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Special cases of affine registration 

*  Manual reorientation 
*  Rigid intra-modal realignment 

*  Motion correction of functional time-series 
*  Within-subject longitudinal registration of serial sMRI 

*  Rigid inter-modal coregistration 
*  Aligning structural and (mean) functional images 
*  Multimodal structural registration, e.g. T1-T2 

*  Affine inter-subject registration 
*  First stage of non-linear spatial normalisation 
*  Approximate alignment of tissue probability maps 



Affine transformations 

*  Rigid rotations have six degrees of freedom (DF) 
*  Three translations and a 3D rotation (e.g. 3 axis rots.) 

*  Voxel-world mappings usually include three scaling DF 
(for a possible total of 9 DF) 

*  General 3D affine transformations 
add three shears (12 DF total) 

*  Affine transform properties 
*  Parallel lines remain parallel 
*  Transformations form a group 



Other types of registration in SPM 

*  Non-linear spatial normalisation 
*  Registering different subjects to a standard template 

*  Unified segmentation and normalisation 
*  Warping standard-space tissue probability maps to a particular 

subject (can normalise using the inverse) 
*  High-dimensional warping 

*  Modelling small longitudinal deformations (e.g. AD) 

*  DARTEL 
*  Smooth large-deformation warps using flows 
*  Normalisation to group’s average shape template 



Voxel-to-world mapping 

*  Affine transform associated with each image 
*  Maps from voxels (x=1..nx, y=1..ny, z=1..nz) to some world co-

ordinate system. e.g., 
*  Scanner co-ordinates - images from DICOM toolbox 
*  T&T/MNI coordinates - spatially normalised 

*  Registering image B (source) to image A (target) will 
update B’s voxel-to-world mapping 
*  Mapping from voxels in A to voxels in B is by 

*  A-to-world using MA, then world-to-B using MB
-1 : MB

-1 MA 



Image “headers” contain 
information that lets us map 
from voxel indices to “world” 
coordinates in mm 

Modifying this mapping 
lets us reorient (and 
realign or coregister) the 
image(s) 

Manual 
reorientation 



Manual 
reorientation 



(Bi)linear 

Manual 
reorientation 

Interpolation 

(Bi)linear 
Nearest 
Neighbour Sinc 



Interpolation 

*  Applying the transformation parameters, and re-sampling 
the data onto the same grid of voxels as the target image 
*  AKA reslicing, regridding, transformation, and writing (as in 

normalise - write) 
*  Nearest neighbour gives the new voxel the value of the 

closest corresponding voxel in the source 
*  Linear interpolation uses information from all immediate 

neighbours (2 in 1D, 4 in 2D, 8 in 3D) 
*  NN and linear interp. correspond to zeroth and first order 

B-spline interpolation, higher orders use more 
information in the hope of improving results 
*  (Sinc interpolation is an alternative to B-spline) 
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*  Nearest neighbour 
*  Take the value of the 

closest voxel 
*  Tri-linear 

*  Just a weighted average 
of the neighbouring 
voxels 

*  f5 = f1 x2 + f2 x1 
*  f6 = f3 x2 + f4 x1 
*  f7 = f5 y2 + f6 y1 

Linear interpolation – 2D 



B-spline Interpolation 

B-splines are piecewise polynomials 

A continuous function is represented by 
a linear combination of basis functions 

2D B-spline basis functions 
of degrees 0, 1, 2 and 3 

Nearest neighbour and 
trilinear interpolation are 
the same as B-spline 
interpolation with degrees 
0 and 1. 



Manual reorientation – Reslicing 

Reoriented 

(1x1x3 mm 
 voxel size) 

Resliced 

(to 2 mm 
 cubic) 



Quantifying image alignment 

*  Registration intuitively relies on the concept of aligning 
images to increase their similarity 
*  This needs to be mathematically formalised 
*  We need practical way(s) of measuring similarity 

*  Using interpolation we can find the intensity at 
equivalent voxels 
*  (equivalent according to the current transformation parameter 

estimates) 



Voxel similarity measures 

•  Mean-squared difference •  Correlation coefficient •  Joint histogram measures 

Pairs of voxel intensities 



Intra-modal similarity measures 

*  Mean squared error (minimise) 
*  AKA sum-squared error, RMS error, etc.  
*  Assumes simple relationship between intensities 
*  Optimal (only) if differences are i.i.d. Gaussian 
*  Okay for realignment or sMRI-sMRI coreg 

*  Correlation-coefficient (maximise) 
*  AKA Normalised Cross-Correlation, Zero-NCC 
*  Slightly more general, e.g. T1-T1 inter-scanner 
*  Invariant under affine transformation of intensities 



Automatic image registration 

*  Quantifying the quality of the alignment with a 
measure of image similarity allows computational 
estimation of transformation parameters 

*  This is the basis of both realignment and coregistration 
in SPM 
*  Allowing more complex geometric transformations or warps 

leads to more flexible spatial normalisation 
*  Automating registration requires optimisation... 



Optimisation 

*  Find the “best” parameters according to an 
“objective function” (minimised or maximised) 

*  Objective functions can often be related to a 
probabilistic model (Bayes -> MAP -> ML -> LSQ) 

Value of parameter 

Objective 
function 

Global optimum 
(most probable) 

Local optimum Local optimum 
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Motion in fMRI 

*  Can be a major problem 
*  Increase residual variance and reduce sensitivity 
*  Data may get completely lost with sudden movements 
*  Movements may be correlated with the task 
*  Try to minimise movement (don’t scan for too long!) 

*  Motion correction using realignment 
*  Each volume rigidly registered to reference 
*  Least squares objective function 

*  Realigned images must be resliced for analysis 
*  Not necessary if they will be normalised anyway 



Residual Errors from aligned fMRI 

*  Slices are not acquired simultaneously 
*  rapid movements not accounted for by rigid body model 

*  Image artefacts may not move according to a rigid body model 
*  image distortion, image dropout, Nyquist ghost 

*  Gaps between slices can cause aliasing artefacts 
*  Re-sampling can introduce interpolation errors 

*  especially tri-linear interpolation 

*  Functions of the estimated motion parameters can be modelled 
as confounds in subsequent analyses 



fMRI movement by distortion interaction 

*  Subject disrupts B0 field, 
rendering it inhomogeneous 
*  distortions occur along the 

phase-encoding direction 
*  Subject moves during EPI 

time series 
*  Distortions vary with subject 

position 
*  shape varies (non-rigidly) 



Correcting for distortion changes using 
Unwarp 

Estimate 
movement 
parameters. 

Estimate new distortion 
fields for each image: 

•  estimate rate of change 
of field with respect to 
the current estimate of 
movement parameters 
in pitch and roll. 

Estimate reference from 
mean of all scans. 

Unwarp time 
series. 

Δϕ +Δθ 

Andersson et al, 2001 
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• Match images from same 
subject but different 
modalities: 

– anatomical localisation of 
single subject activations 

– achieve more precise spatial 
normalisation of functional 
image using anatomical 
image. 

Inter-modal coregistration 



Inter-modal similarity measures 

*  Commonly derived from joint and marginal entropies 
*  Entropies via probabilities, from histograms 
*  H(a) = -∫a P(a) log2P(a) 
*  H(a,b) = -∫a P(a,b) log2P(a,b) 

*  Minimise joint entropy H(a,b) 
*  Maximise mutual Information 

*  MI = H(a) + H(b) - H(a,b) 
*  Maximise normalised MI 

*  NMI = (H(a) + H(b)) / H(a,b) 



Joint and marginal histograms 



Joint histogram sharpness correlates with image alignment 
Mutual information and related measures attempt to quantify this 

Initially registered T1 and T2 templates 
After deliberate misregistration 
(10mm relative x-translation) 

Joint histogram based registration 
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Spatial Normalisation 



Spatial Normalisation - Reasons 

*  Inter-subject averaging 
*  Increase sensitivity with more subjects 

*  Fixed-effects analysis 

*  Extrapolate findings to the population as a whole 
*  Mixed-effects analysis 

*  Make results from different studies comparable  by 
aligning them to standard space 
*  e.g. The T&T convention, using the MNI template 



Standard spaces 

The MNI template follows the convention of T&T, but doesn’t match the particular brain 

Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach  

The Talairach Atlas The MNI/ICBM AVG152 Template 



Coordinate system sense 

*  Analyze™ files are stored in a left-handed system 
*  Talairach space has the opposite (right-handed) sense 
*  Mapping between them requires a reflection or “flip” 

*  Affine transform with a negative determinant 

x 

y 

z 

x 
y 

z 

z 

x 

y 

Rotated example 



Spatial Normalisation – Procedure 

*  Start with a 12 DF affine 
registration 
*  3 translations, 3 rotations 

3 zooms, 3 shears 
*  Fits overall shape and size 

*  Refine the registration with 
non-linear deformations 

*  Algorithm simultaneously minimises 
*  Mean-squared difference (Gaussian likelihood) 
*  Squared distance between parameters and their expected 

values (regularisation with Gaussian prior) 



Spatial Normalisation – Warping 

Deformations are modelled with a linear combination of non-linear 
basis functions 



Spatial Normalisation – DCT basis 
The lowest frequencies of a 3D discrete cosine transform (DCT) 
provide a smooth basis 

plot(spm_dctmtx(50, 5)) 

spm_dctmtx(5,5) 
ans = 
 0.447   0.602   0.512   0.372   0.195 
 0.447   0.372  -0.195  -0.602  -0.512 
 0.447   0.000  -0.633  -0.000   0.633 
 0.447  -0.372  -0.195   0.602  -0.512 
 0.447  -0.601   0.512  -0.372   0.195 

% Note, pinv(x)=x’, projection P=x*x’ 
 P{n} = x(:,1:n)*x(:,1:n)’ 
 P{N} == eye(N) 
 P{n<N} projects to smoother approx. 



EPI 

T2 T1 Transm 

PD PET 

Spatial normalisation can be 
weighted so that non-brain 
voxels do not influence the 
result. 

A wider range of contrasts can be registered to a linear 
combination of template images. 

T1 PD 

PET 

Spatial Normalisation 
– Templates and masks 

More specific weighting masks 
can be used to improve 
normalisation of lesioned brains. 



Spatial Normalisation – Results 

Non-linear registration Affine registration 



Optimisation – regularisation 

*  The “best” parameters according to the objective 
function may not be realistic 

*  In addition to similarity, regularisation terms or 
constraints are often needed to ensure a 
reasonable solution is found 
*  Also helps avoid poor local optima 
*  These can be considered as priors in a Bayesian 

framework, e.g. converting ML to MAP: 
*  log(posterior) = log(likelihood) + log(prior) + c 



Template 
image 

Affine registration. 
(χ

2
 = 472.1) 

Non-linear 
registration 

without 
regularisation. 
(χ

2
 = 287.3) 

Non-linear 
registration 

using 
regularisation. 
(χ

2
 = 302.7) 

Without regularisation, 
the non-linear 
normalisation can 
introduce unnecessary 
deformation 

Spatial Normalisation – Overfitting 



*  Seek to match functionally homologous regions, but... 
*  No exact match between structure and function 
*  Different cortices can have different folding patterns 
*  Challenging high-dimensional optimisation 

*  Many local optima 

*  Compromise 
*  Correct relatively large-scale variability (sizes of structures) 
*  Smooth over finer-scale residual differences 

Spatial Normalisation – Issues 
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Unified segmentation and normalisation 

*  MRI imperfections make normalisation harder 
*  Noise, artefacts, partial volume effect 
*  Intensity inhomogeneity or “bias” field 
*  Differences between sequences 

*  Normalising segmented tissue maps should be more 
robust and precise than using the original images ... 

*  … Tissue segmentation benefits from spatially-aligned 
prior tissue probability maps (from other segmentations) 

*  This circularity motivates simultaneous segmentation 
and normalisation in a unified model 



Summary of the unified model 

*  SPM8 implements  a generative model 
*  Principled Bayesian probabilistic formulation 

*  Gaussian mixture model segmentation with deformable 
tissue probability maps (priors)  
*  The inverse of the transformation that aligns the TPMs can be 

used to normalise the original image 
*  Bias correction is included within the model 



Mixture of Gaussians (MOG) 

*  Classification is based on a Mixture of Gaussians model 
(MOG), which represents the intensity probability density by a 
number of Gaussian distributions. 

Image Intensity 

Frequency 



Belonging Probabilities 

Belonging 
probabilities 
are assigned 
by normalising 
to one. 



Tissue intensity distributions (T1-w MRI) 



Non-Gaussian Intensity Distributions 

*  Multiple Gaussians per tissue class allow non-Gaussian 
intensity distributions to be modelled. 
*  E.g. accounting for partial volume effects 



Modelling inhomogeneity 

*  A multiplicative bias field is modelled as a linear 
combination of basis functions. 

Corrupted image Corrected image Bias Field 



Tissue Probability Maps 

*  Tissue probability maps (TPMs) are used as the prior, 
instead of the proportion of voxels in each class 

ICBM Tissue Probabilistic Atlases. These tissue probability maps are 
kindly provided by the International Consortium for Brain Mapping, John C. 
Mazziotta and Arthur W. Toga. 



Tissue Probability 
Maps for “New 

Segment” 

Includes additional non-brain tissue 
classes (bone, and soft tissue) 





Deforming the Tissue Probability Maps 

*  Tissue probability 
images are warped to 
match the subject 

*  The inverse transform 
warps to the TPMs 



Fitting the unified model 

*  Model fitting involves optimising an objective function as 
with respect to its parameters 

*  Begin with starting estimates, and repeatedly change 
them so that the objective function decreases each time 

*  The unified model has one overall objective function 
*  Sets of parameters are repeatedly optimised in turn 



Steepest Descent 

Start 

Optimum 

Alternate between optimising 
different groups of parameters 



Tissue 
probability 
maps of GM 

and WM 

Spatially 
normalised 
BrainWeb 

phantoms (T1, 
T2 and PD) 

Cocosco, Kollokian, Kwan & Evans. “BrainWeb: Online Interface to a 3D MRI Simulated Brain Database”. NeuroImage 5(4):S425 (1997) 
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Smoothing 

*  Why would we deliberately blur the data? 
*  Averaging neighbouring voxels suppresses noise 
*  Makes data more normally distributed (central limit theorem) 
*  Increases sensitivity to effects of similar scale to kernel 

(matched filter theorem) 
*  Reduces the effective number of multiple comparisons 
*  Improves spatial overlap by blurring over minor anatomical 

differences and registration errors 
*  How is it implemented? 

*  Convolution with a 3D Gaussian kernel, of specified full-width 
at half-maximum (FWHM) in mm 



Example of 
Gaussian smoothing in 
one-dimension 

A 2D 
Gaussian 
Kernel 

The Gaussian kernel is 
separable we can smooth 
2D data with two 1D 
convolutions. 

Generalisation to 3D is 
simple and efficient 



Before convolution Convolved with a circle Gaussian convolution 

Each voxel after smoothing effectively represents a weighted 
average over its local region of interest (ROI) 

Smoothing – a link to ROI analysis 
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