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- 1 Introduction



Why multivariate?
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Why multivariate?

o Multivariate approaches can reveal information jointly encoded by several voxels.
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Why multivariate?

o Multivariate approaches can exploit a sampling bias in voxelized images.
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Mass-univariate vs. multivariate analyses

o Mass-univariate approaches treat each voxel independently of all other voxels
such that the implicit likelihood factorises over voxels:

p(Y [ X,8) =[T; p(Y; | X,8)

o Spatial dependencies between voxels are introduced after estimation, during
inference, through random field theory. This allows us to make multivariate
inferences over voxels (i.e., cluster-level or set-level inference).

o Multivariate approaches, by contrast, relax the assumption about independence
and enable inference about distributed responses without requiring focal
activations or certain topological response features. They can therefore be more
powerful than mass-univariate analyses.

o The key challenge for all multivariate approaches is the high dimensionality of
multivariate brain data.




Models & terminology

]
stimulus )
context
X 10V behaviour _
‘ Prediction or inference? . Encoding or decoding?

0 The goal of prediction is to maximize the

accuracy with which brain states can be ‘ Univoxel or multivoxel?
decoded from fMRI data.

o The goal of inference is to decide between cee L. i
competing hypotheses about structure- ‘ Classification or regression?
function mappings in the brain. Typically:
compare a model that links distributed
neuronal activity to a cognitive state with a
model that does not.




Models & terminology

@ Encoding or decoding?

0 An encoding model (or generative model) relates context
(independent variable) to brain activity (dependent variable).

o A decoding model (or recognition model) relates brain activity
(independent variable) to context (dependent variable).

@ Univoxel or multivoxel?

o In a univoxel model, brain activity is the signal measured in one
voxel. (Special case: mass-univariate.)

0 In a multivoxel model, brain activity is the signal measured in
many voxels.

@ Regression or classification?

0 In aregression model, the dependent variable is continuous.

o In a classification model, the dependent variable is categorical
(typically binary).
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- 2 Classification



Classification
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Linear vs. nonlinear classifiers

Most classification algorithms are If the data are not linearly separable,
based on a linear model that a nonlinear classifier may still be
discriminates the two classes. able to tell different classes apart.

here: discriminative point classifiers
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Training and testing

o We need to train and test our classifier on separate datasets. Why?

0 Using the same examples for training and testing means overfitting may remain
unnotived, implying an optimistic accuracy estimate.

0 Instead, what are interested in is generalizability: the ability of our algorithm to
correctly classify previously unseen examples.

o An efficient splitting procedure is cross-validation.
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Target questions for decoding studies

(a) Pattern discrimination (overall classification)

Accuracy [%]
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50% |

Classification task

(b) Spatial pattern localization

(c) Temporal pattern localization

Accuracy [%] Participant indicates
decision
100 % et

50 %

Accuracy rises
above chance

Intra-trial time

(d) Pattern characterization

Inferring a representational space and
extrapolation to novel classes
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Science

Brodersen et al. 2009 The New Collection
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(a) Overall classification i | R

Overall classification is about achieving maximal prediction performance.

Performance evaluation — example

o Given 100 trials, leave-10-out cross-validation, we measure performance by counting the
number of correct predictions on each fold:

... out of 10 test
6 KB KD

o How likely is it be to get 64 out of 100 correct we had been guessing?
64-1

00
p=P(N_, . =264)=1- Z( i )x 0.5 x 0.5'%

k=1

= 0.00176

o Thus, we have made a Binomial assumption about the Null model to show that
our result is statistically significant at the 0.05 level.
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The support vector machine | !?

o Intuitively, the support vector machine finds a hyperplane that maximizes the margin
between the plane and the nearest examples on either side.

o For nonlinear mappings, the kernel converts a low-dimensional nonlinear problem into a
high-dimensional linear problem.
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Temporal feature extraction

Deconvolved BOLD signal

trial-by-trial design matrix
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- result: one beta value per trial, phase, and voxel




(b) Spatial information mapping i [ |

METHOD 1 Consider the entire brain, and find out which voxels
are jointly discriminative

o e.g., based on a classifier with a constraint on sparseness in

features
Hampton & O’Doherty 2007; Grosenick et al. 2008, 2009

METHOD 2 At each voxel, consider a small local environment,

and compute a distance score
o e.g., based ona CCA
I Nandy & Cordes 2003 Magn. Reson. Med.

o e.g., based on a classifier

o e.g., based on Euclidean distances

o e.g., based on Mahalanobis distances
Kriegeskorte et al. 2006, 2007a, 2007b
Serences & Boynton 2007 J Neuroscience

o e.g., based on the mutual information
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(b) Spatial information mapping iy

Example 1 — decoding whether Example 2 — decoding which
a subject will switch or stay option was chosen
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Hampton & O‘Doherty 2007 PNAS Brodersen et al. 2009 HBM
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(c) Temporal information mapping

Example — decoding which button was pressed
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(c) Pattern characterization

Example — decoding which
vowel a subject heard, and
which speaker had uttered it

fingerprint plot
(one plot per class)

Formisano et al. 2008 Science
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Limitations

o Constraints on experimental design
0 When estimating trial-wise Beta values, we need longer ITls (typically 8 — 15 s).
0 At the same time, we need many trials (typically 100+).

o Classes should be balanced.

o Computationally expensive
o e.g., fold-wise feature selection

O e.g., permutation testing
o Classification accuracy is a surrogate statistic

o Classification algorithms involve many heuristics
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Multivariate Bayesian decoding (MVB)

o Multivariate analyses in SPM are not implemented in terms of the classification
schemes outlined in the previous section.

o Instead, SPM brings classification into the conventional inference framework of
hierarchical models and their inversion.

o MVB can be used to address two questions:

o Overall classification —
using a cross-validation scheme
(as seen earlier)

0 Inference on different forms of structure-function mappings —
e.g., smooth or sparse coding
(new)
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Model

Encoding models Decoding models
X as a cause X as a consequence

9(0): X - Y g(d):Y - X
Y=TXB+Gy+¢ X=Ap
TX=YLB-G)B -0
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Empirical priors on voxel weights

o Decoding models are typically ill-posed: there is an infinite number of equally
likely solutions. We therefore require constraints or priors to estimate the voxel
weights £.

o SPM specifies several alternative coding hypotheses in terms of empirical spatial
priors on voxel weights.

cov(fB)=UZU"'

Null: U =1
Spatial vectors: U=1I
smoothvectors: U (X, X;) = exp(-1 (X - %,)*0%) mp
Singular vectorss: UDV T = RY "

Support vectors: | = RYT

Friston et al. 2008 Neurolmage
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MVB — example

o MVB can be illustrated using SPM’s attention-to-motion example dataset.

Buechel & Friston 1999 Cerebral Cortex
Friston et al. 2008 Neurolmage

design matrix

o This dataset is based on a simple block design.
Each block is a combination of some of the
following three factors:

O photic —there is some visual stimulus
O motion —there is motion
O attention —subjects are paying attention

o We form a design matrix by convolving box-car
functions with a canonical haemodynamic
. blocks of
response function. 10 scans

photic
motion
attention

constant




MVB — example
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MVB — example

o MVB-based predictions closely match the observed responses. But crucially, they
don’t perfectly match them. Perfect match would indicate overfitting.

MVB_sparse (prior: sparse)
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MVB — example

o The highest model evidence is achieved by a model that recruits 4 partitions. The
weights attributed to each voxel in the sphere are sparse and multimodal. This
suggests sparse coding.
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- 4 Further model-based approaches



Challenges for all decoding approaches

o Challenge 1 - feature selection and weighting
to make the ill-posed many-to-one mapping tractable

o Challenge 2 — neurobiological interpretability of models
to improve the usefulness of insights that can be gained from multivariate

analysis results
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Further model-based approaches (1)

o Approach 1 —identification (inferring a representational space)
1. estimation of an encoding model

2. nearest-neighbour classification or voting

Predictive model

O\
4 O ~
stimulus -0 predicted
i W?;d 7 O — activity for
elety “celery”
®) y
O
O
I
Intermediate Mapping learned
semantic features from fMRI
extracted from training data
trillion-word text
corpus Mitchell et al. 2008 Science
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Further model-based approaches (2)

0 Approach 2 — reconstruction / optimal decoding
1. estimation of an encoding model

2. model inversion
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Further model-based approaches (3)

training data

o Approach 3 —decoding .
with model-based feature 7
construction é

conventional feature construction

e.g., a priori region of interest,
subsampling, interpolation,
averaging,
principal component analysis

— feature space of
arbitrary dimensionality

model-based feature construction

trial-by-trial model inversion

Y o

generic features test data
(e.lg.,lhmebms, voxels, <<
principal components) ¢
o o
predictions N
£
7
2 2 2

Brodersen et al. 2009 (under review)
accuracy (%)

— low-dimensional
feature space

model parameters
(e.g., synaptic density,
connectivity)

predictions

"

interpretation of feature
weights in model space

structural and dynamic
model selection

accuracy (%)
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Summary

o Multivariate analyses can make use of information jointly encoded by several
voxels and may therefore offer higher sensitivity than mass-univariate
analyses.

o There is some confusion about terminology in current publications.
Remember the distinction between prediction vs. inference, encoding vs.
decoding, univoxel vs. multivoxel, and classification vs. regression.

o The main target questions in classification studies are (i) pattern
discrimination, (ii) spatial information mapping, (iii) temporal information
mapping, and (iv) pattern characterization.

o Multivariate Bayes offers an alternative scheme that maps multivariate
patterns of activity onto brain states within the conventional statistical

framework.

o The future is likely to see more model-based approaches.
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The most common multivariate analysis is classification

o Classification is the most common type of
multivariate fMRI analysis to date. By
classification we mean: to decode a
categorical label from multivoxel activity.

o Lautrup et al. (1994) reported the first
classification scheme for functional
neuroimaging data.

o Classification was then reintroduced by
Haxby et al. (2001). In their study, the
overall spatial pattern of activity was found
to be more informative in distinguishing
object categories than any brain region on
its own.

Haxby et al. 2001 Science
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Temporal unit of classification

o The temporal unit of classification specifies the amount of data that forms an
individual example. Typical units are:

0 one trial = trial-by-trial classification
o one block = block-by-block classification

0 one subject = across-subjects classification

o Choosing a temporal unit of classification reveals a trade-off:
o smaller units mean noisier examples but a larger training set

o larger units mean cleaner examples but a smaller training set

o The most common temporal unit of classification is an individual trial.
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Temporal unit of classification
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Alternative temporal feature extraction

Interpolated raw BOLD signal

signal (a.u.)

Fl
=10
4

averaged signal
across all trials

subject 1
subject 2
subject 3

I I I I
n 10 20 a0 40 al G0 Fl al a0

microtime

- result: any desired number of sampling points per trial and voxel
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Alternative temporal feature extraction

Deconvolved BOLD signal,
expressed in terms of 3 basis
functions

o Step 1: sample many HRFs
from given parameter
intervals

o Step 2: find set of 3
orthogonal basis functions
that can be used to
approximate the sampled
functions

- result: three values per trial,
phase, and voxel

HREF ZSamples

=0 i
=0 .500

time Czecs)

HRF Baziz Functions

Step 2

o Pl o O Oy == 00 LD
f=lstelelslelnlslules]

felnlelelslelalslelslsl
R L L L L

e Basisfn 1
~9.120 Basis fn 2
=510 Basisfn 3

0 2 ol =] 10 1z 15 1z 20 22 25 28

time (=zecs)

42



Classification of methods for feature selection

A priori structural feature selection
A priori functional feature selection

o Fold-wise univariate feature selection
o Scoring
0o Choosing a number of features
o Fold-wise multivariate feature selection
o Filtering methods
o Wrapper methods
o Embedded methods
o Fold-wise hybrid feature selection
0 Searchlight feature selection
0 Recursive feature elimination
o Sparse logistic regression

o Unsupervised feature-space compression




Training and testing a classifier

o Training phase

0 The classifier is given a set of n labelled training samples

Srain :{( X1’ y1)1"'1(xn1 yn)}

from some data space X° x{-1,1}, where
X = (Xl,,Xd) is a d-dimensional attribute vector
=y [{-1,1} is its corresponding class.

0 The goal of the learning algorithm is to find a function that adequately describes the
underlying attributes/class relation.

0 For example, a linear learning machine finds a function f,, (X) = <W D(> +b
which assigns a given point X to the class y =sgn(f,,, (X))

such that some performance measure is maximized, for example:

(w,b) =argmax,, Zln Y Y,
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Training and testing a classifier

o Test phase

0 The classifier is now confronted with a test set of unlabelled examples
SRS RTER
and assigns each example X to an estimated class

y =sgn(f,,,(x))

o We could then measure generalization performance in terms of the relative number of
correctly classified test examples:

Z_l -

adCC =
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The support vector machine

o Nonlinear prediction problems can be turned into linear problems by using a
nonlinear projection of the data onto a high-dimensional feature space.

o This technique is used by a class of prediction algorithms called kernel machines.

o The most popular kernel method is the support vector machine (SVM).

0 SVMs make training and testing computationally efficient.
miny, ,(w,w) + C Xi, &
st. 21—y ((w,x;)+b) Vi=1,..,n

$ =0,

0 We can easily reconstruct feature weights:

— n
W = i—1 YiiX;

0 However, SVM predictions do not have a probabilistic interpretation.
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Multivariate Bayes — maximization of the model evidence
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Multivariate Bayes — example

o MVB can be illustrated using SPM’s attention-to-motion example dataset.

Buechel & Friston 1999 Cerebral Cortex
Friston et al. 2008 Neurolmage

o This dataset is based on a simple block design. Each block belongs to one of the
following conditions:

o fixation — subjects see a fixation cross

O static — subjects see stationary dots

0 no attention — subjects see moving dots

O attention — subjects monitor moving dots for changes in velocity

o We wish to decode whether or not subjects were exposed to motion. We begin
by recombining the conditions into three orthogonal conditions:

o photic —there is some form of visual stimulus
O motion —there is motion
O attention — subjects are required to pay attention
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Further model-based approaches

o Approach 1 —identification (inferring a representational space)

Stage 1: model estimation
Estimate a receptive-field model for each voxel

/ x| 2
@& /TN
f®—> :oor |

Z—POJ —> ne

/ 0.5
Images ! :|—> x| =1 Responses

Receptive-field model for one voxel

Stage 2: image identification
(1) Measure brain activity for an image

BNV

Response

Voxel number

Measured voxel
activity pattern

Kay et al. 2008 Science

(2) Predict brain activity for a set of images using receptive-field models

M
VeV,

Voxel number

|
x ! > 0B —» -\
|

Set of Receptive-field models Predicted voxel
images for multiple voxels activity patterns

(3) Select the image (¥ ) whose predicted brain activity is most similar to
the measured brain activity
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Further reading

On classification

o Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A
tutorial overview. Neurolmage, 45(1, Supplement 1), S199-S209.

o O'Toole, A. J.,, Jiang, F., Abdi, H., Penard, N., Dunlop, J. P, & Parent, M. A. (2007).
Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification
Approaches to the Analysis of Functional Neuroimaging Data. Journal of Cognitive
Neuroscience, 19(11), 1735-1752.

o Haynes, )., & Rees, G. (2006). Decoding mental states from brain activity in humans.
Nature Reviews Neuroscience, 7(7), 523-534.

o Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424-30.

On multivariate Bayesian decoding

o Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W,, et al. (2008).
Bayesian decoding of brain images. Neurolmage, 39(1), 181-205.
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