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Make sure we understand the testing procedures : tMake sure we understand the testing procedures : t-- and Fand F--teststests

Correlation in our model : do we mind ? Correlation in our model : do we mind ? 

PlanPlan

A bad model ...  And a better oneA bad model ...  And a better one

Make sure we know all about the estimation (fitting) part ...Make sure we know all about the estimation (fitting) part .... . 

A (nearly) real exampleA (nearly) real example



Temporal series 
fMRI

Statistical image
(SPM)

voxel time course

One voxel = One test (t, F, ...)One voxel = One test (t, F, ...)
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Regression example…Regression example…Regression example…
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Regression example…Regression example…Regression example…
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…revisited : matrix form……revisited : matrix formrevisited : matrix form
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Box car regression: design matrix…Box car regression: design matrix…Box car regression: design matrix…
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Add more reference functions ...Add more reference functions ...Add more reference functions ...

Discrete cosine transform basis functionsDiscrete cosine transform basis functions



…design matrix……design matrixdesign matrix

=

α

µ

β3

β4

β5

β6

β7

β8

β9

+

ε= β +Y X

data
 ve

cto
r

desi
gn

 m
atr

ix

par
am

ete
rs

err
or

 ve
cto

r

×

= th
e b

eta
s (

here
 : 1

 to
 9)

β1

β2



Fitting the model = finding some estimate of the betas
= minimising the sum of square of the residuals S2

Fitting the model = finding some Fitting the model = finding some estimateestimate of the betasof the betas
= = minimising the sum of square of the minimising the sum of square of the residualsresiduals SS22

raw fMRI time series adjusted for low Hz effects

residuals

fitted “high-pass filter”

fitted box-car

the squared values of the residualsΣ = s2
number of time points minus the number of estimated betas



We put in our model We put in our model regressorsregressors (or covariates) that represent (or covariates) that represent 
how we think the signal is varying (of interest and of no interehow we think the signal is varying (of interest and of no interest st 
alike)alike)

Summary ...Summary ...

Coefficients (=Coefficients (= parameters) are parameters) are estimatedestimated usingusing thethe OrdinaryOrdinary
Least Least SquaresSquares (OLS) (OLS) oror Maximum Maximum LikelihoodLikelihood (ML) (ML) estimatorestimator..

These estimated parameters (the “betas”) These estimated parameters (the “betas”) dependdepend on the on the 
scaling of the scaling of the regressorsregressors. . ButBut enteredentered withwith SPM, SPM, regressorsregressors areare
normalisednormalised and and comparablecomparable..

The residuals, their sum of squareThe residuals, their sum of squares ands and the the resultingresulting tests (t,F), tests (t,F), 
do notdo not depend on the scaling of the depend on the scaling of the regressorsregressors..



Make sure we understand t and F testsMake sure we understand t and F tests

Correlation in our model : do we mind ? Correlation in our model : do we mind ? 

PlanPlan

A bad model ...  And a better oneA bad model ...  And a better one

Make sure we all know about the estimation (fitting) part ...Make sure we all know about the estimation (fitting) part .... . 

A (nearly) real exampleA (nearly) real example



A contrast = a linear combination of parameters: c´ × β

c’ = 1 0 0 0 0 0 0 0

divide by estimated standard deviation

T test T test -- one dimensional contrasts one dimensional contrasts -- SPM{SPM{tt}}

SPM{t}
T = 

contrast of
estimated

parameters

variance
estimate

T = 
ss22c’(X’X)c’(X’X)++cc

c’bc’b

box-car amplitude > 0 ?
=

β1 > 0 ? 
=>

Compute 1xb1 + 0xb2 + 0xb3 + 0xb4 + 0xb5 + . . . 
and

b1 b2 b3 b4 b5 ....



How is this computed ? (t-test)How is this computed ? (tHow is this computed ? (t--test)test)
contrast of
estimated

parameters

variance
estimate

YY = = X X β β + + εε εε ~ ~ σσ22 N(0,I)N(0,I) (Y : at one position)(Y : at one position)

b = (X’X)b = (X’X)+ + X’Y                      X’Y                      (b(b: : estimatestimatee of  of  ββ) ) --> > beta??? images beta??? images 

e = Y e = Y -- XbXb (e(e:: estimatestimatee of  of  εε))

ss22 = (= (e’e/(ne’e/(n -- p))                    p))                    (s(s:: estimatestimate of e of σ, σ, n: n: time time pointspoints, p: , p: paramparameterseters))
--> > 1 image 1 image ResMSResMS

Estimation [Y, X] [b, s]

Test [b, s2, c] [c’b, t]

Var(c’bVar(c’b) ) = s= s22c’(X’X)c’(X’X)++c        c        (compute for each contrast c)(compute for each contrast c)

t = t = c’bc’b / sqrt(s/ sqrt(s22c’(X’X)c’(X’X)++c)   c)   ((c’bc’b --> > images images spm_conspm_con??????
compute  the t  images compute  the t  images -->    >    images images spm_tspm_t???  ???  ))

under the null hypothesis Hunder the null hypothesis H00 : t ~ Student: t ~ Student--tt( ( dfdf )     )     dfdf = n= n--pp



Tests multiple linear hypotheses : Does X1 model anything ?

FF--test (SPM{test (SPM{FF}) : a reduced model or ...}) : a reduced model or ...

This (full) model ? 

H0: True (reduced) model is X0

X1X0

S2

Or this one? 

X0

S0
2 F = 

error
variance
estimate

additional
variance

accounted for
by tested effects

F ~  ( S0
2 - S2 ) / S2 



0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c’ =

SPM{F}

tests multiple linear hypotheses. Ex : does DCT set model anything?

FF--test (SPM{test (SPM{FF}) : a reduced model or ...}) : a reduced model or ...
multimulti--dimensional contrasts ? dimensional contrasts ? 

test H0 :  c´ × b = 0 ?H0: β3-9 = (0 0 0 0 ...)

X1 (β3-9)X0

This model ? Or this one ? 

H0: True model is X0

X0



How is this computed ? (F-test)How is this computed ? (FHow is this computed ? (F--test)test)
Error 

variance
estimate

additional
variance accounted for

by tested effects

Test [b, s, c] [ess, F]

F ~ (sF ~ (s0 0 -- s) / ss) / s2                                   2                                   --> image          > image          spm_essspm_ess??????
--> image of F : > image of F : spm_Fspm_F??????

under the null hypothesis : F ~ under the null hypothesis : F ~ F(F(pp -- p0p0, , nn--pp))

bb00 = (X= (X00’X’X00))+ + XX00’Y’Y
ee00 = Y = Y -- XX0 0 bb00 ((ee◊◊:: estimatestimate e of of εε◊◊))

ss22
00 = (e= (e00’e’e00/(n /(n -- pp00))               ))               ((ss◊◊:: estimatestimatee of of σσ◊◊, , n: time, n: time, pp◊◊: parameters): parameters)

Estimation [Y, X0] [b0, s0]

Estimation [Y, X] [b, s]

YY == X X β β + + εε εε ~ N(0, ~ N(0, σσ22 I)I)
YY == XX00 ββ00 + + εε00 εε00 ~ N(0, ~ N(0, σσ00

22 I)    I)    XX00 : X Reduced: X Reduced



PlanPlan

Make sure we understand t and F testsMake sure we understand t and F tests

Correlation in our model : do we mind ?  Correlation in our model : do we mind ?  

A bad model ...  And a better oneA bad model ...  And a better one

Make sure we all know about the estimation (fitting) part ...Make sure we all know about the estimation (fitting) part .....

A (nearly) real example : testing main effects and interactionsA (nearly) real example : testing main effects and interactions



A real example (almost !)A real example A real example (almost !)(almost !)

Factorial design with 2 factors : modality and category 
2 levels for modality (eg Visual/Auditory)
3 levels for category (eg 3 categories of words)

Experimental Design Design Matrix

V

A

C1

C2
C3
C1

C2
C3

V A C1 C2 C3



Asking ourselves some questions ...Asking Asking ouourrselves some questions ...selves some questions ...
V A C1 C2 C3

• Design Matrix not orthogonal 
• Many contrasts are non estimable
• Interactions MxC are not modelled

Test C1 > C2                      : c = [ 0 0 1 -1 0 0 ]
Test V > A                          : c = [ 1 -1 0 0 0 0 ]

[ 0 0 1 0 0 0 ]
Test C1,C2,C3 ?   (F)           c =  [ 0 0 0 1 0 0 ]

[ 0 0 0 0 1 0 ]

Test the interaction MxC ?



Modelling the interactionsModelling the interactionsModelling the interactions



Asking ourselves some questions ...Asking Asking ouourrselves some questions ...selves some questions ...

V A V A V A
Test   C1 > C2                      :     c = [ 1  1 -1 -1 0  0  0]

Test   V > A                          :     c = [ 1 -1  1 -1 1 -1 0]

Test the categories :
[ 1  1 -1 -1  0  0  0]

c = [ 0  0  1   1 -1 -1 0]
[ 1  1  0   0 -1 -1 0]

Test the interaction MxC :
[ 1  -1 -1  1  0   0  0]

c = [ 0   0  1  -1 -1  1  0]
[ 1  -1  0   0 -1  1  0]

• Design Matrix orthogonal
• All contrasts are estimable
• Interactions MxC modelled
• If no interaction ... ? Model is too “big” !

C1 C1 C2 C2 C3 C3



Asking ourselves some questions ... With a 
more flexible model

Asking Asking ouourrselves some questions ... With a selves some questions ... With a 
more flexible modelmore flexible model

V A V A V A
Test C1 > C2   ?
Test C1 different from C2   ?
from

c =     [ 1     1     -1      -1        0      0     0]
to

c  = [ 1 0 1  0 -1  0 -1   0 0  0 0  0 0]
[ 0 1  0 1 0 -1 0 -1 0  0 0 0 0]

becomes an F test!

C1 C1 C2 C2 C3 C3

Test V > A ?
c  =    [ 1 0 -1 0  1 0 -1 0 1 0 -1 0 0]

is possible, but is OK only if the regressors coding 
for the delay are all equal



Make sure we understand t and F testsMake sure we understand t and F tests

Correlation in our model : do we mind ? Correlation in our model : do we mind ? 

PlanPlan

A bad model ...  And a better oneA bad model ...  And a better one

Make sure we all know about the estimation (fitting) part ...Make sure we all know about the estimation (fitting) part .... . 

A (nearly) real exampleA (nearly) real example



A bad model ...AA badbad model ...model ...

True signal and observed signal (---)

Model (green, pic at 6sec)
TRUE signal (blue, pic at 3sec)

Fitting (b1 = 0.2, mean = 0.11)

=> Test for the green regressor not significant

Residual (still contains some signal)



ε

= +

Y X β

β1= 0.22
β2= 0.11 

A bad model ...AA badbad model ...model ...

Residual Variance = 0.3

P(Y| β1 = 0) =>
p-value = 0.1 

(t-test)

P(Y| β1 = 0) =>
p-value = 0.2 

(F-test)



A « better » model ...A «A « betterbetter » model ...» model ...

True signal + observed signal 

Global fit (blue)
and partial fit (green & red)
Adjusted and fitted signal

=> t-test of the green regressor significant
=> F-test very significant
=> t-test of the red regressor very significant

Residual (a smaller variance)

Model (green and red)
and true signal (blue ---)
Red regressor : temporal derivative of 
the green regressor



A better model ...AA betterbetter model ...model ...

ε

= +

Y X  β

β1= 0.22
β2= 2.15

β3= 0.11

Residual Var = 0.2

P(Y| β1 = 0)
p-value = 0.07

(t-test)

P(Y| β1 = 0, β2 = 0)
p-value = 0.000001  

(F-test)



Flexible models : Gamma BasisFlexible models : Flexible models : Gamma BasisGamma Basis



Test flexible models if there is little a priori 
information

The residuals should be looked at ...!

In general, use the F-tests to look for an 
overall effect, then look at the response
shape

Interpreting the test on a single parameter (one 
regressor) can be difficult: cf the delay or 
magnitude situation

BRING ALL PARAMETERS AT THE 2nd LEVEL

Summary ... (2)Summary ... (2)



Make sure we understand t and F testsMake sure we understand t and F tests

Correlation in our model : do we mind ?  Correlation in our model : do we mind ?  

PlanPlan

A bad model ...  And a better oneA bad model ...  And a better one

Make sure we all know about the estimation (fitting) part ...Make sure we all know about the estimation (fitting) part .....

A (nearly) real exampleA (nearly) real example

?



True signal 

Correlation between regressorsCorrelationCorrelation between between regressorsregressors

Fit (blue : global fit)

Residual

Model (green and red) 



ε

= +

Y X β

β1= 0.79
β2= 0.85

β3 = 0.06 

Correlation between regressorsCorrelationCorrelation between between regressorsregressors

Residual var. = 0.3
P(Y| β1 = 0)

p-value = 0.08
(t-test)

P(Y| β2 = 0)
p-value = 0.07

(t-test)

P(Y| β1 = 0, β2 = 0)
p-value = 0.002

(F-test)



true signal 

Correlation between regressors - 2CorrelationCorrelation between between regressorsregressors -- 22

Residual

Fit

Model (green and red)
red regressor has been 

orthogonalised with respect to the green one
remove everything that correlates with 

the green regressor 



ε

= +

Y X β

b1= 1.47
b2= 0.85

b3 = 0.06 
Residual var. =  0.3

P(Y| β1 = 0)
p-value = 0.0003

(t-test)

P(Y| β2 = 0)
p-value = 0.07

(t-test)

P(Y| β1 = 0, β2 = 0)
p-value = 0.002

(F-test)

See « explore design »

Correlation between regressors -2CorrelationCorrelation between between regressorsregressors --22
0.79***

0.85
0.06



Design orthogonality : « explore design »Design Design orthogonalityorthogonality :: «« explore designexplore design »»

BewareBeware: when there : when there areare more than 2 more than 2 regressorsregressors (C1,C2,C3(C1,C2,C3,,...), ...), 
you may think that there is little correlation (light grey) betwyou may think that there is little correlation (light grey) between een 
them, but C1 + C2 + C3 may be correlated with C4 + C5  them, but C1 + C2 + C3 may be correlated with C4 + C5  

Black = completely correlated              White = completely orthogonal 

Corr(1,1) Corr(1,2)
1 2

1 2

1

2

1 2

1 2

1

2



We implicitly test We implicitly test forfor an an additionaladditional effect only, be careful if effect only, be careful if 
there is correlationthere is correlation

Summary ... (3)Summary ... (3)

OrthogonalisationOrthogonalisation = = decorrelationdecorrelation
-- This is not generally neededThis is not generally needed
-- Parameters and test on the non modified Parameters and test on the non modified regressorregressor change  change  

It is always simpler to have orthogonal It is always simpler to have orthogonal regressorsregressors and therefore and therefore 
designs !designs !

In case of correlation, use FIn case of correlation, use F--tests to see the overall tests to see the overall 
significance. There is generally no way to decide significance. There is generally no way to decide to to whichwhich
regressorregressor the «the « commoncommon » part should be attributed to» part should be attributed to



Convolution 
model 

Design and
contrast

SPM(t) or
SPM(F)

Fitted and
adjusted data



Conclusion : Conclusion : checkcheck youryour modelsmodels

www.madic.org !

CheckCheck youryour residualsresiduals//modelmodel
-- multivariatemultivariate toolboxtoolbox

CheckCheck youryour HRF HRF formform
-- HRF HRF toolboxtoolbox

CheckCheck group group homogeneityhomogeneity
-- Distance Distance toolboxtoolbox





Implicit or explicit (⊥) decorrelation (or 
orthogonalisation)

Implicit or explicit Implicit or explicit ((⊥) decorrelationdecorrelation (or (or 
orthogonalisationorthogonalisation))C1C1C2C2

XbXb

YY

XbXb

ee

Space of XSpace of X

C1C1

C2C2

LC2 :

LC1
⊥  : 

test of C2 in the 
implicit ⊥ model 

test of C1 in the 
explicit ⊥ model 

⊥⊥⊥

C1C1C2C2

XbXb

LC1
⊥

LC2

C2C2⊥

cf Andrade et al., NeuroImage, 1999

This generalises when testing 
several regressors (F tests)



1 0 11 0 1
0 1 1 0 1 1 
1 0 11 0 1
0 1 10 1 1

X =X =

MeanMeanCondCond 11 CondCond 22

Y = Y = Xb+eXb+e; ; 

^̂̂β ?β ?β ? “completely” correlated ... ““completely” correlated ... completely” correlated ... 

Parameters are not unique in general ! Some contrasts have no meaning: NON 
ESTIMABLE

c = [1 0 0]    is not estimable (no specific information in the first regressor); 

c = [1 -1 0]   is estimable;

YY

XbXb

ee

Space of XSpace of X

C1C1

C2C2

Mean = C1+C2Mean = C1+C2


