Group analyses

Will Penny

Wellcome Dept. of Imaging Neuroscience University College London

Data

Hierarchical model for all imaging data!

Reminder: voxel by voxel

$$y = X\theta + \varepsilon$$

N: number of scans *p*: number of regressors Model is specified by 1. Design matrix X

2. Assumptions about ε

Estimation

$$y = X \theta + \varepsilon$$

 $N \times 1 N \times p p \times 1 N \times 1$

Maximise
$$L = \ln p(v | \lambda) = \ln \int p(v | \theta, \lambda) d\theta$$

1. ReML-algorithm

Maximise
$$L = \ln p(y | \lambda) = \ln \int p(y | \theta, \lambda)$$

 L g $g = \frac{dL}{d\lambda}$
 $J = \frac{d^2 L}{d\lambda^2}$
 $\lambda = \lambda + J^{-1}g$

2. Weighted Least Squares

$$\theta = (X^T C_e^{-1} X^T) X^T C_e^{-1} y$$

Friston et al. 2002, Neuroimage

Hierarchical model

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$
$$\vdots$$

 $\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$

Multiple variance components at each level

 $C_{\varepsilon}^{(i)} = \sum_{k} \lambda_{k}^{(i)} Q_{k}^{(i)}$

What we don't know: distribution of parameters and variance parameters.

Example: Two level model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

Estimation

Group analysis in practice

Many 2-level models are just too big to compute.

And even if, it takes a long time!

Is there a fast approximation?

Summary Statistics approach

Validity of approach

The summary stats approach is exact if for each session/subject:

Within-session covariance the same

First-level design the same

All other cases: Summary stats approach seems to be robust against typical violations.

Auditory Data

Summary statistics

Friston et al. (2004) Mixed effects and fMRI studies, Neuroimage

Hierarchical Model

Multiple contrasts per subject

Auditory Presentation (SOA = 4 secs) of words

Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

U. Noppeney et al.

ANOVA

ANOVA

Linear hierarchical models are general enough for typical multi-subject imaging data (PET, fMRI, EEG/MEG).

Summary statistics are robust approximation for group analysis.

Also accomodates multiple contrasts per subject.