PPIs and DYNAMIC CAUSAL MODELING FOR fMRI

Based on slides from: Klaas Stephan, Hanneke den Ouden, & Andre Marreiros

Darren Gitelman, MD

Associate Professor of Neurology and Radiology Northwestern University, Feinberg School of Medicine d-gitelman@northwestern.edu

Systems analysis in functional neuroimaging

Functional specialisation

- Analyses of regionally specific effects
- Which regions are specialized for a particular task?)
- Univariate analysis

Functional integration

- Analyses of inter-regional effects
- What are the interactions between the elements of a neuronal system?
- Univariate & Multivariate analysis

Effective connectivity

K. Stephan, FIL

Systems analysis in functional neuroimaging

Functional integration

Functional connectivity

- Temporal correlations between spatially remote areas
- MODEL-FREE
- Exploratory
- Data Driven
- No Causation
- Whole brain connectivity

Effective connectivity

- The influence that one neuronal system exerts over another
- MODEL-DEPENDENT
- Confirmatory
- Hypothesis driven
- Causal (based on a model)
- Reduced set of regions

Connectivity Analysis Methods

Functional Connectivity

- ICA (independent component analyses)
- Pairwise ROI Correlations
- Whole brain seed driven connectivity
- Graph analyses
- Effective Connectivity
 - PPI (psycho-physiological interactions)
 - SEM (structural equation models)
 - MAR (multivariate autoregressive models)
 - Granger Causality
 - DCM (dynamic causal models)

Psycho physiological interaction (PPI)

Bilinear model of how the psychological context
 A changes the influence of area B on area C :

$\mathsf{B} \times \mathsf{A} \to \mathsf{C}$

• A PPI corresponds to differences in regression slopes for different contexts.

Psycho-physiological interaction (PPI)

GLM of a 2x2 factorial design:

$y = (T_A - T_B)\beta_1 \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet $	main effect of task
+ $(S_1 - S_2)\beta_2$	main effect of stim. type
$+(T_A - T_B)(S_1 - S_2)\beta_3$	 interaction
$+ \rho$	

We can replace one main effect in the GLM by the time series of an area that shows this main effect.

$$y = (T_A - T_B) \beta_1$$

$$+ V1\beta_2$$

$$+ (T_A - T_B) V1\beta_3$$

$$+ e$$
main effect
of task
V1 time series
main effect
of stim. type
psycho-
physiological
interaction

Attentional modulation of V1 \rightarrow V5

Two mechanistic interpretations of PPI's.

of responses to stimulus

Friston et al, Neuroimage, 1997

responses to context (attention)

PPI directionality

- Although PPIs select a source and find target regions, they cannot determine the directionality of connectivity.
- The regression equations are reversible. The slope of A → B is the reciprocal of B → A.
- Directionality should be pre-specified and based on knowledge of anatomy or other experimental results.

PPI vs. correlation

- Are PPI's the same as correlations?
 - No
 - PPI's are based on regressions and assume a dependent and an independent variable
 - PPI's explicitly discount main effects

PPI vs. correlation

- Kim and Horwitz investigated connectivity using correlations vs. PPI regression applied to a biologically plausible neural model.
- PPI results were similar to those based on integrated synaptic activity (gold standard)
- Results from correlations were not significant for many of the [true] functional connections.
- A change in influence between 2 regions may not involve a change in signal correlation

PPI: summary

Psychological interaction

 Change in regression slope due to the differential response to a stimulus under the influence of different experimental contexts.

Physiophysiological interaction

 Change in regression slope due to the differential response to the signal from one region under the influence of another (region).

Psychophysiological interaction

 Change in regression slope due to the differential response to the signal from one region under the influence of different experimental contexts.

Bilateral ACC activation in both tasks – but asymmetric connectivity !

left ACC (-6, 16, 42)

group analysis random effects (n=15) p<0.05, corrected (SVC)

Left ACC \rightarrow left inf. frontal gyrus (IFG): increase during letter decisions.

Right ACC \rightarrow right IPS: increase during spatial decisions.

Stephan et al., Science, 2003

PPI single-subject example

Right ACC signal plotted against right IPS

Left ACC signal plotted against left IFG

Stephan et al, Science, 2003

PPI: Pros

Pros:

- Given a single source region, we can test for its context-dependent connectivity across the entire brain
- Easy to implement

PPI: Pros / Cons

Cons:

- Depend on factorial designs. If the interaction and main effects are not orthogonal, the sensitivity will be low.
- Analysis can be overly sensitive to the choice of region.
- Very simplistic model: i.e., contributions from a single area
- Ignores time-series properties of data
- Operates at the level of BOLD time series (spm99/2).
 SPM 5/8 deconvolves the BOLD signal to form the proper interaction term, and then reconvolves it.
- Need DCM for to make robust statements about effective connectivity and causality.

Dynamic Causal Modeling

- DCM allows us to look at how areas within a network interact:
- Investigate functional integration & modulation of specific cortical pathways

Principles of DCM:

- Investigate functional integration & modulation of specific cortical pathways
- Using a bilinear state equation, a cognitive system is modeled at its underlying neuronal level (which is not directly accessible to fMRI).
- The modeled neuronal dynamics (x) are transformed into area-specific 'simulated' BOLD signals (y) by a hemodynamic model (λ).

The aim of DCM is to estimate parameters at the "neuronal level" such that the modeled and measured BOLD signals are maximally* similar.

Conceptual overview

Use differential equations to represent a neuronal system

- State vector

 Changes with time
- Rate of change of state vector
 - Interactions between elements
 - External inputs, u
- System parameters θ

$$z(t) = \begin{bmatrix} z_1(t) \\ \vdots \\ z_n(t) \end{bmatrix}$$

system represented by state variables

$$\begin{bmatrix} \dot{z}_1 \\ \vdots \\ \dot{z}_n \end{bmatrix} = \begin{bmatrix} f_1(z_1...z_n, u, \theta_1) \\ \vdots \\ f_n(z_1...z_n, u, \theta_n) \end{bmatrix}$$

$$\dot{z} = f(z, u, \theta)$$

DCM parameters = rate constants

Generic solution to the ODEs in DCM:

1

$$\frac{dz}{dt} = az \implies z(t) = z_0 \exp(at)$$

Neurodynamics: 2 nodes with input

activity in z_2 is coupled to z_1 via coefficient a_{21}

Neurodynamics: positive modulation

modulatory input u_2 activity through the coupling a_{21}

Neurodynamics: reciprocal connections

Hemodynamics: reciprocal connections

 $h(u,\theta)$ represents the BOLD response (balloon model) to input

Hemodynamics: reciprocal connections

y represents simulated observation of BOLD response, i.e. includes noise $y = h(u, \theta) + e$

Bilinear state equation in DCM for fMRI

$$\dot{z} = (A + \sum_{j=1}^m u_j B^j) z + C u$$

The hemodynamic model

6 hemodynamic parameters:

$$\theta^{h} = \{\kappa, \gamma, \tau, \alpha, \rho, \varepsilon\}$$

important for model fitting, but of no interest for statistical inference

Computed separately for each area \rightarrow region-specific HRFs!

Measured vs Modeled BOLD signal

Recap

The aim of DCM is to estimate

- neural parameters {A, B, C}
- hemodynamic parameters

such that the modeled and measured BOLD signals are maximally similar.

H. den Ouden, SPM Course, 2010

DCM roadmap

Estimation: Bayesian framework

Parameter estimation: an example

Inference about DCM parameters: single-subject analysis

- Bayesian parameter estimation in DCM: Gaussian assumptions about the posterior distributions of the parameters
- Quantify the probability that a parameter (or contrast of parameters $c^T \eta_{\theta|y}$) is above a chosen threshold γ :

Model comparison and selection

Good Goodness of fit Given competing hypotheses, which model is the best? Model fit Overfitting Poor Generalizability $\log p(y \mid m) = accuracy(m) -$ Model complexity complexity(m) overfitting •••••• $B_{ij} = \frac{p(y \mid m=i)}{p(y \mid m=j)}$ Pitt & Miyung (2002), TICS

Attention to motion in the visual system

We used this model to assess the site of attention modulation during visual motion processing in an fMRI paradigm reported by Büchel & Friston.

 \rightarrow V1

 $\rightarrow V5$

- observe static dots + photic
- observe moving dots + motion
- task on moving dots + attention

Attention

Motion

Comparison of two simple models

Model 1: attentional modulation of V1→V5

<u>Model 2:</u> attentional modulation of SPC→V5

Bayesian model selection: Model 1 better than model 2

 $\log p(y \mid m_1) >> \log p(y \mid m_2)$

 \rightarrow Decision for model 1: in this experiment, attention primarily modulates V1 \rightarrow V5

Extension I: Slice timing model

 <u>potential timing problem in DCM:</u> temporal shift between regional time series because of multislice acquisition

- <u>Solution:</u>
 - Modeling of (known) slice timing of each area.

Slice timing extension now allows for any slice timing differences! (only works for sequential acquisitions)

Long TRs (> 2 sec) no longer a limitation.

Extension II: Two-state model

Two-state DCM

 $\dot{x} = \Im x + Cu$ $\Im_{ij} = A_{ij} + uB_{ij}$

a	3 ₁₁		3 _{1N}		$\begin{bmatrix} x_1 \\ \vdots \end{bmatrix}$
э=	: 3 _{N1}	·. 	: 3 _{NN}	<i>x</i> =	x_N
	- NI		NN _		N _

1 vs. 2-state DCM of attention to motion

Marreiros et al., Neuroimage, 2008

BMC: 1 vs. 2-state DCM of attention to motion

Extension III: Nonlinear DCM for fMRI

bilinear DCM

nonlinear DCM

Bilinear state equation

Nonlinear state equation

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right) x + Cu \qquad \qquad \frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right) x + Cu$$

DCM can model activity-dependent changes in connectivity; connections can be enabled or gated by activity in one or more areas.

Extension III: Nonlinear DCM for fMRI

Can V5 activity during attention to motion be explained by allowing activity in SPC to modulate the V1-to-V5 connection?

Conclusions

Dynamic Causal Modeling (DCM) of fMRI is mechanistic model that is informed by anatomical and physiological principles.

DCM uses a deterministic differential equation to model neurodynamics (represented by matrices A,B and C)

DCM uses a Bayesian framework to estimate model parameters

DCM provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

DCM is not model or modality specific (Models will change and the method extended to other modalities e.g. ERPs)

Inference about DCM parameters:

Bayesian single subject analysis

- The model parameters are distributions that have a mean $\eta_{\theta|y}$ and covariance $C_{\theta|y}$.
 - Use of the cumulative normal distribution to test the probability that a certain parameter is above a chosen threshold γ.
 - By default, γ is chosen as zero ("does the effect exist?").

Inference about DCM parameters: group analysis (classical)

 In analogy to "random effects" analyses in SPM, 2nd level analyses can be applied to DCM parameters:

H. den Ouden, SPM Course, 2010

GLM vs. DCM

- DCM tries to model the same phenomena as a GLM, just in a different way:
 - It is a model, based on connectivity and its modulation, for explaining experimentally controlled variance in local responses.
 - If there is no evidence for an experimental effect (no activation detected by a GLM) → inclusion of this region in a DCM is not meaningful.
 - Analysing an experiment using the GLM followed by DCM is not double dipping!

Planning a DCM-compatible study

Suitable experimental design:

- any design that is suitable for a GLM
- preferably multi-factorial (e.g. 2 x 2)
 - e.g. one factor that varies the driving (sensory) input
 - and one factor that varies the <u>contextual</u> input

Hypothesis and model:

- Define specific *a priori* hypothesis
- Which parameters are relevant to test this hypothesis?
- If you want to verify that intended model is suitable to test this hypothesis, then use <u>simulations</u>
- Define criteria for inference
- What are the alternative models to test?

1. Know what is causal about DCM.

- The present state of one neuronal population causes dynamics in another via synaptic connections
- External perturbations and/or neuronal activity can affect these interactions
- Causality in DCM does not rely on temporal precedence.
- 2. Know your hypothesis and how to test it.
 - Tests of models vs. tests of parameters.
- 3. Use Bayesian model selection as a first step.
- **4.** Motivate model space carefully.
 - E.g., permutations of a particular model or other data.

- 5. Choose an appropriate method for group-level inference on model structure
 - FFX similar model across subjects
 - RFX heterogeneous model across subjects
- 7. Know what you can and cannot do with Bayesian model selection.
 - E.g., can only compare models in fMRI with equivalent data.
- Choose an appropriate method for group-level inference on parameters
- **10**. Optimize experimental design and data acquisition
 - Factorial designs
 - Contiguous acquisition of slices vs. interleaved.
 - DCM for slice timing.

Use anatomical information and computational models to refine DCMs
Report modeling approach and results in detail

Stephan et al., Neuroimage, 2010

