Experimental Design

Rik Henson

With thanks to:
Karl Friston, Andrew Holmes
Overview

1. A Taxonomy of Designs
2. Epoch vs Event-related
3. Mixed Epoch/Event Designs
A taxonomy of design

- **Categorical designs**
 - Subtraction: Additive factors and pure insertion
 - Conjunction: Testing multiple hypotheses

- **Parametric designs**
 - Linear: Cognitive components and dimensions
 - Nonlinear: Polynomial expansions

- **Factorial designs**
 - Categorical: Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric: Linear and nonlinear interactions
 - Psychophysiological Interactions
A taxonomy of design

- Categorical designs
 - Subtraction - Additive factors and pure insertion
 - Conjunction - Testing multiple hypotheses

- Parametric designs
 - Linear - Cognitive components and dimensions
 - Nonlinear - Polynomial expansions

- Factorial designs
 - Categorical - Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric - Linear and nonlinear interactions
 - Psychophysiological Interactions
A categorical analysis

Experimental design

Word generation G
Word repetition R

G - R = Intrinsic word generation

...under assumption of pure insertion, ie, that G and R do not differ in other ways
A taxonomy of design

- **Categorical designs**
 - Subtraction - Additive factors and pure insertion
 - *Conjunction* - Testing multiple hypotheses

- **Parametric designs**
 - Linear - Cognitive components and dimensions
 - Nonlinear - Polynomial expansions

- **Factorial designs**
 - Categorical - Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric - Linear and nonlinear interactions
 - Psychophysiological Interactions
One way to minimise problem of pure insertion is to isolate same process in several different ways (i.e., multiple subtractions of different conditions).

Visual Processing \(V \)
Object Recognition \(R \)
Phonological Retrieval \(P \)

Object viewing \(R,V \)
Colour viewing \(V \)
Object naming \(P,R,V \)
Colour naming \(P,V \)

\[(\text{Object - Colour viewing}) = [1 -1 0 0] \]
\&
\[(\text{Object - Colour naming}) = [0 0 1 -1] \]

(assuming \(RxP = 0 \); see later)

Price et al, 1997
Cognitive Conjunctions

Select contrasts...

- 002 {T} : A1 - A2
- 003 {T} : B1 - B2

Design matrix

Selected 2 contrasts for conjunction, press "Done" when finished.
Cognitive Conjunctions

- Original (SPM97) definition of conjunctions entailed sum of two simple effects \((A1-A2 + B1-B2)\) plus exclusive masking with interaction \((A1-A2) - (B1-B2)\)

- I.e., “effects significant and of similar size”

- (Difference between conjunctions and masking is that conjunction p-values reflect the conjoint probabilities of the contrasts)

- SPM2 definition of conjunctions uses advances in Gaussian Field Theory (e.g., \(T^2\) fields), allowing corrected p-values

- However, the logic has changed slightly, in that voxels can survive a conjunction even though they show an interaction
A taxonomy of design

- **Categorical designs**
 - Subtraction: Additive factors and pure insertion
 - Conjunction: Testing multiple hypotheses

- **Parametric designs**
 - Linear: Cognitive components and dimensions
 - Nonlinear: Polynomial expansions

- **Factorial designs**
 - Categorical: Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric: Linear and nonlinear interactions
 - Psychophysiological Interactions
A (linear) parametric contrast

Linear effect of time

SPM\{T_{44}\}
A taxonomy of design

- **Categorical designs**
 - Subtraction: Additive factors and pure insertion
 - Conjunction: Testing multiple hypotheses

- **Parametric designs**
 - Linear: Cognitive components and dimensions
 - Nonlinear: Polynomial expansions

- **Factorial designs**
 - Categorical: Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric: Linear and nonlinear interactions
 - Psychophysiological Interactions
Nonlinear parametric design matrix

E.g, F-contrast [0 1 0] on Quadratic Parameter =>

Inverted ‘U’ response to increasing word presentation rate in the DLPFC

Polynomial expansion:

\[f(x) \sim \beta_1 x + \beta_2 x^2 + \ldots \]

...(N-1)th order for N levels
A taxonomy of design

• Categorical designs
 Subtraction - Additive factors and pure insertion
 Conjunction - Testing multiple hypotheses

• Parametric designs
 Linear - Cognitive components and dimensions
 Nonlinear - Polynomial expansions

• Factorial designs
 Categorical - Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 Parametric - Linear and nonlinear interactions
 - Psychophysiological Interactions
Interactions and pure insertion

- Presence of an interaction can show a failure of pure insertion (using earlier example)...

Task (1/2)

<table>
<thead>
<tr>
<th>Stimuli (A/B)</th>
<th>Colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>B1</td>
<td>B2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objects</th>
<th>Visual Processing</th>
<th>Object Recognition</th>
<th>Phonological Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>View (1/2)</td>
<td>V</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Naming</td>
<td>R,V</td>
<td>V</td>
<td>P,R,V,RxP</td>
</tr>
<tr>
<td>Colour</td>
<td>V</td>
<td>V</td>
<td>P,V</td>
</tr>
</tbody>
</table>

(Object – Colour) x (Viewing – Naming)

\[
\begin{bmatrix}
1 & -1 & 0 & 0
\end{bmatrix}
- \begin{bmatrix}
0 & 0 & 1 & -1
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 0 & 0
\end{bmatrix} \otimes \begin{bmatrix}
1 & -1
\end{bmatrix} = \begin{bmatrix}
1 & -1 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
R,V - V
\end{bmatrix}
- \begin{bmatrix}
P,R,V,RxP - P,V
\end{bmatrix} = R - R,RxP = RxP
\]
Interactions and pure insertion

Define contrast...

Name: (A1 - A2) x (B1 - B2)
Type: t-contrast
Contrast: 1 -1 -1 1

Design matrix
Parameter estimability

Name defined, contrast defined
A taxonomy of design

- **Categorical designs**
 - Subtraction - Additive factors and pure insertion
 - Conjunction - Testing multiple hypotheses

- **Parametric designs**
 - Linear - Cognitive components and dimensions
 - Nonlinear - Polynomial expansions

- **Factorial designs**
 - Categorical - Interactions and pure insertion
 - Adaptation, modulation and dual-task inference
 - Parametric - Linear and nonlinear interactions
 - Psychophysiological Interactions
(Linear) Parametric Interaction

A (Linear) Time-by-Condition Interaction (“Generation strategy”?)

Contrast: \([5 \ 3 \ 1 \ -1 \ -3 \ -5] \otimes [-1 \ 1]\)
Nonlinear Parametric Interaction

F-contrast tests for nonlinear Generation-by-Time interaction (including both linear and Quadratic components)

Factorial Design with 2 factors:
1. Gen/Rep (Categorical, 2 levels)
2. Time (Parametric, 6 levels)

Time effects modelled with both linear and quadratic components…
A taxonomy of design

<table>
<thead>
<tr>
<th>Categorical designs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtraction</td>
<td>Additive factors and pure insertion</td>
</tr>
<tr>
<td>Conjunction</td>
<td>Testing multiple hypotheses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametric designs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>Cognitive components and dimensions</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Polynomial expansions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factorial designs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical</td>
<td>Interactions and pure insertion</td>
</tr>
<tr>
<td></td>
<td>Adaptation, modulation and dual-task inference</td>
</tr>
<tr>
<td>Parametric</td>
<td>Linear and nonlinear interactions</td>
</tr>
<tr>
<td></td>
<td>Psychophysiological Interactions</td>
</tr>
</tbody>
</table>
Psycho-physiological Interaction (PPI)

Parametric, factorial design, in which one factor is **psychological** (e.g., attention)
...and other is **physiological** (*viz.* activity *extracted from a brain region of interest*)

Attentional modulation of **V1 - V5 contribution**
Psycho-physiological Interaction (PPI)

- V1 activity
- V5 activity
- V1xAttention

SPM\{Z\}

- V1 activity vs. time
- Attention vs. V1 activity
- No Attention vs. V1 activity

V1Att, Att, V1xAtt
Psycho-physiological Interaction (PPI)

• PPIs tested by a GLM with form:

\[y = (V1 \times A) \beta_1 + V1 \beta_2 + A \beta_3 + \varepsilon \quad c = [1 \ 0 \ 0] \]

• However, the interaction term of interest, \(V1 \times A \), is the product of V1 activity and Attention block AFTER convolution with HRF

• We are really interested in interaction at neural level, but:

\[(HRF \otimes V1) \times (HRF \otimes A) \neq HRF \otimes (V1 \times A) \]

(unless A low frequency, e.g., blocked; so problem for event-related PPIs)

• SPM2 can effect a deconvolution of physiological regressors (V1), before calculating interaction term and reconvolving with the HRF

• Deconvolution is ill-constrained, so regularised using smoothness priors (using ReML)
Overview

1. A Taxonomy of Designs

2. Epoch vs Event-related

3. Mixed Epoch/Event Designs
Epoch vs Events

- **Epochs** are periods of sustained stimulation (e.g., box-car functions)
- **Events** are impulses (delta-functions)
- In SPM99, epochs and events are distinct (e.g., in choice of basis functions)
- In SPM2, all conditions are specified in terms of their 1) onsets and 2) durations…
 … events simply have zero duration
- Near-identical regressors can be created by: 1) sustained epochs, 2) rapid series of events (SOAs<~3s)
- i.e., *designs* can be blocked or intermixed
 … *models* can be epoch or event-related

Sustained epoch

Blocks of events

Boxcar function

Delta functions

Convolved with HRF
Advantages of Event-related fMRI

1. Randomised (intermixed) trial order
 c.f. confounds of blocked designs (Johnson et al 1997)
Randomised O1 N1 O3
O2
O = Old Words
N = New Words
Blocked

Data
Model

Randomised
O1 N1 O2 O3
N1 N2 N3

O1
N1
O2
O3
N2
Advantages of Event-related fMRI

1. Randomised (intermixed) trial order
c.f. confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials
e.g, according to subsequent memory (Wagner et al 1998)
$R = \text{Words Later Remembered}$

$F = \text{Words Later Forgotten}$

Event-Related

- R = Words Later Remembered
- F = Words Later Forgotten

![Event-Related Data and Model Graph](image-url)
Advantages of Event-related fMRI

1. Randomised (intermixed) trial order
 c.f. confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials
 e.g, according to subsequent memory (Wagner et al 1998)

3. Some events can only be indicated by subject (in time)
 e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)
1. Randomised (intermixed) trial order
 c.f. confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials
 e.g, according to subsequent memory (Wagner et al 1998)

3. Some events can only be indicated by subject (in time)
 e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)

4. Some trials cannot be blocked
 e.g, “oddball” designs (Clark et al., 2000)
"Oddball"
Advantages of Event-related fMRI

1. Randomised (intermixed) trial order
c.f. confounds of blocked designs (Johnson et al 1997)

2. Post hoc / subjective classification of trials
e.g, according to subsequent memory (Wagner et al 1998)

3. Some events can only be indicated by subject (in time)
e.g, spontaneous perceptual changes (Kleinschmidt et al 1998)

4. Some trials cannot be blocked
e.g, “oddball” designs (Clark et al., 2000)

5. More accurate models even for blocked designs?
e.g, “state-item” interactions (Chawla et al, 1999)
Blocked Design

“Epoch” model

“Event” model

Data

Model

N1 N2 N3

O1 O2 O3

N1 N2 N3

O1 O2 O3
Epoch vs Events

• Though blocks of trials can be modelled as either epochs (boxcars) or runs of events… … interpretation of parameters differs…

• Consider an experiment presenting words at different rates in different blocks:
 • An “epoch” model will estimate parameter that increases with rate, because the parameter reflects response per block
 • An “event” model may estimate parameter that decreases with rate, because the parameter reflects response per word
Disadvantages of Intermixed Designs

1. Less efficient for detecting effects than are blocked designs
 (see later…)

2. Some psychological processes may be better blocked
 (e.g., task-switching, attentional instructions)
Overview

1. A Taxonomy of Designs

2. Epoch vs Event-related

3. Mixed Epoch/Event Designs
Recent interest in simultaneously measuring effects that are:

- transient ("item- or event-related")
- sustained ("state- or epoch-related")

What is the best design to estimate both…?
A bit more formally… “Efficiency”

- Sensitivity, or “efficiency”, \(e \) (see later):
 \[
e(c,X) = \{ c^T (X^TX)^{-1} c \}^{-1}
 \]

 - \(X^TX \) represents covariance of regressors in design matrix
 - High covariance increases elements of \((X^TX)^{-1}\)

 \[\Rightarrow \text{So, when correlation between regressors is high, sensitivity to each regressor alone is low} \]
Item effect only…

Blocks = 40s, Fixed SOA = 4s

Efficiency = 565
(Item Effect)

Design Matrix (X)

OK...
Item and State effects

Blocks = 40s, Fixed SOA = 4s

Efficiency = 16 (Item Effect)

Correlation = .97

Design Matrix (X)

Not good...
Efficiency = 54
(Item Effect)

Better!

Correlation = .78
Design Matrix (X)

Blocks = 40 s, Randomised SOA_{min} = 2 s
Mixed Designs (Chawla et al 1999)

- Visual stimulus = dots periodically changing in colour or motion
- Epochs of attention to: 1) motion, or 2) colour
- Events are target stimuli differing in motion or colour

- Randomised, long SOAs between events (targets) to decorrelate epoch and event-related covariates

- Attention modulates BOTH:
 - 1) baseline activity (state-effect, additive)
 - 2) evoked response (item-effect, multiplicative)
V5 Motion change under attention to motion (red) or color (blue)

V4 Color change under attention to motion (red) or color (blue)

Mixed Designs (Chawla et al 1999)