Inference on SPMs: Random Field Theory & Alternatives

Thomas Nichols, Ph.D.
Department of Statistics &
Warwick Manufacturing Group
University of Warwick

Vancouver SPM Course
August 2010
realignment & motion correction → smoothing → General Linear Model
→ model fitting → statistic image → Thresholding & Random Field Theory
image data → design matrix → kernel

normalisation → anatomical reference → Statistical Parametric Map

Corrected thresholds & p-values
Assessing Statistic Images...
Assessing Statistic Images

Where’s the signal?

High Threshold
- $t > 5.5$
- Good Specificity
- Poor Power (risk of false negatives)

Med. Threshold
- $t > 3.5$

Low Threshold
- $t > 0.5$
- Poor Specificity (risk of false positives)
- Good Power

...but why threshold?!
Blue-sky inference: What we’d like

• Don’t threshold, model the signal!
 – Signal location?
 • Estimates and CI’s on (x,y,z) location
 – Signal magnitude?
 • CI’s on % change
 – Spatial extent?
 • Estimates and CI’s on activation volume
 • Robust to choice of cluster definition
• ...but this requires an explicit spatial model
Blue-sky inference: What we need

• Need an explicit spatial model
• No routine spatial modeling methods exist
 – High-dimensional mixture modeling problem
 – Activations don’t look like Gaussian blobs
 – Need realistic shapes, sparse representation
 • Some work by Hartvig *et al.*, Penny *et al.*
Real-life inference: What we get

• Signal **location**
 – Local maximum – *no inference*
 – Center-of-mass – *no inference*
 • Sensitive to blob-defining-threshold

• Signal **magnitude**
 – Local maximum intensity – P-values (& CI’s)

• Spatial **extent**
 – Cluster volume – P-value, no CI’s
 • Sensitive to blob-defining-threshold
Voxel-level Inference

- Retain voxels above α-level threshold u_α
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

![Diagram showing significant and non-significant voxels with threshold u_α]

Significant Voxels

No significant Voxels

space
Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold u_{clus}
 - Retain clusters larger than α-level threshold k_α

Cluster not significant

Cluster significant

u_{clus}

space

k_α
Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected
 - Only means that one or more of voxels in cluster active

u_{clus}

Cluster not significant

α

α

Cluster significant
Set-level Inference

- Count number of blobs c
 - Minimum blob size k
- Worst spatial specificity
 - Only can reject global null hypothesis

Here $c = 1$; only 1 cluster larger than k
Multiple comparisons...
Hypothesis Testing

- **Null Hypothesis** H_0
- **Test statistic** T
 - t observed realization of T
- **α level**
 - Acceptable false positive rate
 - Level $\alpha = P(T > u_\alpha | H_0)$
 - Threshold u_α controls false positive rate at level α
- **P-value**
 - Assessment of t assuming H_0
 - $P(T > t | H_0)$
 - Prob. of obtaining stat. as large or larger in a new experiment
 - $P(\text{Data}|\text{Null}) \not= P(\text{Null}|\text{Data})$
Multiple Comparisons Problem

• Which of 100,000 voxels are sig.?
 – $\alpha=0.05 \Rightarrow 5,000$ false positive voxels

• Which of (random number, say) 100 clusters significant?
 – $\alpha=0.05 \Rightarrow 5$ false positives clusters
MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 • Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 • R voxels declared active, V falsely so
 • Realized false discovery rate: V/R
MCP Solutions: Measuring False Positives

• Familywise Error Rate (FWER)
 – Familywise Error
 • Existence of one or more false positives
 – FWER is probability of familywise error

• False Discovery Rate (FDR)
 – FDR = E(V/R)
 – R voxels declared active, V falsely so
 • Realized false discovery rate: V/R
Family of hypotheses

- \(H_k \) \(k \in \Omega = \{1, \ldots, K\} \)
- \(H^\Omega = \bigcap H^k \)

Familywise Type I error

- weak control – omnibus test
 - \(\text{Pr}(\text{reject } H^\Omega \mid H^\Omega) \leq \alpha \)
 - “anything, anywhere”?
- strong control – localising test
 - \(\text{Pr}(\text{reject } H^W \mid H^W) \leq \alpha \)
 - \(\forall W: W \subseteq \Omega \& H^W \)
 - “anything, & where”?

Adjusted \(p \)-values

- test level at which reject \(H^k \)
FWE MCP Solutions: Bonferroni

- For a statistic image T...
 - T_i i^{th} voxel of statistic image T

- ...use $\alpha = \alpha_0 / V$
 - α_0 FWER level (e.g. 0.05)
 - V number of voxels
 - u_α α-level statistic threshold, $P(T_i \geq u_\alpha) = \alpha$

- By Bonferroni inequality...

\[
\text{FWER} = P(\text{FWE}) = P(\bigcup_i \{T_i \geq u_\alpha\} \mid H_0) \\
\leq \sum_i P(T_i \geq u_\alpha \mid H_0) \\
= \sum_i \alpha \\
= \sum_i \alpha_0 / V = \alpha_0
\]

Conservative under correlation

Independent: V tests
Some dep.: $? \text{ tests}$
Total dep.: 1 test
Random field theory...
SPM approach: Random fields...

- Consider statistic image as lattice representation of a continuous random field
- Use results from continuous random field theory
FWER MCP Solutions: Controlling FWER w/ Max

• FWER & distribution of maximum

\[
\text{FWER} = P(\text{FWE}) \\
= P(\bigcup_i \{T_i \geq u\} \mid H_0) \\
= P(\max_i T_i \geq u \mid H_0)
\]

• 100(1-\(\alpha\))%ile of max dist^n controls FWER

\[
\text{FWER} = P(\max_i T_i \geq u_{\alpha} \mid H_0) = \alpha
\]

– where

\[
u_{\alpha} = F^{-1}_{\max}(1-\alpha)
\]
FWER MCP Solutions: Random Field Theory

- Euler Characteristic χ_u
 - Topological Measure
 - #blobs - #holes
 - At high thresholds, just counts blobs
- FWER = $P(\text{Max voxel} \geq u \mid H_o)$
 $= P(\text{One or more blobs} \mid H_o)$
 $\approx P(\chi_u \geq 1 \mid H_o)$
 $\approx E(\chi_u \mid H_o)$

No holes
Never more than 1 blob
RFT Details: Expected Euler Characteristic

\[E(\chi_u) \approx \lambda(\Omega) \, |\Lambda|^{1/2} \left(u^2 - 1 \right) \exp\left(-u^2/2 \right) / (2\pi)^2 \]

- \(\Omega \) → Search region \(\Omega \subset \mathbb{R}^3 \)
- \(\lambda(\Omega) \) → volume
- \(|\Lambda|^{1/2} \) → roughness

• Assumptions
 - Multivariate Normal
 - Stationary*
 - ACF twice differentiable at 0

* Stationary
 - Results valid w/out stationary
 - More accurate when stat. holds

Only very upper tail approximates \(1 - F_{\max}(u) \)
Random Field Theory
Smoothness Parameterization

- $E(\chi_{ul})$ depends on $|\Lambda|^{1/2}$
 - Λ roughness matrix:

- Smoothness parameterized as Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

\[
\Lambda = \text{Var} \left(\frac{\partial G}{\partial (x, y, z)} \right) = \begin{pmatrix}
\text{Var} \left(\frac{\partial G}{\partial x} \right) & \text{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \text{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\
\text{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \text{Var} \left(\frac{\partial G}{\partial y} \right) & \text{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\
\text{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \text{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \text{Var} \left(\frac{\partial G}{\partial z} \right)
\end{pmatrix} = \begin{pmatrix}
\lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\
\lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\
\lambda_{zx} & \lambda_{zy} & \lambda_{zz}
\end{pmatrix}
\]

\[
|\Lambda|^{1/2} = \frac{(4 \log 2)^{3/2}}{\text{FWHM}_x \text{FWHM}_y \text{FWHM}_z}.
\]
Random Field Theory

Smoothness Parameterization

• RESELS
 – Resolution Elements
 – 1 RESEL = FWHM_x × FWHM_y × FWHM_z
 – RESEL Count R
 • \(R = \lambda(\Omega) \sqrt{|\Delta|} = (4\log2)^{3/2} \lambda(\Omega) \ / \ (\text{FWHM}_x \times \text{FWHM}_y \times \text{FWHM}_z) \)
 • Volume of search region in units of smoothness
 • Eg: 10 voxels, 2.5 FWHM 4 RESELS

• Beware RESEL misinterpretation
 – RESEL are not “number of independent ‘things’ in the image”
Random Field Theory
Smoothness Estimation

- Smoothness est’d from standardized residuals
 - Variance of gradients
 - Yields resels per voxel (RPV)

- RPV image
 - Local roughness est.
 - Can transform in to local smoothness est.
 - FWHM Img = (RPV Img)^{-1/D}
 - Dimension D, e.g. $D=2$ or 3
Random Field Intuition

• Corrected P-value for voxel value t

 $P^c = P(\text{max} \ T > t)$

 $\approx E(\chi_i)$

 $\approx \lambda(\Omega) |\Lambda|^{1/2} t^2 \exp(-t^2/2)$

• Statistic value t increases
 – P^c decreases (but only for large t)

• Search volume increases
 – P^c increases (more severe MCP)

• Roughness increases (Smoothness decreases)
 – P^c increases (more severe MCP)
RFT Details: Unified Formula

- General form for expected Euler characteristic
 - χ^2, F, & t fields • restricted search regions • D dimensions

$$E[\chi_u(\Omega)] = \sum_d R_d(\Omega) \rho_d(u)$$

$R_d(\Omega)$: d-dimensional Minkowski functional of Ω
- function of dimension, space Ω and smoothness:

$R_0(\Omega) = \chi(\Omega)$ Euler characteristic of Ω
$R_1(\Omega) =$ resel diameter
$R_2(\Omega) =$ resel surface area
$R_3(\Omega) =$ resel volume

$\rho_d(\Omega)$: d-dimensional EC density of $Z(x)$
- function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

$$\rho_0(u) = 1 - \Phi(u)$$
$$\rho_1(u) = (4 \ln2)^{1/2} \exp(-u^2/2) / (2\pi)$$
$$\rho_2(u) = (4 \ln2) \exp(-u^2/2) / (2\pi)^{3/2}$$
$$\rho_3(u) = (4 \ln2)^{3/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$$
$$\rho_4(u) = (4 \ln2)^2 (u^3 - 3u) \exp(-u^2/2) / (2\pi)^{5/2}$$
Random Field Theory
Cluster Size Tests

• Expected Cluster Size
 – $E(S) = E(N)/E(L)$
 – S cluster size
 – N suprathreshold volume
 $\lambda(\{T > u_{clus}\})$
 – L number of clusters

• $E(N) = \lambda(\Omega) P(T > u_{clus})$
• $E(L) \approx E(\chi_{ul})$
 – Assuming no holes
Random Field Theory
Cluster Size Distribution

• Gaussian Random Fields (Nosko, 1969)

\[S^{2/D} \sim \text{Exp} \left(\frac{E(N)}{\Gamma(D/2+1)E(L)} \right)^{-2/D} \]

– D: Dimension of RF

• t Random Fields (Cao, 1999)

– B: Beta dist
– U’s: \(\chi^2 \)’s
– c chosen s.t.
\[E(S) = \frac{E(N)}{E(L)} \]

\[S \sim c B^{1/2} \left[\frac{U_0^D}{\prod_{b=0}^{D} U_b} \right]^{2/D} \]
Random Field Theory
Cluster Size Corrected P-Values

• Previous results give uncorrected P-value
• Corrected P-value
 – Bonferroni
 • Correct for expected number of clusters
 • Corrected $P^c = E(L) \cdot P_{uncorr}$
 – Poisson Clumping Heuristic (Adler, 1980)
 • Corrected $P^c = 1 - \exp(-E(L) \cdot P_{uncorr})$
Review: Levels of inference & power

Set level...
Cluster level...
Voxel level...
Random Field Theory

Limitations

• Sufficient smoothness
 – FWHM smoothness $3-4 \times$ voxel size (Z)
 – More like $\sim 10 \times$ for low-df T images

• Smoothness estimation
 – Estimate is biased when images not sufficiently smooth

• Multivariate normality
 – Virtually impossible to check

• Several layers of approximations

• Stationary required for cluster size results
Real Data

• fMRI Study of Working Memory
 – Item Recognition
 • Active: View five letters, 2s pause, view probe letter, respond
 • Baseline: View XXXXX, 2s pause, view Y or N, respond

• Second Level RFX
 – Difference image, A-B constructed for each subject
 – One sample t test
Real Data: RFT Result

- **Threshold**
 - \(S = 110,776 \)
 - \(2 \times 2 \times 2 \) voxels
 - \(5.1 \times 5.8 \times 6.9 \) mm
 - FWHM
 - \(u = 9.870 \)

- **Result**
 - 5 voxels above the threshold
 - 0.0063 minimum FWE-corrected p-value
Real Data: SnPM Promotional

- Nonparametric method more powerful than RFT for low DF
- “Variance Smoothing” even more sensitive
- FWE controlled all the while!
False Discovery Rate...
MCP Solutions: Measuring False Positives

• Familywise Error Rate (FWER)
 – Familywise Error
 • Existence of one or more false positives
 – FWER is probability of familywise error

• False Discovery Rate (FDR)
 – FDR = E(V/R)
 – R voxels declared active, V falsely so
 • Realized false discovery rate: V/R
False Discovery Rate

- For any threshold, all voxels can be cross-classified:

- **Realized FDR**

 \[
 rFDR = \frac{V_{0R}}{V_{1R} + V_{0R}} = \frac{V_{0R}}{N_R}
 \]

 - If \(N_R = 0 \), \(rFDR = 0 \)

- But only can observe \(N_R \), don’t know \(V_{1R} \) & \(V_{0R} \)

 - We control the *expected* \(rFDR \)

 \[
 FDR = E(rFDR)
 \]
False Discovery Rate

Illustration:
Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

Percentage of Activated Pixels that are False Positives
Benjamini & Hochberg Procedure

- Select desired limit q on FDR
- Order p-values, $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(V)}$
- Let r be largest i such that

\[p_{(i)} \leq \frac{i}{V} \times q \]

- Reject all hypotheses corresponding to $p_{(1)}, \ldots, p_{(r)}$.

Adaptiveness of Benjamini & Hochberg FDR

Ordered p-values $p(i)$

P-value threshold when no signal: α/V

P-value threshold when all signal: α
Real Data: FDR Example

• Threshold
 – Indep/PosDep
 \(u = 3.83 \)
 – Arb Cov
 \(u = 13.15 \)

• Result
 – 3,073 voxels above Indep/PosDep \(u \)
 – <0.0001 minimum FDR-corrected p-value

FDR Threshold = 3.83
3,073 voxels
FWER Perm. Thresh. = 9.87
7 voxels
FDR Changes

• Before SPM8
 – Only voxel-wise FDR

• SPM8
 – Cluster-wise FDR
 – Peak-wise FDR

Item Recognition data

Cluster-forming threshold P=0.001
 Cluster-wise FDR: 40 voxel cluster, PFDR 0.07
 Peak-wise FDR: t=4.84, PFDR 0.836

Cluster-forming threshold P=0.01
 Cluster-wise FDR: 1250 - 4380 voxel clusters, PFDR <0.001
 Cluster-wise FDR: 80 voxel cluster, PFDR 0.516
 Peak-wise FDR: t=4.84, PFDR 0.027
Benjamini & Hochberg
Procedure Details

• **Standard Result**
 - Positive Regression Dependency on Subsets
 \[P(X_1 \geq c_1, X_2 \geq c_2, \ldots, X_k \geq c_k \mid X_i = x_i) \text{ is non-decreasing in } x_i \]
 - Only required of null \(x_i \)'s
 - Positive correlation between null voxels
 - Positive correlation between null and signal voxels
 - Special cases include
 - Independence
 - Multivariate Normal with all positive correlations

• **Arbitrary covariance structure**
 - Replace \(q \) by \(q/c(V) \),
 \[c(V) = \sum_{i=1,\ldots,V} 1/i \approx \log(V) + 0.5772 \]
 - Much more stringent

Ann. Stat.
29:1165-1188
Benjamini & Hochberg: Key Properties

- FDR is controlled
 \[E(\text{rFDR}) \leq q \, m_0/V \]
 - Conservative, if large fraction of nulls false

- Adaptive
 - Threshold depends on amount of signal
 - More signal, More small p-values,
 More \(p_{(i)} \) less than \(i/V \times q/c(V) \)
Controlling FDR: Varying Signal Extent

\[p = \quad z = \]

Signal Intensity 3.0
Signal Extent 1.0
Noise Smoothness 3.0
Controlling FDR: Varying Signal Extent

\[p = \quad z = \]

Signal Intensity 3.0 Signal Extent 2.0 Noise Smoothness 3.0
Controlling FDR: Varying Signal Extent

\[p = \quad z = \]

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0
Controlling FDR: Varying Signal Extent

\[p = 0.000252 \quad z = 3.48 \]
Controlling FDR: Varying Signal Extent

\[p = 0.001628 \quad z = 2.94 \]

Signal Intensity 3.0 Signal Extent 9.5 Noise Smoothness 3.0
Controlling FDR: Varying Signal Extent

\[p = 0.007157 \quad z = 2.45 \]
Controlling FDR: Varying SignalExtent

\[p = 0.019274 \quad z = 2.07 \]
Controlling FDR: Benjamini & Hochberg

- Illustrating BH under dependence
 - Extreme example of positive dependence

8 voxel image

32 voxel image (interpolated from 8 voxel image)
Conclusions

• Must account for multiplicity
 – Otherwise have a fishing expedition

• FWER
 – Very specific, not very sensitive

• FDR
 – Less specific, more sensitive
 – Sociological calibration still underway
References

• Most of this talk covered in these papers

