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Data

fMRI, single subject EEG/MEQG, single subject
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fMRI, multi-subject ERP/ERF, multi-subject

Hierarchical modeling for all
imaging data
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Fixed vs. Random
Effects in TMRI

 Fixed Effects

— Intra-subject variation
suggests all these
subjects different
from zero

e Random Effects

— Intersubject variation
suggests population
not very different
from zero

Distribution of
each subject’s
estimated effect
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Fixed Effects

* Only variation (over sessions) 1S
measurement error

* True Response magnitude 1s fixed



Random/Mixed Effects

e Two sources of variation
— Measurement error

— Response magnitude

e Response magnitude is random
— Each subject/session has random magnitude



Random/Mixed Effects

 Two sources of variation
— Measurement error
— Response magnitude
» Response magnitude 1s random

— Each subject/session has random magnitude
— But note, population mean magnitude is fixed



. fixed vs, Random ___

* A group fixed effects analysis 1sn’t
“wrong,” just usually 1sn’t of interest across
a population

* Fixed Effects Inference
— “I can see this effect in this cohort”
— Fixed effects might be used in a case study.

e Random Effects Inference

— “If I were to sample a new cohort from the
population I would get the same result”



General Linear Model |y=X0+¢

]

— N

N: number of scans
p: number of regressors

—

Model 1s specified by
1. Design matrix X
2. Assumptions about &




[Linear hierarchical model

Hierarchical model Multiple variance
components at each level

(i) D i)
c'=31"0

* At each level, distribution of parameters is given by level
above.

 What we don’t know: distribution of parameters and variance
parameters.



Example: Two level model

b= x0g0 4 0

— X(z) + 8(2)

Second level

First level




Estimation

= X 60 + ¢ o = Z 2,0, OrdinaryLeast Squares
&

Nx1l Nxp pxl NxI1

g (x"x) x5

ReML-algorithm

Maximise L = In p(y | 1) = Correct for
_——
lnfp(y | H,A.)dH non-sphericity

L g &= Weighted Least Squares
d’L g (X C_ Y )X ol
dr .
WLS equivalent to OLS on
A A=A+J" g whitened data and design

Friston et al., Neuroimage, 2002




Algorithmic Equivalence

Hierarchical
model
Single-level y= eV +XVe 4 Restricted
model + Maximum

X(”(i)..X(”;D)S <(”))+ Likelihood
X0, . xg (ReML)




Group analysis in practice

Many 2-level models are just too big to
compute.

And even 1f estimable, 1t takes a long time!

And 1f subjects are added 1t must be
completely re-estimated.

Is there a fast & valid approximation?




Summary Statistics approach

First level
(within subject)

Data

Design Matrix  Contrast Images

Second level
(between subject)

Design matrix

One-sample
t-test @ 2"¢ level




Validity of approach

The summary stats approach 1s exact if for each
session/subject:

Within-session covariance the same

First-level design the same

Errors are normally distributed

Original specification of summary statistics
approach (Holmes & Friston, 1996) was limited
to 1 contrast image per subject.

If >1 contrast image per subject need to estimate
the effects of correlated errors: non-sphericity




Holmes & Friston Robustness

* In practice, Validity & Efficiency are excellent
— For one sample case, HF almost impossible to break
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Mumford & Nichols. Simple group fMRI modeling and inference. Neuroimage, 47(4):1469--1475, 2009.

» 2-sample & correlation might give trouble
— Dramatic imbalance or heteroscedasticity



GLM assumes Gaussian “spherical” (1.1.d.) errors

sphericity = iid: Examples of non-sphericity:
error covariance is
scalar multiple of

l 40

identity matrix: - Cov(e) =
Cov(e) = o2l _O 1_
non-identity
Cov(e) =
1 2

non-independence



Multiple Variance Components

y=X 0 +¢ Cov(e) =2y 4,0

Nx1 Nxp pxl Nx1
Error covariance

12 subjects, 4 conditions

Measurements btw subjects
uncorrelated

Measurements w/in subjects
correlated

Errors can now have
different variances and
there can be correlations
Allows for ‘non-sphericity’
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Non-Sphericity Modeling

* Errors are independent ¢,
but not 1dentical

— Eg. Two Sample T-test
Two basis elements

Error Covariance




Non-Sphericity Modeling

Error Covariance

e FKErrors are not
independent and not
1dentical

Oy’s:




SPMS8 Nonsphericity Modelling

e Assumptions & Limitations
— Cov(e) =X, 4,0, assumed to be globally

homogeneous

— A.’s only estimated from voxels with large F
(>0.001 unc)

— Most realistically, Cov(¢) spatially heterogeneous

— Intrasubject variance assumed homogeneous



fMRI Data

Audito

stage procedure

V/ assumed for two

(for 1st parameter)

1CS

statist

V' based on ReML estimates
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Example 1: non-identical groups

subject, block design

Stimuli: Auditory Presentation (SOA = 4 secs) of
: (1) words and (11) words spoken backwards
e.g.
“BOOk,,
and
“Koob”
Subjects: (1) 12 control subjects
—! | (ii) 11 blind subjects
Scanning: fMRI, 250 scans per

Noppeney et al., Brain, 2003




Population diftferences

Blinds

Controls

15t level

contrast(s)
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Example 2: Multiple contrasts per subject

by the semantic content of

the words?

Stimuli: Auditory Presentation (SOA = 4 secs) of words
Motion |Sound |Visual |Action
Céjump99 “CliCk,’ “pink,, “tum,,
Subjects; (1) 12 control subjects
Scanning: | [ fMRIL 250 scans per
subject, block design
Question; What regions are affected

Noppeney et al. Brain & Lang, 2003




ANOVA
‘ 15t level: I - - .
1.Motion 2.Sound 3.Visual 4.Action
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Design matrix

D VOO IGTUD MO~ MO

B P GOGIICXAINININININI S s

Left Right Fusiform Activation

15 A
B r C

Noppeney et al. Brain & Lang, 2003
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Summary

Linear hierarchical models are general enough for typical multi-
subject imaging data (PET, fMRI, EEG/MEG).

Summary statistics are a robust approximation for group analysis.

Modeling non-sphericity at the second level accommodates
multiple contrasts per subject.

Use mixed-effects model only if seriously in doubt about validity
of summary statistics approach.




The End



