Multivariate analyses and decoding

Kay H. Brodersen

Computational Neuroeconomics Group University of Zurich

Machine Learning and Pattern Recognition Group ETH Zurich

1 Introduction

Why multivariate?

Haxby et al. 2001 Science

Why multivariate?

Multivariate approaches can reveal information jointly encoded by several voxels.

Why multivariate?

Multivariate approaches can exploit a sampling bias in voxelized images.

Boynton 2005 Nature Neuroscience

Mass-univariate vs. multivariate analyses

 Mass-univariate approaches treat each voxel independently of all other voxels such that the implicit likelihood factorises over voxels:

 $p(Y \mid X, \theta) = \prod_{i} p(Y_i \mid X, \theta_i)$

- Spatial dependencies between voxels are introduced after estimation, during inference, through random field theory. This allows us to make multivariate inferences over voxels (i.e., cluster-level or set-level inference).
- Multivariate approaches, by contrast, relax the assumption about independence and enable inference about distributed responses without requiring focal activations or certain topological response features. They can therefore be more powerful than mass-univariate analyses.
- The key challenge for all multivariate approaches is the high dimensionality of multivariate brain data.

Models & terminology

Prediction or inference?

- The goal of **prediction** is to maximize the accuracy with which brain states can be decoded from fMRI data.
- The goal of inference is to decide between competing hypotheses about structurefunction mappings in the brain. Typically: compare a model that links distributed neuronal activity to a cognitive state with a model that does not.

Encoding or decoding?
 Univoxel or multivoxel?
 Classification or regression?

Models & terminology

Encoding or decoding?

- An encoding model (or generative model) relates context (independent variable) to brain activity (dependent variable).
- A decoding model (or recognition model) relates brain activity (independent variable) to context (dependent variable).

Univoxel or multivoxel?

- In a univoxel model, brain activity is the signal measured in one voxel. (Special case: mass-univariate.)
- In a multivoxel model, brain activity is the signal measured in many voxels.

Regression or classification?

- □ In a **regression** model, the dependent variable is continuous.
- In a classification model, the dependent variable is categorical (typically binary).

 $g: X \to Y$

 $h: Y \to X$

 $Y \in \mathfrak{R}$

 $Y \in \Re^n, n \gg v$

e.g., $Y \in \Re^n$ or $X \in \Re$ e.g., $X \in \{-1, +1\}$

2 Classification

Classification

Most classification algorithms are based on a **linear** model that discriminates the two classes.

If the data are not linearly separable, a **nonlinear** classifier may still be able to tell different classes apart.

here: discriminative point classifiers

Training and testing

- We need to train and test our classifier on separate datasets. Why?
 - Using the same examples for training and testing means overfitting may remain unnotived, implying an optimistic accuracy estimate.
 - Instead, what are interested in is generalizability: the ability of our algorithm to correctly classify previously unseen examples.
- An efficient splitting procedure is **cross-validation**.

Target questions for decoding studies

(b) Spatial pattern localization

(d) Pattern characterization

Inferring a representational space and extrapolation to novel classes

Brodersen et al. 2009 The New Collection

Herefore the second sec

Overall classification is about achieving maximal prediction performance.

Performance evaluation – example

 Given 100 trials, leave-10-out cross-validation, we measure performance by counting the number of correct predictions on each fold:

• How likely is it be to get 64 out of 100 correct we had been guessing?

$$p = P(N_{correct} \ge 64) = 1 - \sum_{k=1}^{64-1} {\binom{100}{i}} \times 0.5^k \times 0.5^{100-k}$$
$$= 0.00176$$

 Thus, we have made a Binomial assumption about the Null model to show that our result is statistically significant at the 0.05 level.

The support vector machine

- () Let a construct the second sec
- Intuitively, the support vector machine finds a hyperplane that maximizes the margin between the plane and the nearest examples on either side.
- For nonlinear mappings, the kernel converts a low-dimensional nonlinear problem into a high-dimensional linear problem.

Temporal feature extraction

Here and the first state of the state of the

Deconvolved BOLD signal

 \rightarrow result: one beta value per trial, phase, and voxel

(b) Spatial information mapping

METHOD 1 Consider the entire brain, and find out which voxels are jointly discriminative

 e.g., based on a classifier with a constraint on sparseness in features Hampton & O'Doherty 2007; Grosenick et al. 2008, 2009

METHOD 2 At each voxel, consider a small local environment, and compute a distance score

- e.g., based on a CCA
 Nandy & Cordes 2003 Magn. Reson. Med.
- e.g., based on a classifier
- e.g., based on Euclidean distances
- e.g., based on Mahalanobis distances
 Kriegeskorte et al. 2006, 2007a, 2007b
 Serences & Boynton 2007 J Neuroscience
- e.g., based on the mutual information

(b) Spatial information mapping

 Image: Second second

Example 1 – decoding whether a subject will switch or stay

Hampton & O'Doherty 2007 PNAS

Example 2 – decoding which option was chosen

Brodersen et al. 2009 HBM

Example – decoding which button was pressed

 \bigcirc

(c) Pattern characterization

Example – decoding which vowel a subject heard, and which speaker had uttered it

fingerprint plot (one plot per class)

Formisano et al. 2008 Science

Limitations

- Constraints on experimental design
 - \Box When estimating trial-wise Beta values, we need longer ITIs (typically 8 15 s).
 - □ At the same time, we need many trials (typically 100+).
 - □ Classes should be balanced.
- Computationally expensive
 - □ e.g., fold-wise feature selection
 - □ e.g., permutation testing
- Classification accuracy is a surrogate statistic
- Classification algorithms involve many heuristics

3 Multivariate Bayesian decoding

Multivariate Bayesian decoding (MVB)

- Multivariate analyses in SPM are not implemented in terms of the classification schemes outlined in the previous section.
- Instead, SPM brings classification into the conventional inference framework of hierarchical models and their inversion.
- MVB can be used to address two questions:
 - Overall classification using a cross-validation scheme (as seen earlier)
 - Inference on different forms of structure-function mappings –

e.g., smooth or sparse coding (new)

Model

Empirical priors on voxel weights

- Decoding models are typically ill-posed: there is an infinite number of equally likely solutions. We therefore require constraints or priors to estimate the voxel weights β.
- SPM specifies several alternative coding hypotheses in terms of empirical spatial priors on voxel weights.

 $\operatorname{cov}(\beta) = U\Sigma^{\eta}U^{T}$ Null: $U = \emptyset$ Spatial vectors: U = ISmooth vectors: $U(\vec{x}_{i}, \vec{x}_{j}) = \exp(-\frac{1}{2}(\vec{x}_{i} - \vec{x}_{j})^{2}\sigma^{-2})$ Singular vectors: $UDV^{T} = RY^{T}$ Support vectors: $U = RY^{T}$

Friston et al. 2008 NeuroImage

- MVB can be illustrated using SPM's attention-to-motion example dataset. Buechel & Friston 1999 Cerebral Cortex Friston et al. 2008 NeuroImage
- This dataset is based on a simple block design. Fach block is a combination of some of the following three factors:
 - photic - there is some visual stimulus
 - there is motion motion
 - subjects are paying attention attention
- We form a design matrix by convolving box-car functions with a canonical haemodynamic response function.

design matrix

SPM8 (kbroders): Menu	
Spatial pre-processing Realign (Es Slice timing Smoo	SPM8 (kbroders): SPM/E): Besults
Coregister • Normalise (• Segme	Design
Model specification, review and estimation	b congin
Specify 1st-level Review	
Specify 2nd-level Estimate	
Inference Results	
Dynamic Causal Modelling	
SPM for functional MRI	
Display Check Reg Render FMR	
Toolbox: PPIs ImCalc DIC	
Help Utils 👻 Ratch	
(r) 1991,1994-2003,2005-2009	
	p-values Multivariate Display
	whole brain eigenvar CVA plot
	current cluster multivariate Bayes overlays 👻
	small volume compare m cross-valid save
	Hemodynamics clear exit 21
	co-ordinates statistic
	x = 45.00 $x = -69.00$ $z = -6.00$

 MVB-based predictions closely match the observed responses. But crucially, they don't perfectly match them. Perfect match would indicate overfitting.

 The highest model evidence is achieved by a model that recruits 4 partitions. The weights attributed to each voxel in the sphere are sparse and multimodal. This suggests sparse coding.

4 Further model-based approaches

Challenges for all decoding approaches

- Challenge 1 feature selection and weighting to make the ill-posed many-to-one mapping tractable
- Challenge 2 neurobiological interpretability of models to improve the usefulness of insights that can be gained from multivariate analysis results

Further model-based approaches (1)

- Approach 1 identification (inferring a representational space)
 - 1. estimation of an encoding model
 - 2. nearest-neighbour classification or voting

Further model-based approaches (2)

- □ Approach 2 reconstruction / optimal decoding
 - 1. estimation of an encoding model
 - 2. model inversion

Paninski et al. 2007 *Progr Brain Res* Pillow et al. 2008 *Nature*

Miyawaki et al. 2009 Neuron

Further model-based approaches (3)

Summary

- Multivariate analyses can make use of information jointly encoded by several voxels and may therefore offer higher sensitivity than mass-univariate analyses.
- There is some confusion about terminology in current publications.
 Remember the distinction between prediction vs. inference, encoding vs. decoding, univoxel vs. multivoxel, and classification vs. regression.
- The main target questions in classification studies are (i) pattern discrimination, (ii) spatial information mapping, (iii) temporal information mapping, and (iv) pattern characterization.
- Multivariate Bayes offers an alternative scheme that maps multivariate patterns of activity onto brain states within the conventional statistical framework.
- The future is likely to see more model-based approaches.

5 Supplementary slides

The most common multivariate analysis is classification

- Classification is the most common type of multivariate fMRI analysis to date. By classification we mean: to decode a categorical label from multivoxel activity.
- Lautrup et al. (1994) reported the first classification scheme for functional neuroimaging data.
- Classification was then reintroduced by Haxby et al. (2001). In their study, the overall spatial pattern of activity was found to be more informative in distinguishing object categories than any brain region on its own.

Haxby et al. 2001 Science

Temporal unit of classification

- The temporal unit of classification specifies the amount of data that forms an individual example. Typical units are:
 - \Box one trial \rightarrow trial-by-trial classification
 - □ one block \rightarrow block-by-block classification
 - \Box one subject \rightarrow across-subjects classification
- Choosing a temporal unit of classification reveals a trade-off:
 - smaller units mean noisier examples but a larger training set
 - □ larger units mean cleaner examples but a smaller training set
- The most common temporal unit of classification is an individual trial.

Temporal unit of classification

Brodersen, Hunt, Walton, Rushworth, Behrens 2009 HBM

Alternative temporal feature extraction

Interpolated raw BOLD signal

 \rightarrow result: any desired number of sampling points per trial and voxel

Alternative temporal feature extraction

Deconvolved BOLD signal, expressed in terms of 3 basis functions

- Step 1: sample many HRFs from given parameter intervals
- Step 2: find set of 3 orthogonal basis functions that can be used to approximate the sampled functions
- → result: three values per trial, phase, and voxel

Classification of methods for feature selection

- A priori structural feature selection
- A priori functional feature selection
- Fold-wise univariate feature selection
 - □ Scoring
 - Choosing a number of features
- Fold-wise multivariate feature selection
 - Filtering methods
 - Wrapper methods
 - Embedded methods
- Fold-wise hybrid feature selection
 - Searchlight feature selection
 - Recursive feature elimination
 - Sparse logistic regression
- Unsupervised feature-space compression

Training and testing a classifier

Training phase

□ The classifier is given a set of *n* labelled training samples

 $S_{train} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

from some data space $X^d \times \{-1, 1\}$, where

- x_i = (x₁,..., x_d) is a *d*-dimensional attribute vector
 y_i ∈ {-1, 1} is its corresponding class.
- The goal of the learning algorithm is to find a function that adequately describes the underlying attributes/class relation.
- □ For example, a *linear* learning machine finds a function $f_{w,b}(x) = \langle w \cdot x \rangle + b$ which assigns a given point **x** to the class $\hat{y} = \text{sgn}(f_{w,b}(x))$

such that some performance measure is maximized, for example:

 $(w,b) = \arg\max_{w,b} \sum_{i=1}^{n} y_i \ \hat{y}_i$

Training and testing a classifier

Test phase

□ The classifier is now confronted with a test set of *unlabelled* examples

$$S_{test} = \{x_1, \dots, x_k\}$$

and assigns each example x to an estimated class

 $\hat{y} = \operatorname{sgn}(f_{w,b}(x))$

 We could then measure generalization performance in terms of the relative number of correctly classified test examples:

$$acc = \frac{\sum_{i=1}^{k} 1_{\hat{y}_i = y_i}}{k}$$

The support vector machine

- Nonlinear prediction problems can be turned into linear problems by using a nonlinear projection of the data onto a high-dimensional feature space.
- **•** This technique is used by a class of prediction algorithms called **kernel machines**.
- **•** The most popular kernel method is the **support vector machine** (SVM).
 - □ SVMs make training and testing computationally efficient.

 $\min_{\boldsymbol{w},b} \langle \boldsymbol{w}, \boldsymbol{w} \rangle + C \sum_{i=1}^{n} \xi_i$

s.t.
$$\xi_i \ge 1 - y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \quad \forall i = 1, \dots, n$$

$$\xi_i \ge 0$$
,

We can easily reconstruct feature weights:

$$\boldsymbol{w} = \sum_{i=1}^{n} y_i \alpha_i \boldsymbol{x}_i$$

□ However, SVM predictions do not have a probabilistic interpretation.

Multivariate Bayes – maximization of the model evidence

Multivariate Bayes – example

- MVB can be illustrated using SPM's attention-to-motion example dataset.
 Buechel & Friston 1999 Cerebral Cortex
 Friston et al. 2008 NeuroImage
- This dataset is based on a simple block design. Each block belongs to one of the following conditions:
 - □ fixation − subjects see a fixation cross
 - □ static − subjects see stationary dots
 - □ no attention − subjects see moving dots
 - □ attention − subjects monitor moving dots for changes in velocity
- We wish to decode whether or not subjects were exposed to motion. We begin by recombining the conditions into three orthogonal conditions:
 - □ photic − there is some form of visual stimulus
 - □ motion − there is motion
 - attention subjects are required to pay attention

Further model-based approaches

Approach 1 – identification (inferring a representational space)

(3) Select the image (\bigstar) whose predicted brain activity is most similar to the measured brain activity

Further reading

On classification

- Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. *NeuroImage*, 45(1, Supplement 1), S199-S209.
- O'Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data. *Journal of Cognitive Neuroscience*, 19(11), 1735-1752.
- Haynes, J., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523-534.
- Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. *Trends in Cognitive Sciences*, 10(9), 424-30.

On multivariate Bayesian decoding

Friston, K., Chu, C., Mourao-Miranda, J., Hulme, O., Rees, G., Penny, W., et al. (2008).
 Bayesian decoding of brain images. *NeuroImage*, *39*(1), 181-205.