

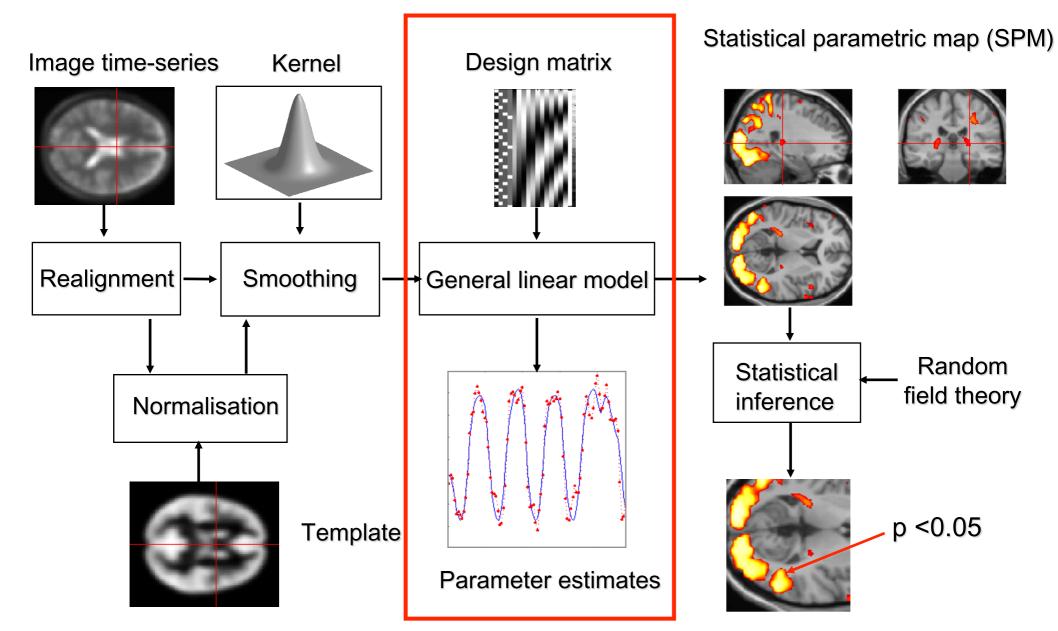
The General Linear Model (GLM)

Ged Ridgway Wellcome Trust Centre for Neuroimaging University College London

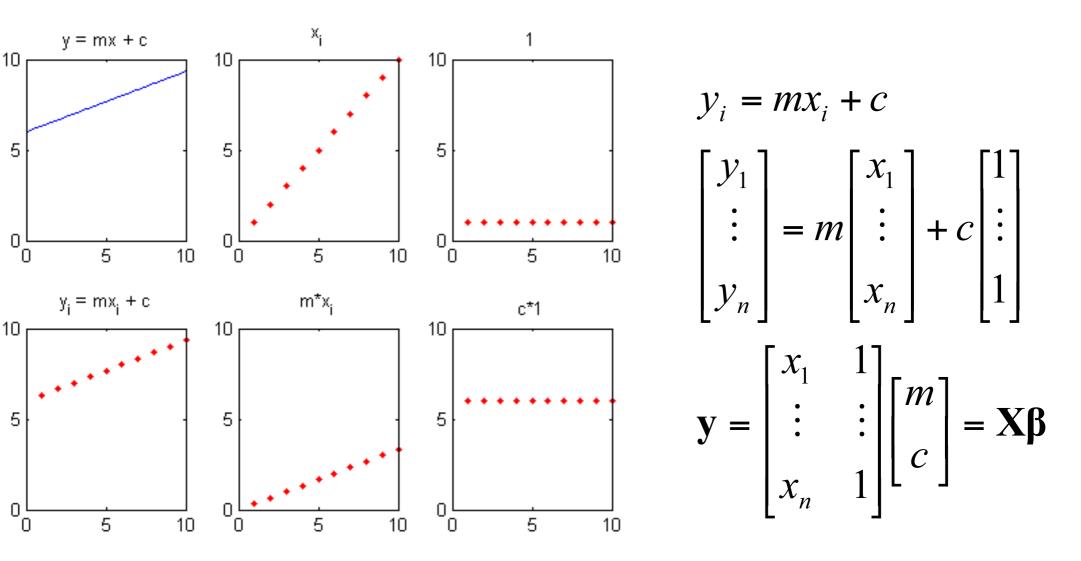
[slides from the FIL Methods group]

SPM Course Vancouver, August 2010

Overview of SPM



Simple regression and the GLM



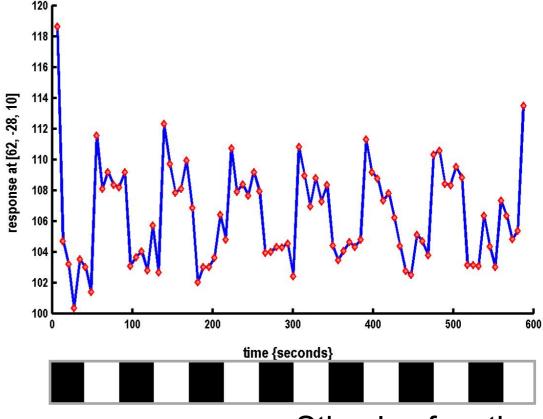
A very simple fMRI experiment

One session

Passive word listening versus rest

7 cycles of rest and listening

Blocks of 6 scans with 7 sec TR



Stimulus function

Question: Is there a change in the BOLD response between listening and rest?

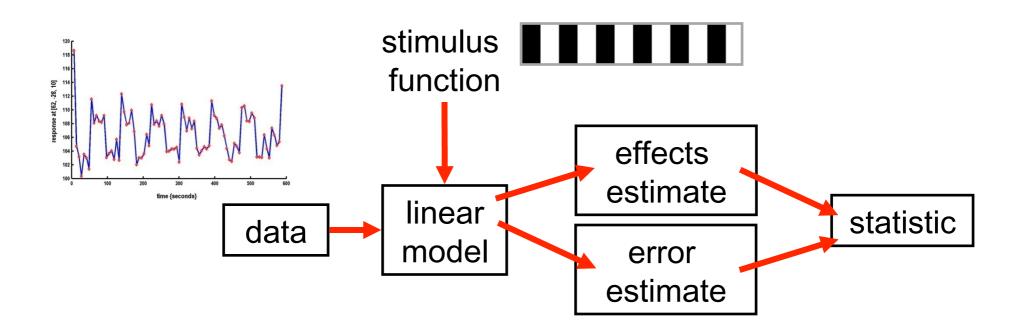
Modelling the measured data

Why? Make inferences about effects of interest

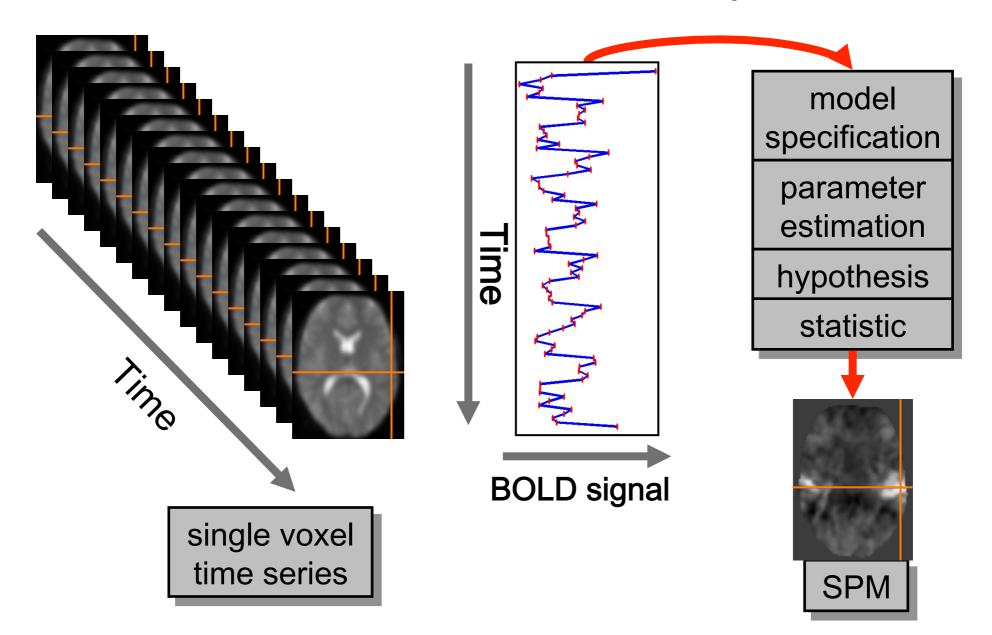
1. Decompose data into effects and

How?

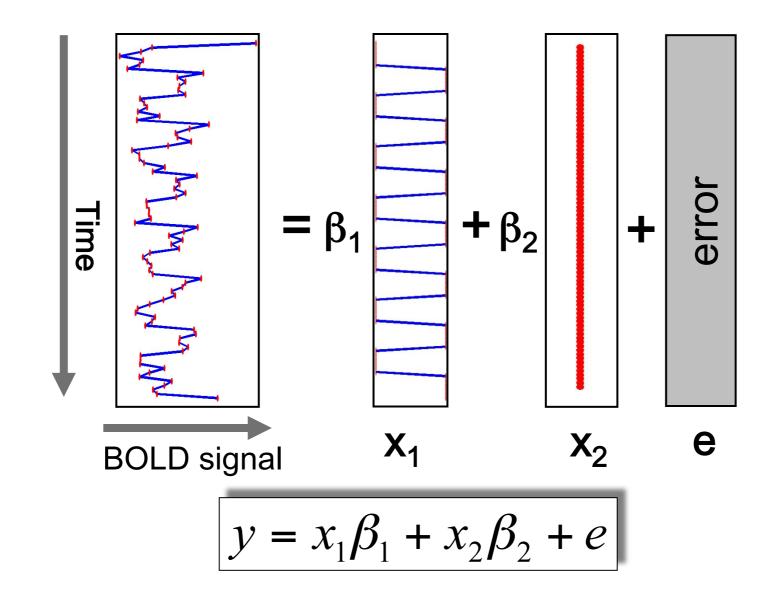
error2. Form statistic using estimates of effects and error



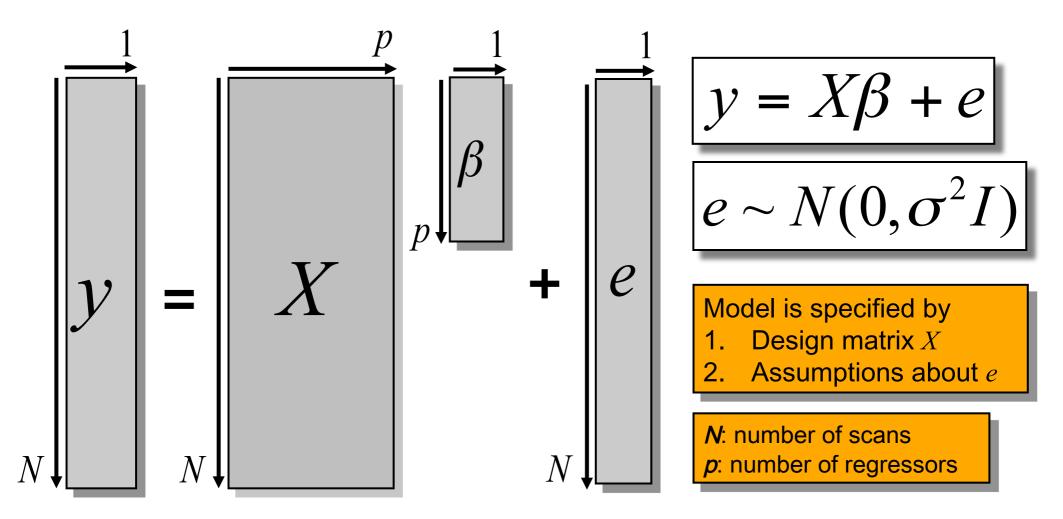
Voxel-wise time series analysis



Single voxel regression model



Mass-univariate analysis: voxel-wise GLM

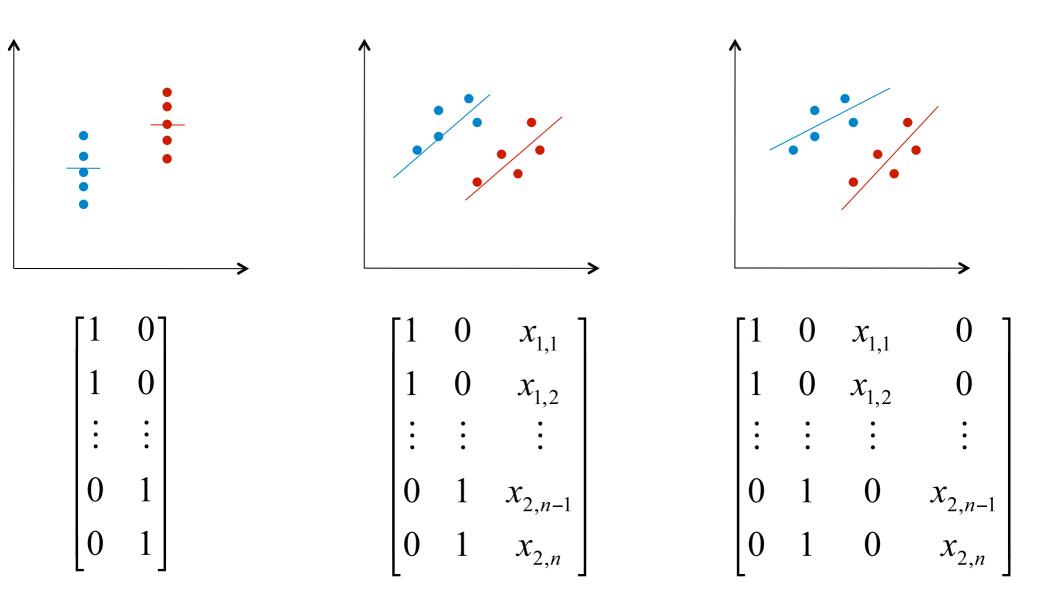


The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

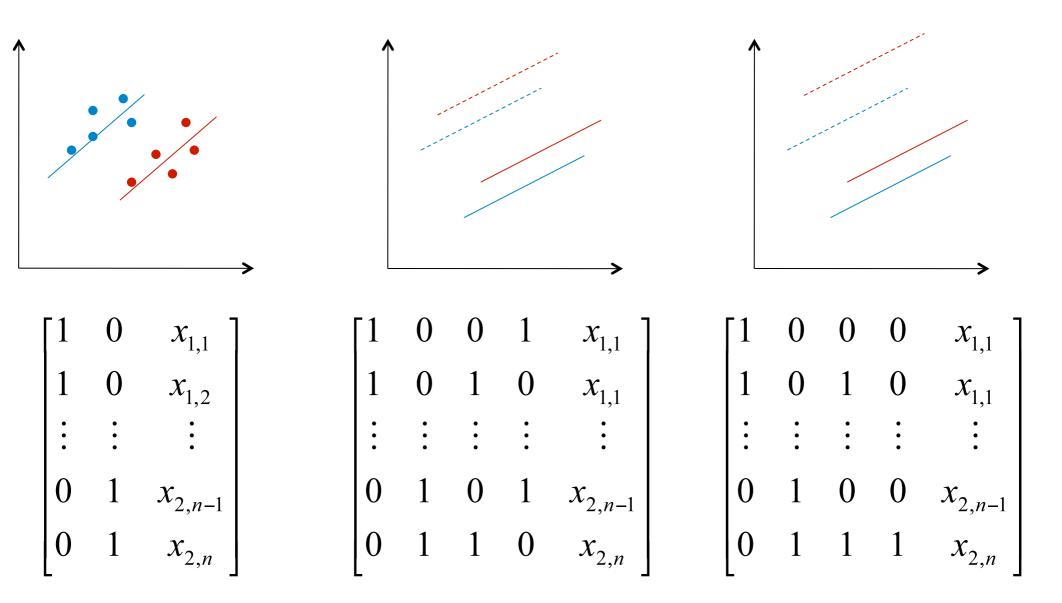
Example GLM "factorial design" models

- one sample *t*-test
- two sample *t*-test
- paired *t*-test
- Analysis of Variance (ANOVA)
- Factorial designs
- correlation
- linear regression
- multiple regression
- F-tests
- fMRI time series models
- etc...

Example GLM "factorial design" models



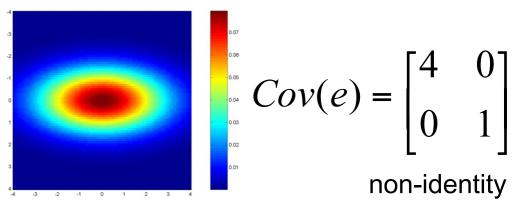
Example GLM "factorial design" models

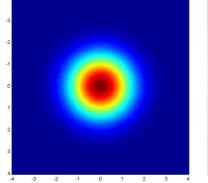


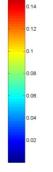
GLM assumes Gaussian "spherical" (i.i.d.) errors

sphericity = i.i.d.
error covariance is
scalar multiple of
identity matrix:
Cov(e) = σ²I

Examples for non-sphericity:



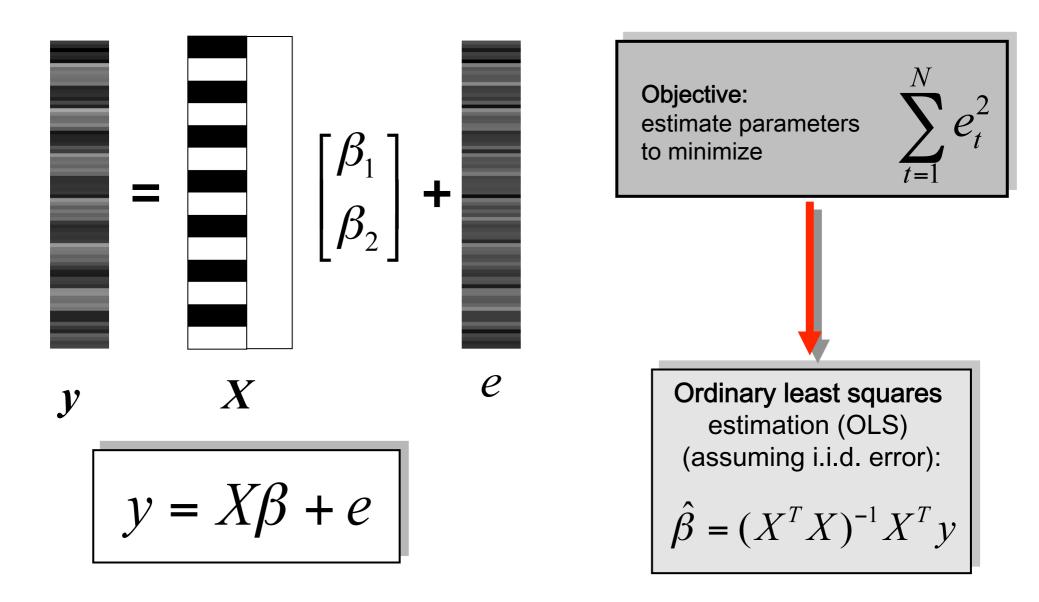




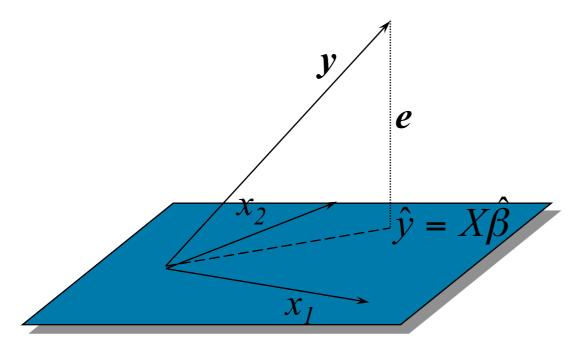
$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\int_{a}^{b} \int_{a}^{b} \int_{a$

Parameter estimation



A geometric perspective on the GLM



Design space defined by *X*

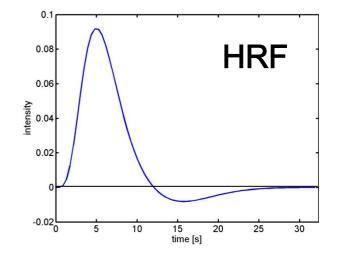
Smallest errors (shortest error vector) when e is orthogonal to X

$$X^{T}e = 0$$
$$X^{T}(y - X\hat{\beta}) = 0$$
$$X^{T}y = X^{T}X\hat{\beta}$$
$$\hat{\beta} = (X^{T}X)^{-1}X^{T}y$$

Ordinary Least Squares (OLS)

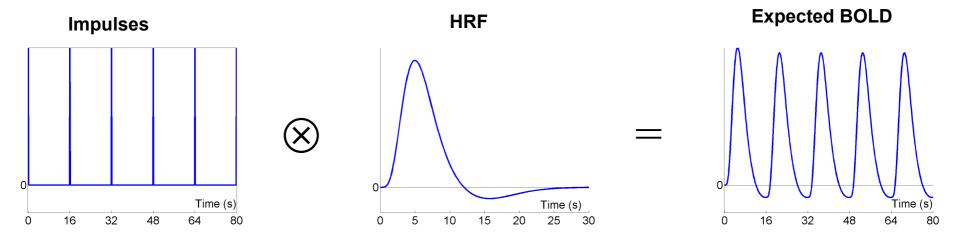
What are the problems of this model?

1. BOLD responses have a delayed and dispersed form.



- 2. The BOLD signal includes substantial amounts of lowfrequency noise (eg due to scanner drift).
- 3. Due to breathing, heartbeat & unmodeled neuronal activity, the errors are serially correlated. This violates the assumptions of the noise model in the GLM

Problem 1: Shape of BOLD response Solution: Convolution model



expected BOLD response

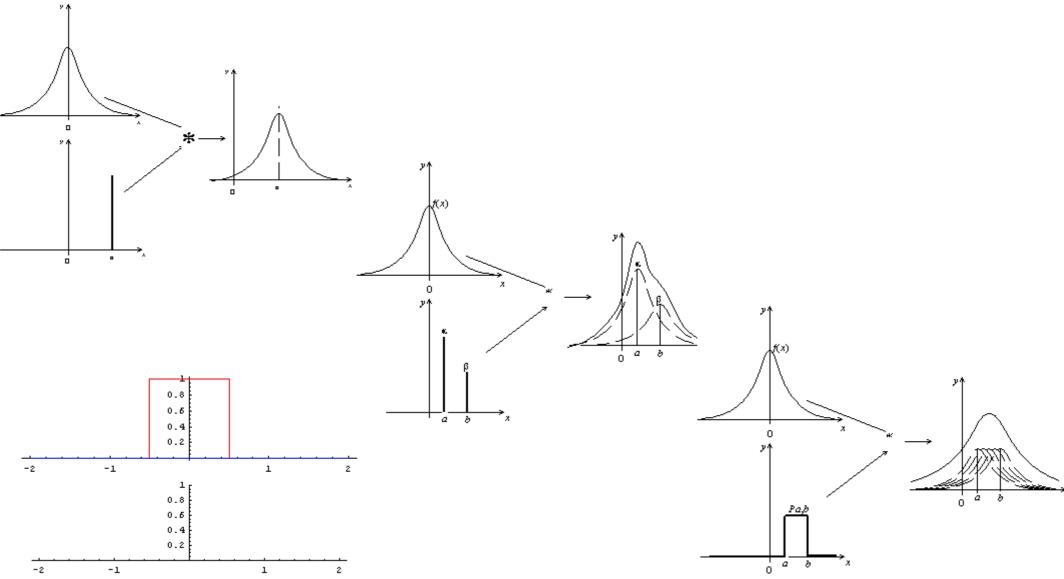
= input function \otimes impulse response function (HRF)

$$f \otimes g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau$$

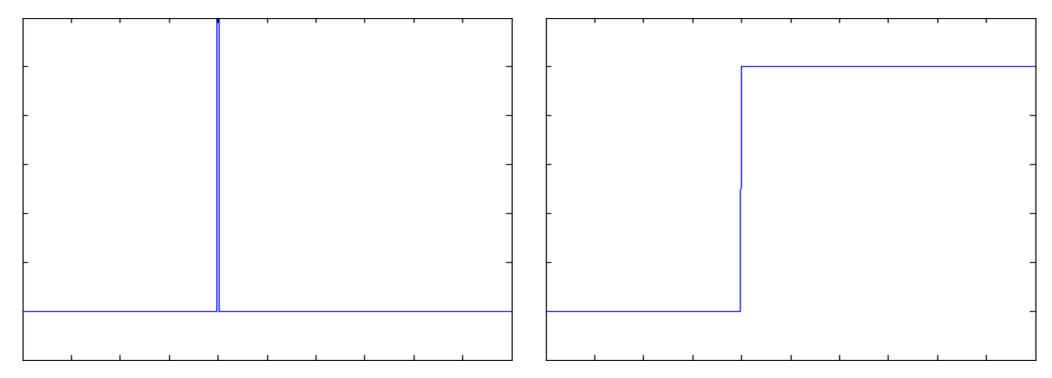
The response of a linear time-invariant (LTI) system is the convolution of the input with the system's response to an impulse (delta function).

Convolution

Superposition principle

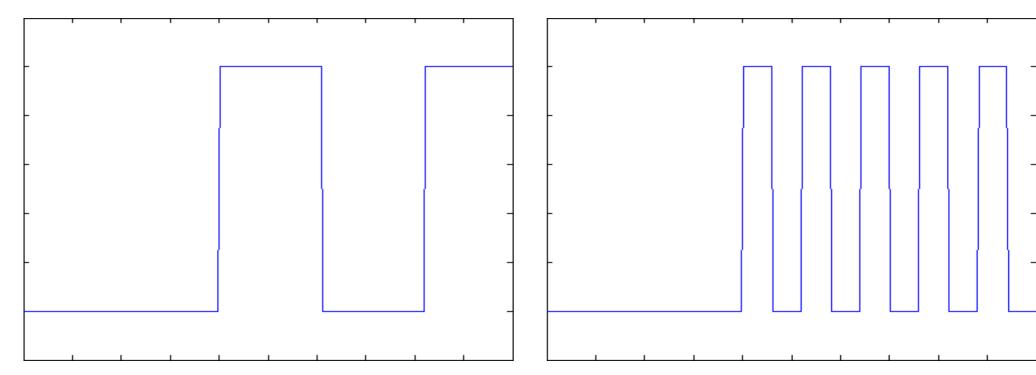


HRF convolution animations



Sliding the reversed HRF past a unitintegral pulse and integrating the product recovers the HRF (hence the name impulse response) The step response shows a delay and a slight overshoot, before reaching a steady-state. This gives some intuition for a square wave...

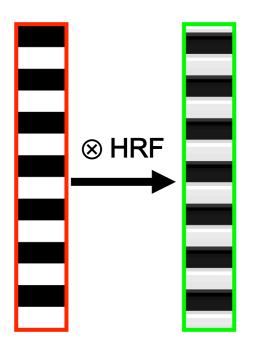
HRF convolution animations

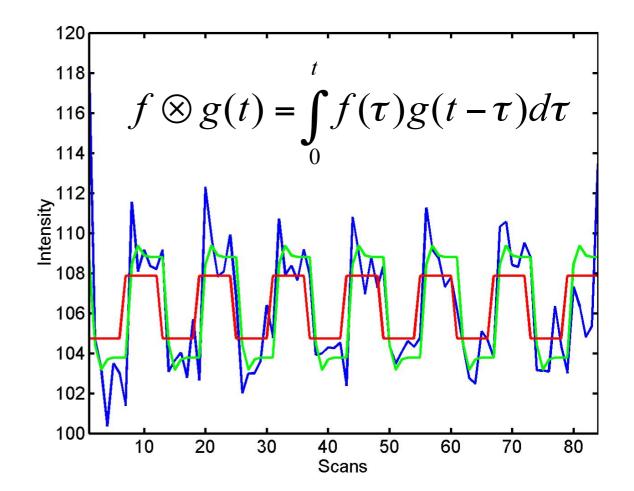


Slow square wave. Main (fundamental) frequency of output matches input, but with delay (phase-shift) and change in amplitude (and shape; sinusoids keep their shape) Fast square wave. Amplitude is reduced, phase shift is more dramatic (output almost in anti-phase). Fourier transform of HRF yields magnitude and phase responses.

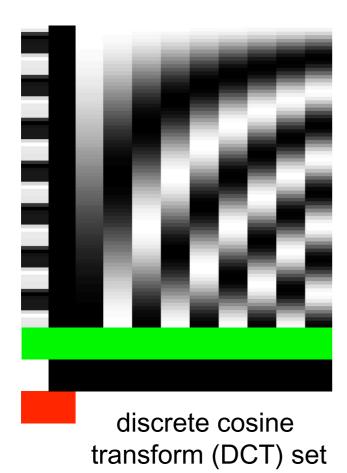
Convolution model of the BOLD response

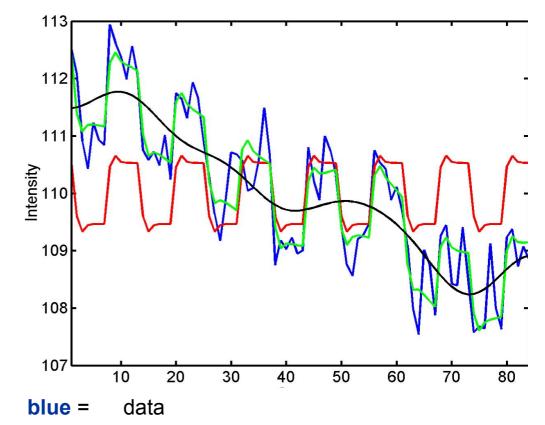
Convolve stimulus function with a canonical hemodynamic response function (HRF):





Problem 2: Low-frequency noise Solution: High pass filtering

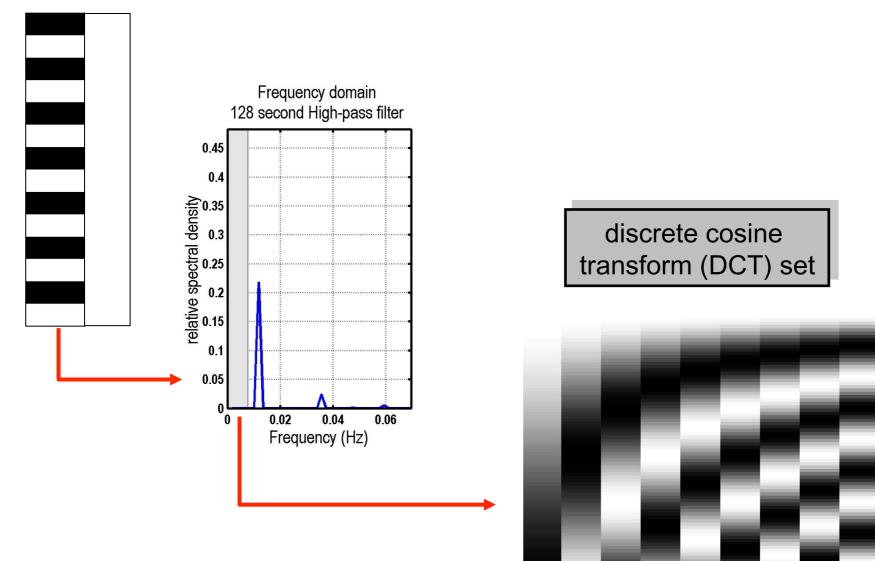




black = mean + low-frequency drift

- **green** = predicted response, taking into account low-frequency drift
- **red =** predicted response, NOT taking into account low-frequency drift

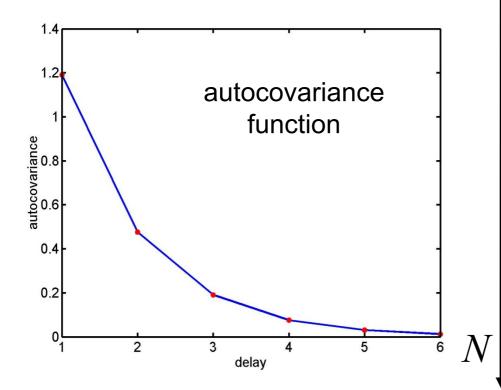
High pass filtering

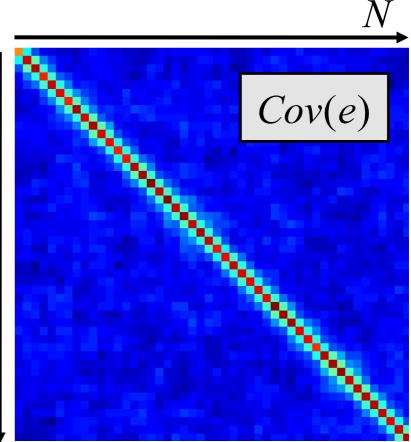


Problem 3: Serial correlations

$$e_t = ae_{t-1} + \varepsilon_t$$
 with $\varepsilon_t \sim N(0, \sigma^2)$

 1^{st} order autoregressive process: AR(1)





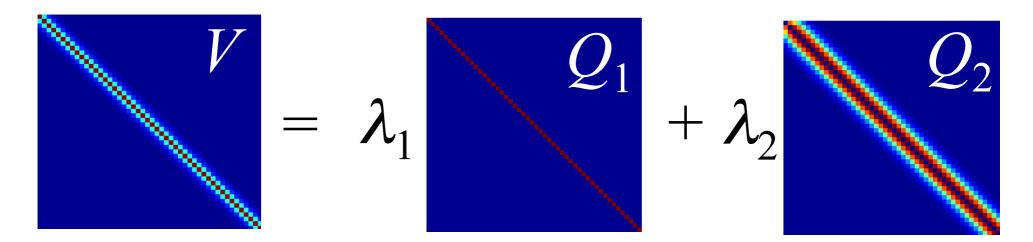
Multiple covariance components

$$e_i \sim N(0, C_i)$$

enhanced noise model at voxel i

 $C_{i} = \sigma_{i}^{2} V$ $V = \sum \lambda_{j} Q_{j}$

error covariance components Qand hyperparameters λ



Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood).

Parameters can then be estimated using Weighted Least Squares (WLS)

$$\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

Let

$$W^T W = V^{-1}$$

Then

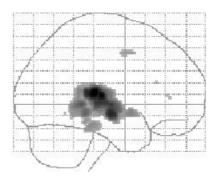
$$\hat{\beta} = (X^T W^T W X)^{-1} X^T W^T W y$$
$$\hat{\beta} = (X_s^T X_s)^{-1} X_s^T y_s$$

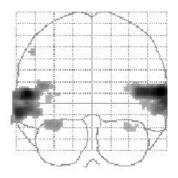
WLS equivalent to OLS on whitened data and design

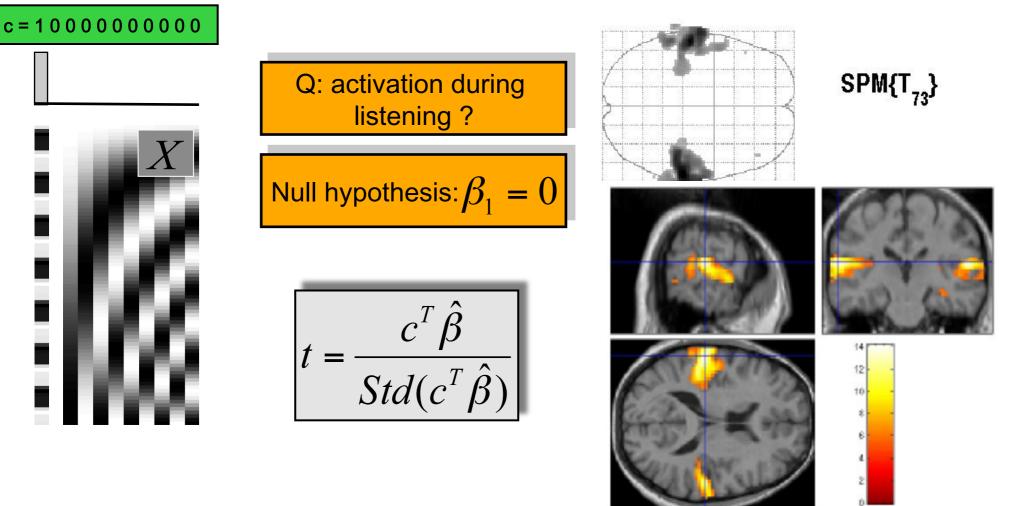
where

$$X_s = WX, y_s = Wy$$

Contrasts & statistical parametric maps







Summary

- Mass univariate approach.
- Fit GLMs with design matrix, X, to data at different points in space to estimate local effect sizes, β
- GLM is a very general approach
- Hemodynamic Response Function
- High pass filtering
- Temporal autocorrelation

Correlated and orthogonal regressors

$$x_{2}^{*} = x_{1}\beta_{1} + x_{2}\beta_{2} + e$$

$$\beta_{1} = \beta_{2} = 1$$

$$y = x_{1}\beta_{1} + x_{2}^{*}\beta_{2}^{*} + e$$

$$\beta_{1} > 1; \beta_{2}^{*} = 1$$

Correlated regressors = explained variance is shared between regressors When x_2 is orthogonalized with regard to x_1 , only the parameter estimate for x_1 changes, not that for x_2 !

t-statistic based on ML estimates

