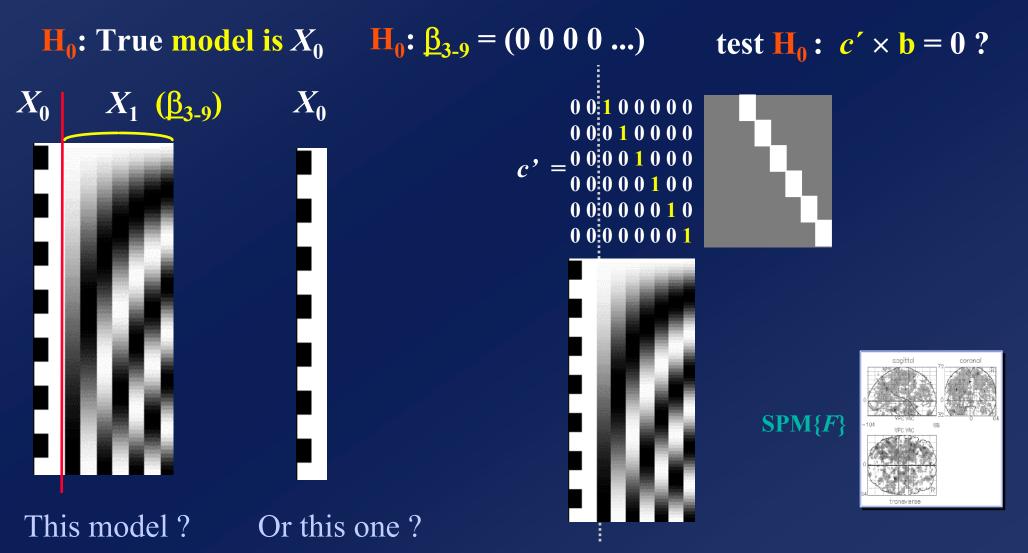
F-test (SPM $\{F\}$) : a reduced model or ...

Tests multiple linear hypotheses : Does X1 model anything ? H₀: True (reduced) model is X₀



F-test (SPM{F}) : a reduced model or ... multi-dimensional contrasts ?

tests multiple linear hypotheses. Ex : does DCT set model anything?



How is this computed ? (F-test)

additional variance accounted for by tested effects

> Error variance estimate

 $Y = X \beta + \varepsilon$ $Y = X_0 \beta_0 + \varepsilon_0$ Estimation [Y, X_0] [b_0, s_0] $b_0 = (X_0 'X_0)^+ X_0 'Y$ $e_0 = Y - X_0 b_0$ $s_0^2 = (e_0 'e_0 / (n - p_0))$ Test [b, s, c] [ess, F]

$$F \sim (s_0 - s) / s^2$$

Estimation [Y, X] [b, s]

 $\varepsilon_0 \sim N(0, \sigma_0^2 I)$ $X_0 : X Reduced$

(e_{\diamond} : estimate of ε_{\diamond}) (s_{\diamond} : estimate of σ_{\diamond} , n: time, p_{\diamond} : parameters)

 $\varepsilon \sim N(0, \sigma^2 I)$

under the null hypothesis : $F \sim F(p - p0, n-p)$

Plan

- Make sure we all know about the estimation (fitting) part
- Make sure we understand t and F tests

◆ A (nearly) real example : testing main effects and interactions

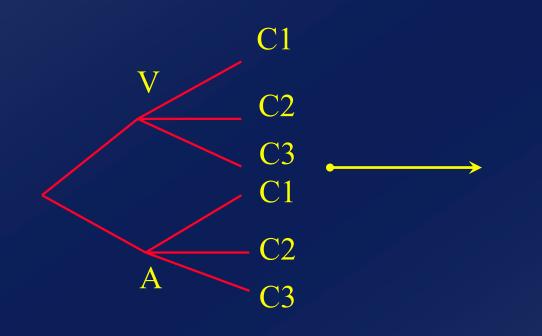
- A bad model ... And a better one
- Correlation in our model : do we mind ?

A real example (almost !)

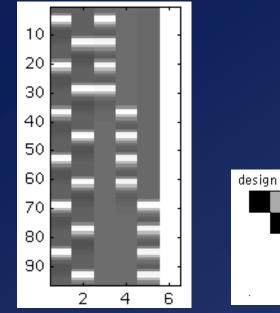
Experimental Design ------> Design Matrix

Factorial design with 2 factors : modality and category 2 levels for modality (eg Visual/Auditory)

3 levels for category (eg 3 categories of words)

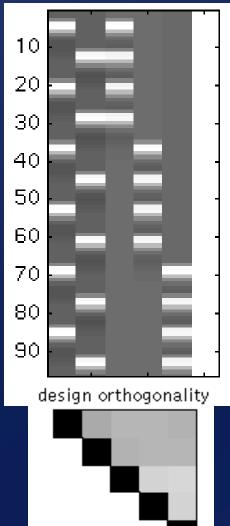


 $V \land C_1 C_2 C_3$



Asking ourselves some questions ...

 $V A C_1 C_2 C_3$



Test C1 > C2Test V > A : c = [001 - 100]: c = [1 - 10000]

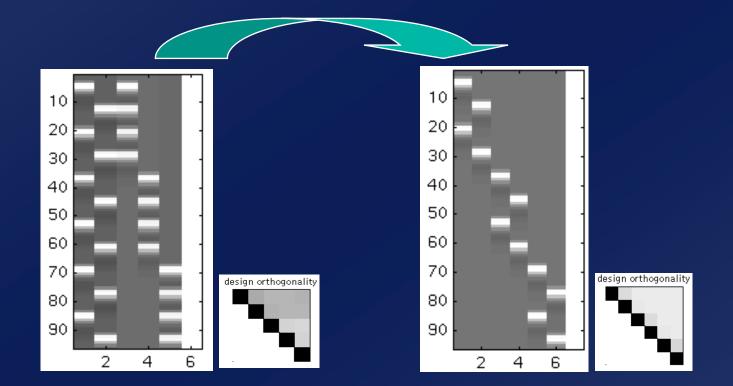
Test C1,C2,C3 ? (F)

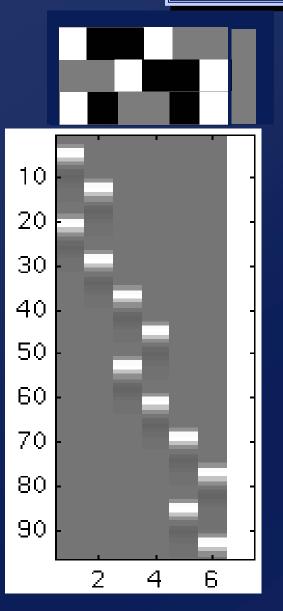
 $c = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Test the interaction MxC?

- Design Matrix not orthogonal
- Many contrasts are non estimable
- Interactions MxC are not modelled

Modelling the interactions

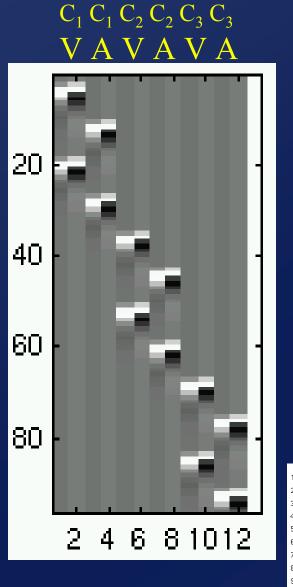




Test $C1 > C2$		$c = [1 \ 1 \ -1 \ -1 \ 0 \ 0 \ 0]$
Test $V > A$		c = [1 - 1 1 - 1 1 - 1 0]
Test the categories : Test the interaction MxC :	c = :	$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 & 1 & -1 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$
	c =	$\begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$

- Design Matrix orthogonal
- All contrasts are estimable
- Interactions MxC modelled
- If no interaction ... ? Model is too "big" !

Asking ourselves some questions ... With a more flexible model



Test C1 > C2 ? Test C1 different from C2 ? from $c = [1 \ 1 \ -1 \ -1 \ 0 \ 0 \ 0]$ to $c = [10 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0]$ $[01 \ 0 \ 1 \ 0 \ -1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0]$ becomes an F test!

Test V > A ? c = [10 - 10 10 - 1010 - 100]

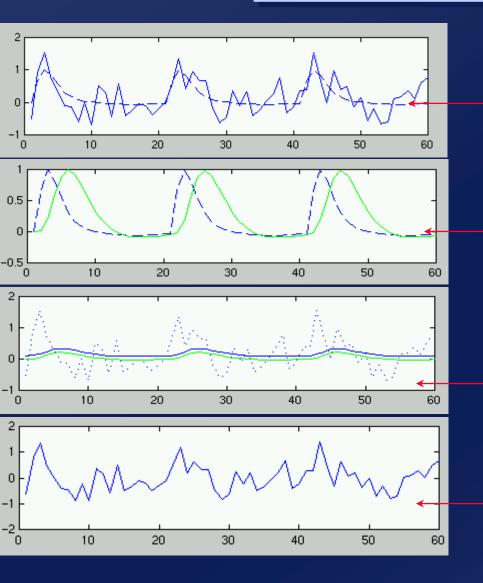
is possible, but is OK only if the regressors coding for the delay are all equal

- Make sure we all know about the estimation (fitting) part
- Make sure we understand t and F tests
- ◆ A (nearly) real example

◆ A bad model ... And a better one

• Correlation in our model : do we mind ?

A bad model ...



True signal and observed signal (---)

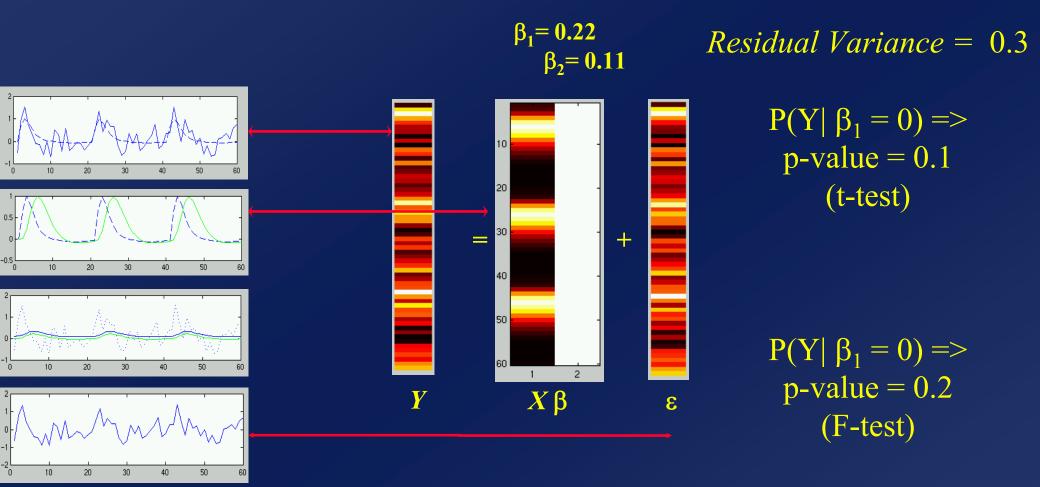
Model (green, pic at 6sec) TRUE signal (blue, pic at 3sec)

Fitting (b1 = 0.2, mean = 0.11)

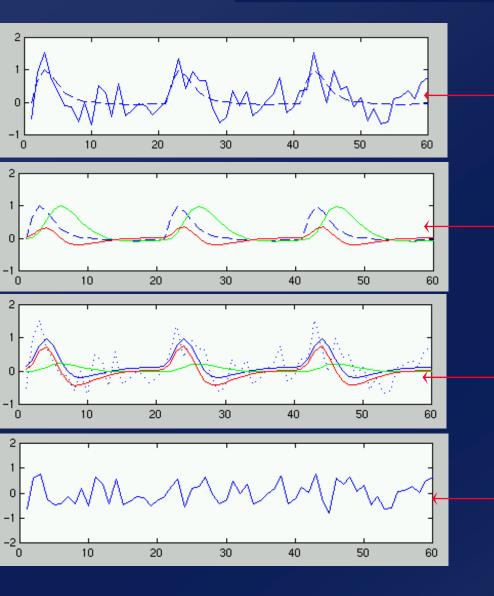
Residual (still contains some signal)

=> Test for the green regressor not significant

A bad model ...



A « better » model ...



True signal + observed signal

Model (green and red) and true signal (blue ---) Red regressor : temporal derivative of the green regressor

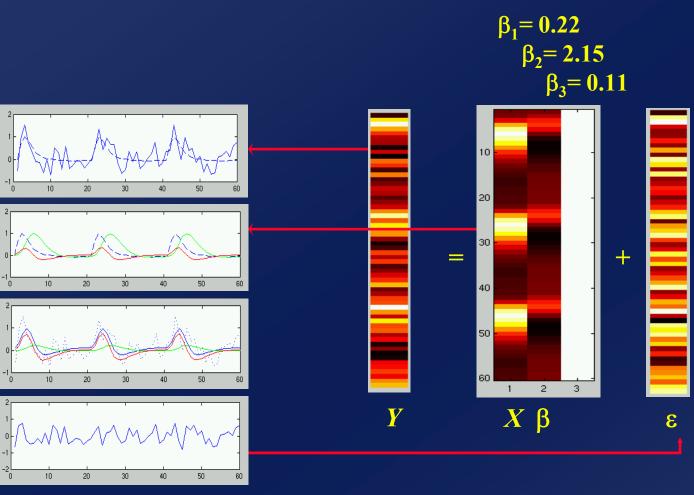
Global fit (blue) and partial fit (green & red) Adjusted and fitted signal

Residual (a smaller variance)

=> t-test of the green regressor significant
=> F-test very significant

=> t-test of the red regressor very significant

A better model ...

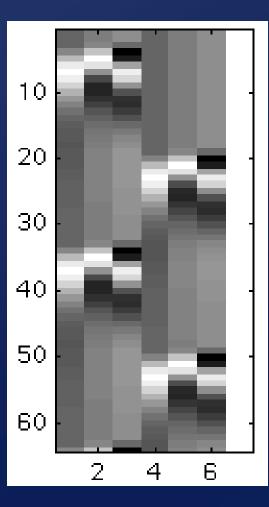


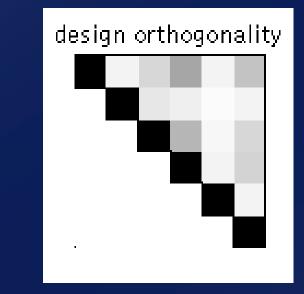
P(Y|
$$\beta_1 = 0.2$$

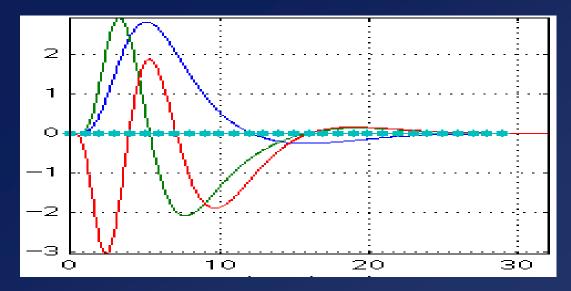
p-value = 0.07
(t-test)

 $P(Y| \beta_1 = 0, \beta_2 = 0)$ p-value = 0.000001 (F-test)

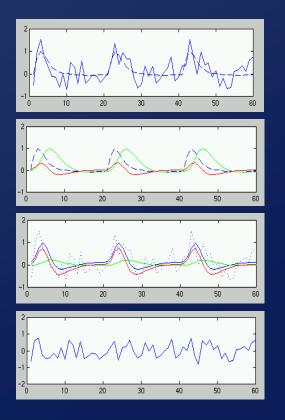
Flexible models : Gamma Basis







Summary ... (2)



The residuals should be looked at ...!

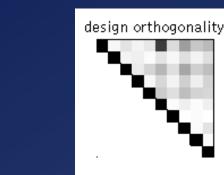
• *Test flexible models if there is little a priori information*

• In general, use the F-tests to look for an overall effect, then look at the response shape

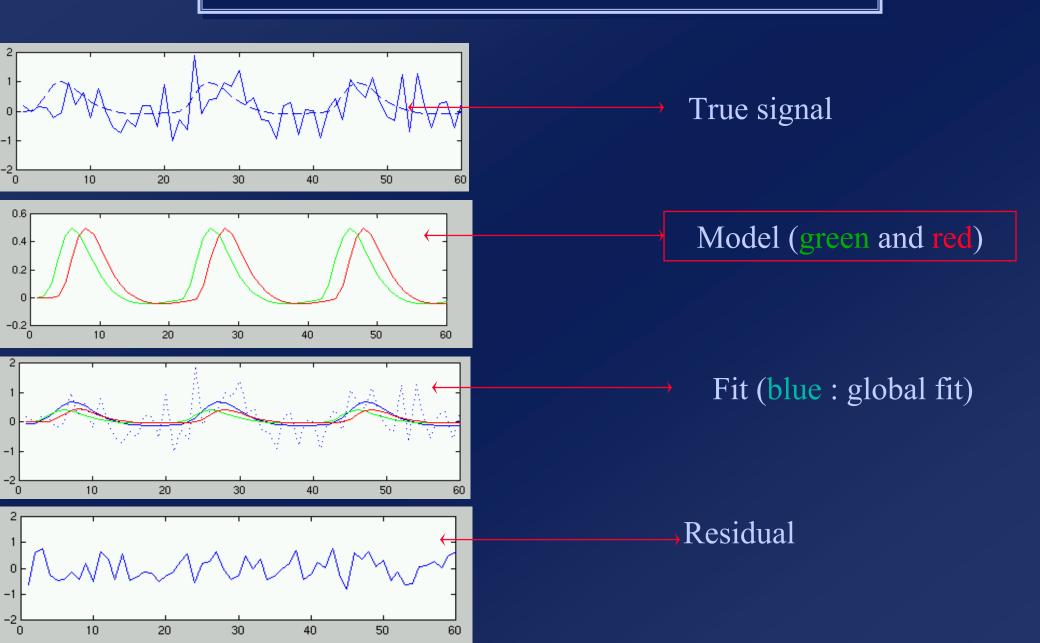
Interpreting the test on a single parameter (one regressor) can be difficult: cf the delay or magnitude situation
 BRING ALL PARAMETERS AT THE 2nd LEVEL

Plan

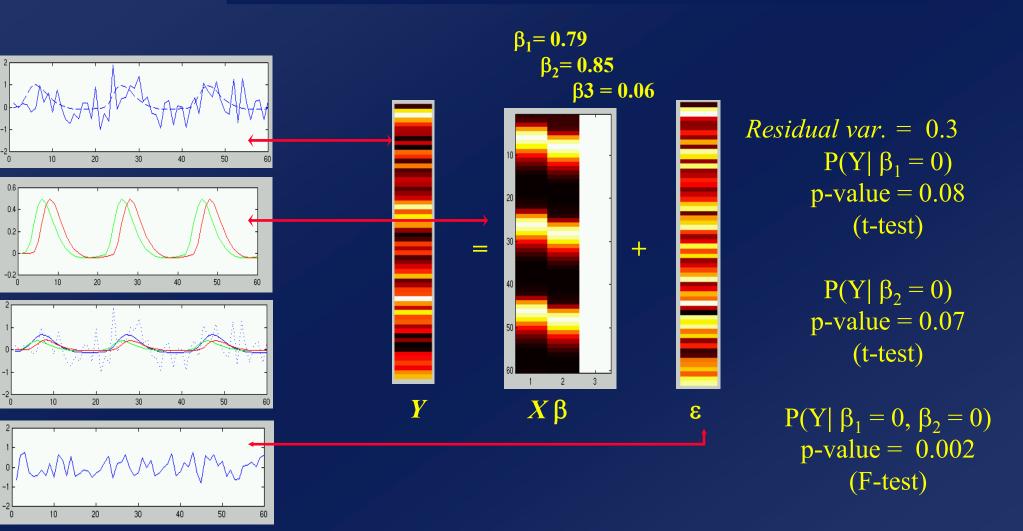
- Make sure we all know about the estimation (fitting) part
- Make sure we understand t and F tests
- ◆ A (nearly) real example
- A bad model ... And a better one
- Correlation in our model : do we mind ?



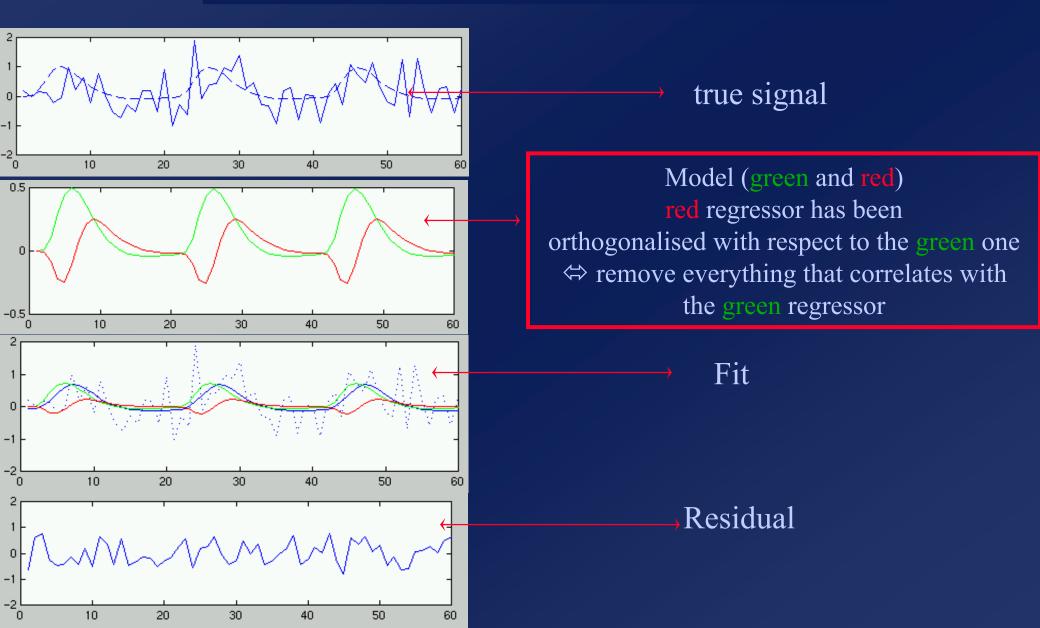
Correlation between regressors



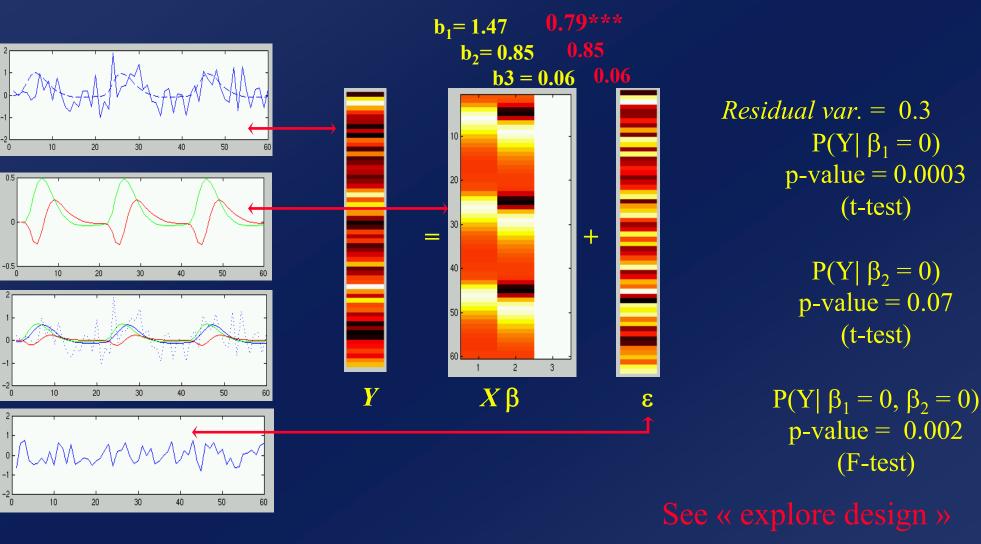
Correlation between regressors



Correlation between regressors - 2



Correlation between regressors -2

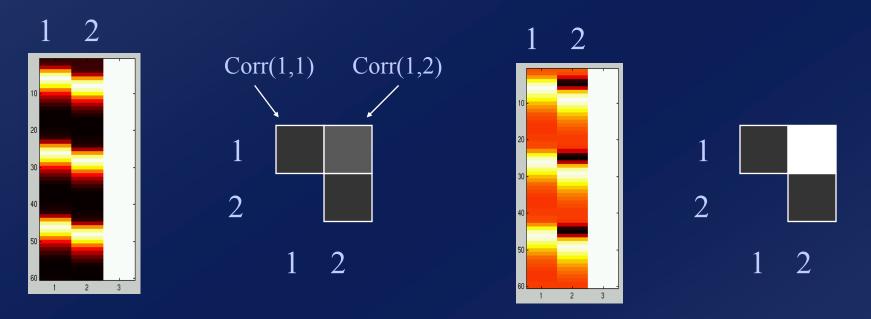


design orthogonality

Design orthogonality : « explore design »

Black = completely correlated

White = completely orthogonal



Beware: when there are more than 2 regressors (C1, C2, C3, ...), you may think that there is little correlation (light grey) between them, but C1 + C2 + C3 may be correlated with C4 + C5

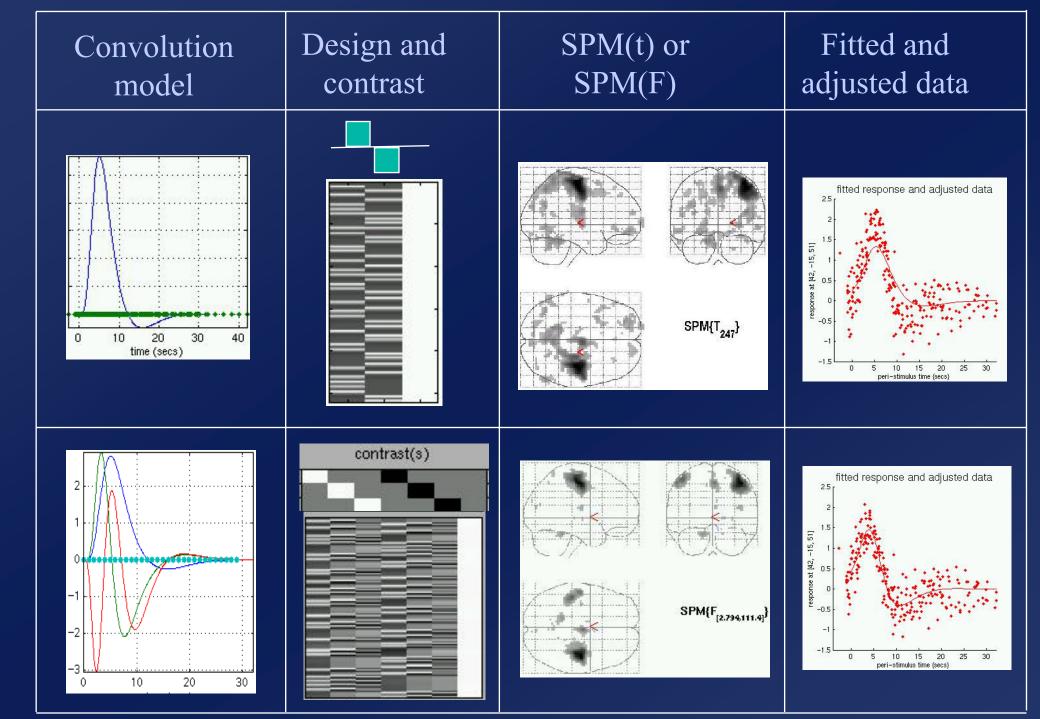
Summary ... (3)

• We implicitly test for an <u>additional</u> effect only, be careful if there is correlation

- Orthogonalisation = decorrelation
- This is not generally needed
- Parameters and test on the non modified regressor change

• It is always simpler to have orthogonal regressors and therefore designs !

◆ In case of correlation, use *F*-tests to see the overall significance. There is generally no way to decide to which regressor the « common » part should be attributed to



Conclusion : check your models

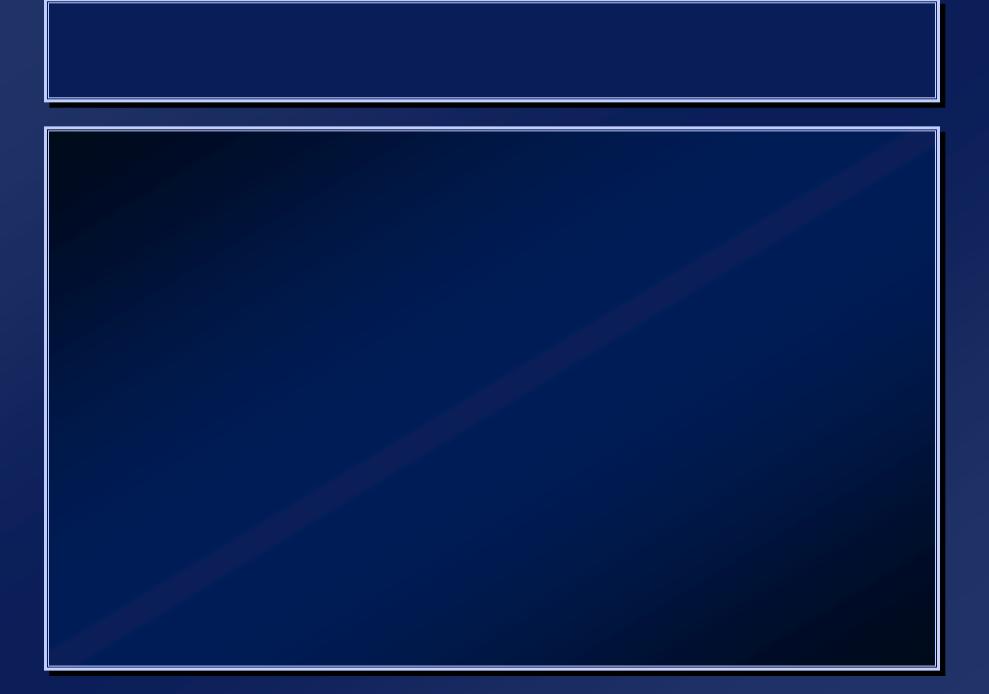
Check your residuals/model

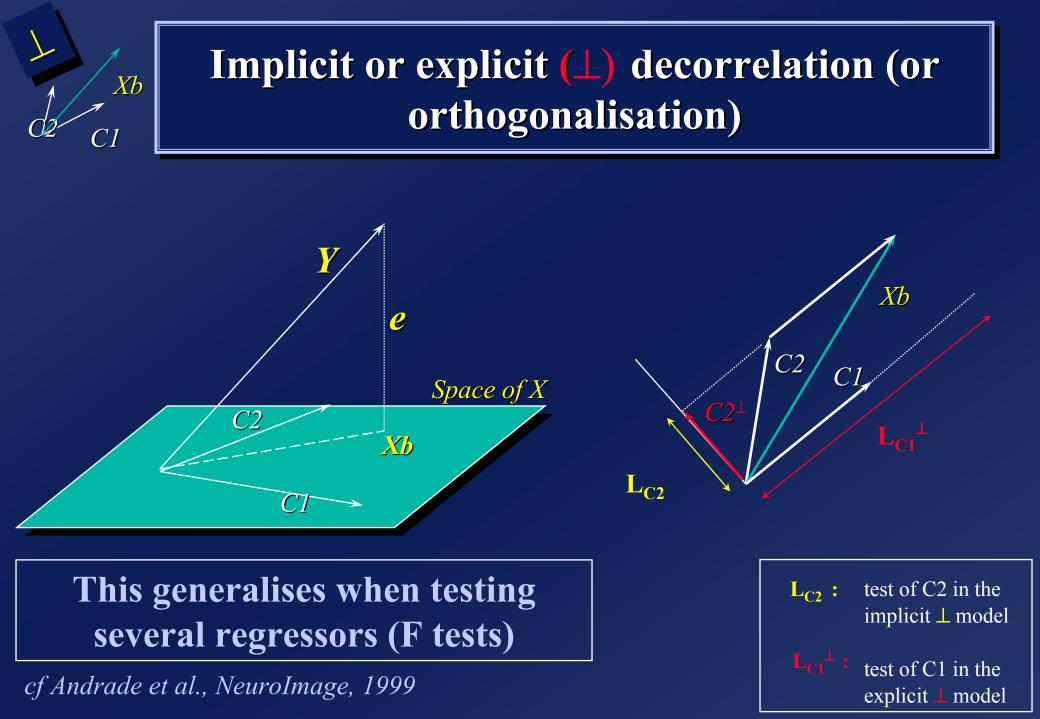
 multivariate toolbox

• Check your HRF form - HRF toolbox

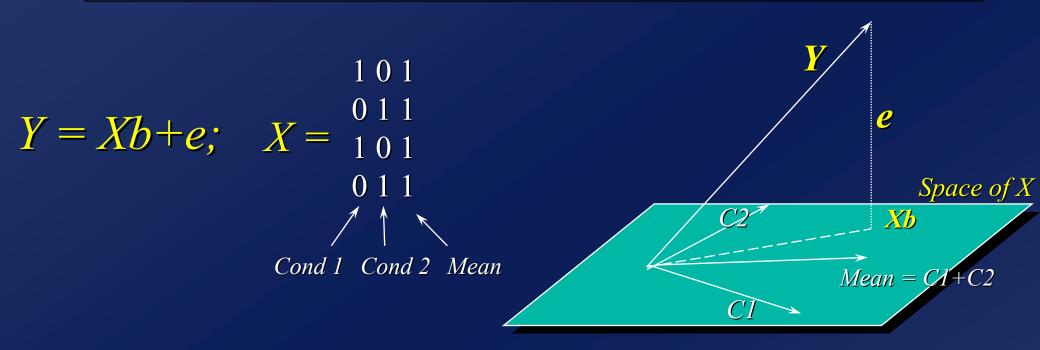
Check group homogeneity

 Distance toolbox





"completely" correlated ...



Parameters are not unique in general ! Some contrasts have no meaning: NON ESTIMABLE

 $c = [1 \ 0 \ 0]$ is **not** estimable (no specific information in the first regressor);

c = [1 - 1 0] is estimable;