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1  Introduction



Why multivariate?

3

Haxby et al. 2001 Science



Why multivariate?

� Multivariate approaches can reveal information jointly encoded by several voxels.
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Kriegeskorte et al. 2007 NeuroImage



� Multivariate approaches can exploit a sampling bias in voxelized images.

Why multivariate?
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Boynton 2005 Nature Neuroscience 



� Mass-univariate approaches treat each voxel independently of all other voxels 

such that the implicit likelihood factorises over voxels:

� Spatial dependencies between voxels are introduced after estimation, during 

inference, through random field theory. This allows us to make multivariate 

inferences over voxels (i.e., cluster-level or set-level inference).

Mass-univariate vs. multivariate analyses

),|(),|( iii XYpXYp θθ ∏=

6

inferences over voxels (i.e., cluster-level or set-level inference).

� Multivariate approaches, by contrast, relax the assumption about independence 

and enable inference about distributed responses without requiring focal 

activations or certain topological response features. They can therefore be more 

powerful than mass-univariate analyses.

� The key challenge for all multivariate approaches is the high dimensionality of 

multivariate brain data.



Models & terminology
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1 Encoding or decoding?

2 Univoxel or multivoxel?

3 Classification or regression?

0 Prediction or inference?

� The goal of prediction is to maximize the 
accuracy with which brain states can be 
decoded from fMRI data.

� The goal of inference is to decide between 
competing hypotheses about structure-
function mappings in the brain. Typically: 
compare a model that links distributed 
neuronal activity to a cognitive state with a 
model that does not.



� Encoding or decoding?

� An encoding model (or generative model) relates context 

(independent variable) to brain activity (dependent variable).

� A decoding model (or recognition model) relates brain activity 

(independent variable) to context (dependent variable).

� Univoxel or multivoxel?

� In a univoxel model, brain activity is the signal measured in one 

Models & terminology
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� In a univoxel model, brain activity is the signal measured in one 

voxel. (Special case: mass-univariate.)

� In a multivoxel model, brain activity is the signal measured in 

many voxels.

� Regression or classification?

� In a regression model, the dependent variable is continuous.

� In a classification model, the dependent variable is categorical 

(typically binary).
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2  Classification



Classification

Trials

fMRI 

timeseries Feature 

extraction

1

V
o

xe
ls

e.g., voxels

10

Training examples

Test examples

A A B A B A A B A A A B A

? ? ?
Accuracy

estimate

[% correct]
Feature

selection

Classification

3

2



Most classification algorithms are 

based on a linear model that 

discriminates the two classes.

Linear vs. nonlinear classifiers

If the data are not linearly separable, 

a nonlinear classifier may still be 

able to tell different classes apart.
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here: discriminative point classifiers



� We need to train and test our classifier on separate datasets. Why?

� Using the same examples for training and testing means overfitting may remain 

unnotived, implying an optimistic accuracy estimate.

� Instead, what are interested in is generalizability: the ability of our algorithm to 

correctly classify previously unseen examples.

� An efficient splitting procedure is cross-validation.

Training and testing
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Target questions for decoding studies

(a) Pattern discrimination (overall classification) (b) Spatial pattern localization
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(c) Temporal pattern localization (d) Pattern characterization

Accuracy [%]

50 %

100 %

Intra-trial time

Accuracy rises 
above chance

Participant indicates 
decision

Inferring a representational space and

extrapolation to novel classes

Brodersen et al. 2009 The New Collection

Mitchell et al. 2008

Science



Overall classification is about achieving maximal prediction performance.

Performance evaluation – example

� Given 100 trials, leave-10-out cross-validation, we measure performance by counting the 

number of correct predictions on each fold:

(a)  Overall classification

6 5 7 8 4 9 6 7 7 5
... out of 10 test 
examples correct
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� How likely is it be to get 64 out of 100 correct we had been guessing?

� Thus, we have made a Binomial assumption about the Null model to show that

our result is statistically significant at the 0.05 level.
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The support vector machine

� Intuitively, the support vector machine finds a hyperplane that maximizes the margin 

between the plane and the nearest examples on either side.

� For nonlinear mappings, the kernel converts a low-dimensional nonlinear problem into a 

high-dimensional linear problem.
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Deconvolved BOLD signal

Temporal feature extraction
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� result:  one beta value per trial, phase, and voxel

1 2 3 4 5 6
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(b)  Spatial information mapping

METHOD 1 Consider the entire brain, and find out which voxels 

are jointly discriminative

� e.g., based on a classifier with a constraint on sparseness in 

features
Hampton & O’Doherty 2007; Grosenick et al. 2008, 2009
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METHOD 2   At each voxel, consider a small local environment, 

and compute a distance score

� e.g., based on a CCA
Nandy & Cordes 2003 Magn. Reson. Med.

� e.g., based on a classifier

� e.g., based on Euclidean distances

� e.g., based on Mahalanobis distances
Kriegeskorte et al. 2006, 2007a, 2007b

Serences & Boynton 2007 J Neuroscience

� e.g., based on the mutual information



(b)  Spatial information mapping

Example 2 – decoding which 

option was chosen

Example 1 – decoding whether 

a subject will switch or stay
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(c)  Temporal information mapping

Example – decoding which button was pressed

motor cortex

classification
accuracy
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Soon et al. 2008 Nature Neuroscience

frontopolar cortex

decision response



(c)  Pattern characterization

Example – decoding which 

vowel a subject heard, and 

which speaker had uttered it

vo
xe

l 1

...
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Formisano et al. 2008 Science

...

fingerprint plot

(one plot per class)



� Constraints on experimental design

� When estimating trial-wise Beta values, we need longer ITIs (typically 8 – 15 s).

� At the same time, we need many trials (typically 100+).

� Classes should be balanced.

� Computationally expensive

� e.g., fold-wise feature selection

� e.g., permutation testing

Limitations
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� e.g., permutation testing

� Classification accuracy is a surrogate statistic

� Classification algorithms involve many heuristics



3  Multivariate Bayesian decoding



� Multivariate analyses in SPM are not implemented in terms of the classification 

schemes outlined in the previous section.

� Instead, SPM brings classification into the conventional inference framework of 

hierarchical models and their inversion.

� MVB can be used to address two questions:

� Overall classification –

Multivariate Bayesian decoding (MVB)

23

� Overall classification –

using a cross-validation scheme

(as seen earlier)

� Inference on different forms of structure-function mappings –

e.g., smooth or sparse coding

(new)



Model

Encoding models
X as a cause

X

βXA =β βAX =A

β

Decoding models
X as a consequence
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� Decoding models are typically ill-posed: there is an infinite number of equally 

likely solutions. We therefore require constraints or priors to estimate the voxel 

weights     .

� SPM specifies several alternative coding hypotheses in terms of empirical spatial 

priors on voxel weights.

Empirical priors on voxel weights
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Friston et al. 2008 NeuroImage



� MVB can be illustrated using SPM’s attention-to-motion example dataset.
Buechel & Friston 1999 Cerebral Cortex

Friston et al. 2008 NeuroImage

MVB – example

� This dataset is based on a simple block design. 

Each block is a combination of some of the 

following three factors:

� photic – there is some visual stimulus

design matrix

26

� motion – there is motion

� attention – subjects are paying attention

� We form a design matrix by convolving box-car 

functions with a canonical haemodynamic 

response function.
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MVB – example

27



� MVB-based predictions closely match the observed responses. But crucially, they 

don’t perfectly match them. Perfect match would indicate overfitting.

MVB – example

28



� The highest model evidence is achieved by a model that recruits 4 partitions. The 

weights attributed to each voxel in the sphere are sparse and multimodal. This 

suggests sparse coding.

MVB – example

29

log BF = 3



4  Further model-based approaches



� Challenge 1 – feature selection and weighting

to make the ill-posed many-to-one mapping tractable

� Challenge 2 – neurobiological interpretability of models

to improve the usefulness of insights that can be gained from multivariate 

analysis results

Challenges for all decoding approaches

31



� Approach 1 – identification (inferring a representational space)

1. estimation of an encoding model

2. nearest-neighbour classification or voting

Further model-based approaches (1)

32

Mitchell et al. 2008 Science



� Approach 2 – reconstruction / optimal decoding

1. estimation of an encoding model

2. model inversion

Further model-based approaches (2)

33

Paninski et al. 2007 Progr Brain Res 

Pillow et al. 2008 Nature Miyawaki et al. 2009 Neuron 



� Approach 3 – decoding 

with model-based feature 

construction

Further model-based approaches (3)
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Brodersen et al. 2009 (under review)



� Multivariate analyses can make use of information jointly encoded by several 
voxels and may therefore offer higher sensitivity than mass-univariate 
analyses.

� There is some confusion about terminology in current publications. 
Remember the distinction between prediction vs. inference, encoding vs. 
decoding, univoxel vs. multivoxel, and classification vs. regression.

The main target questions in classification studies are (i) pattern 

Summary

35

� The main target questions in classification studies are (i) pattern 
discrimination, (ii) spatial information mapping, (iii) temporal information 
mapping, and (iv) pattern characterization.

� Multivariate Bayes offers an alternative scheme that maps multivariate 
patterns of activity onto brain states within the conventional statistical 
framework.

� The future is likely to see more model-based approaches.



36



5  Supplementary slides



� Classification is the most common type of 

multivariate fMRI analysis to date. By 

classification we mean: to decode a 

categorical label from multivoxel activity.

� Lautrup et al. (1994) reported the first 

classification scheme for functional 

neuroimaging data.

Classification was then reintroduced by 

The most common multivariate analysis is classification

38

� Classification was then reintroduced by 

Haxby et al. (2001). In their study, the 

overall spatial pattern of activity was found 

to be more informative in distinguishing 

object categories than any brain region on 

its own.
Haxby et al. 2001 Science



Temporal unit of classification

� The temporal unit of classification specifies the amount of data that forms an 

individual example. Typical units are:

� one trial � trial-by-trial classification

� one block � block-by-block classification

� one subject � across-subjects classification

� Choosing a temporal unit of classification reveals a trade-off:

39

Choosing a temporal unit of classification reveals a trade-off:

� smaller units mean noisier examples but a larger training set

� larger units mean cleaner examples but a smaller training set

� The most common temporal unit of classification is an individual trial.



Temporal unit of classification
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Interpolated raw BOLD signal

Alternative temporal feature extraction

signal (a.u.)

averaged signal

across all trials

subject 1

subject 2

subject 3
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� result:  any desired number of sampling points per trial and voxel

delay resultdecision

microtime



Alternative temporal feature extraction

Deconvolved BOLD signal, 

expressed in terms of 3 basis 

functions

� Step 1: sample many HRFs 

from given parameter 

intervals

Step 1
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� Step 2: find set of 3 

orthogonal basis functions 

that can be used to 

approximate the sampled 

functions

� result: three values per trial, 

phase, and voxel

Basis fn 1

Basis fn 2

Basis fn 3

Step 2



Classification of methods for feature selection

� A priori structural feature selection

� A priori functional feature selection

� Fold-wise univariate feature selection

� Scoring

� Choosing a number of features

� Fold-wise multivariate feature selection

� Filtering methods

43

� Filtering methods

� Wrapper methods

� Embedded methods

� Fold-wise hybrid feature selection

� Searchlight feature selection

� Recursive feature elimination

� Sparse logistic regression

� Unsupervised feature-space compression



Training and testing a classifier

� Training phase

� The classifier is given a set of n labelled training samples

from some data space , where

� is a d-dimensional attribute vector

� is its corresponding class.
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� The goal of the learning algorithm is to find a function that adequately describes the 

underlying attributes/class relation.

� For example, a linear learning machine finds a function

which assigns a given point  x to the class

such that some performance measure is maximized, for example:
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Training and testing a classifier

� Test phase

� The classifier is now confronted with a test set of unlabelled examples

and assigns each example  x to an estimated class

},...,{ 1 ktest xxS =
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� We could then measure generalization performance in terms of the relative number of 

correctly classified test examples:
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� Nonlinear prediction problems can be turned into linear problems by using a 

nonlinear projection of the data onto a high-dimensional feature space.

� This technique is used by a class of prediction algorithms called kernel machines.

� The most popular kernel method is the support vector machine (SVM).

� SVMs make training and testing computationally efficient.

The support vector machine
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� We can easily reconstruct feature weights:

� However, SVM predictions do not have a probabilistic interpretation.



Multivariate Bayes – maximization of the model evidence
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� MVB can be illustrated using SPM’s attention-to-motion example dataset.
Buechel & Friston 1999 Cerebral Cortex

Friston et al. 2008 NeuroImage

� This dataset is based on a simple block design. Each block belongs to one of the 

following conditions:

� fixation – subjects see a fixation cross

� static – subjects see stationary dots

� no attention – subjects see moving dots

Multivariate Bayes – example
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� no attention – subjects see moving dots

� attention – subjects monitor moving dots for changes in velocity

� We wish to decode whether or not subjects were exposed to motion. We begin 

by recombining the conditions into three orthogonal conditions:

� photic – there is some form of visual stimulus

� motion – there is motion

� attention – subjects are required to pay attention



� Approach 1 – identification (inferring a representational space)

Further model-based approaches

49

Kay et al. 2008 Science



On classification

� Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A 

tutorial overview. NeuroImage, 45(1, Supplement 1), S199-S209. 

� O'Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). 

Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification 

Approaches to the Analysis of Functional Neuroimaging Data. Journal of Cognitive 

Neuroscience, 19(11), 1735-1752.

� Haynes, J., & Rees, G. (2006). Decoding mental states from brain activity in humans. 

Further reading
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� Haynes, J., & Rees, G. (2006). Decoding mental states from brain activity in humans. 

Nature Reviews Neuroscience, 7(7), 523-534.

� Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-

voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-30.

On multivariate Bayesian decoding

� Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., et al. (2008). 

Bayesian decoding of brain images. NeuroImage, 39(1), 181-205. 


