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Structural, functional & effective connectivity

• anatomical/structural connectivity
= presence of axonal connections

• functional connectivity 
= statistical dependencies between regional time series

• effective connectivity 
= causal (directed) influences between neurons or neuronal populations

Sporns 2007, Scholarpedia



Anatomical connectivity

Definition: 
presence of axonal connections

• neuronal  communication via 
synaptic contacts

• Measured with

– tracing techniques

– diffusion tensor imaging (DTI)



Knowing anatomical connectivity is not enough...

• Context-dependent recruiting of 
connections :
– Local functions depend on network activity

• Connections show synaptic plasticity
– change in the structure and transmission 

properties of a synapse
– even at short timescales

Look at functional and effective 
connectivity



Definition: statistical dependencies between regional time series

• Seed voxel correlation analysis

• Coherence analysis

• Eigen-decomposition (PCA, SVD)

• Independent component analysis (ICA)

• any technique describing statistical dependencies amongst 
regional time series

Functional connectivity



Seed-voxel correlation analyses
• hypothesis-driven choice of a seed 

voxel 
• extract reference time series
• voxel-wise correlation with time series 

from all other voxels

Helmich R C et al. Cereb. Cortex 2009



Pros & Cons of functional connectivity analysis 

• Pros:
– useful when we have no experimental control over 

the system of interest and no model of what caused 
the data (e.g. sleep, hallucinations, etc.)

• Cons:
– interpretation of resulting patterns is difficult / arbitrary 
– no mechanistic insight
– usually suboptimal for situations where we have a 

priori knowledge / experimental control

Effective connectivity



Effective connectivity
Definition: causal (directed) influences between neurons or 

neuronal populations

• In vivo and in vitro stimulation and recording
•
•
•
•
• Models of causal interactions among neuronal populations

– explain regional effects in terms of interregional connectivity



Some models for computing effective connectivity 
from fMRI data

• Structural Equation Modelling (SEM) 
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000

• regression models 
(e.g. psycho-physiological interactions, PPIs)
Friston et al. 1997

• Volterra kernels 
Friston & Büchel 2000

• Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

• Dynamic Causal Modelling (DCM)
bilinear: Friston et al. 2003;   nonlinear: Stephan et al. 2008



Psycho-physiological interaction (PPI)

• bilinear model of how the psychological context A changes the 
influence of area B on area C :

B x A → C
• Replace a (main) effect with the timeseries of a voxel showing that 

effect
• A PPI corresponds to differences in regression slopes for different 

contexts.

Friston et al. 1997, NeuroImage
Büchel & Friston 1997, Cereb. Cortex
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Pros & Cons of PPIs
• Pros:

– given a single source region, we can test for its context-
dependent connectivity across the entire brain

– easy to implement

• Cons:
– only allows to model contributions from a single area 
– operates at the level of BOLD time series*
– ignores time-series properties of the data

DCM needed for more robust statements of effective connectivity.



Overview

• Brain connectivity: types & definitions

• Dynamic causal models (DCMs)
– Basic idea
– Neural level
– Hemodynamic level
– Preview: priors & inference on parameters and models

• Practical examples



Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways

– Temporal dependency of activity within and between areas (causality)



Temporal dependence and causal relations

Seed voxel approach, PPI etc. Dynamic Causal Models

timeseries (neuronal activity)



Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways

– Temporal dependency of activity within and between areas (causality)

– Separate neuronal activity from observed BOLD responses



• Cognitive system is modelled at its underlying 
neuronal level (not directly accessible for fMRI).

• The modelled neuronal dynamics (z) are 
transformed into area-specific BOLD signals (y) by 
a hemodynamic model (λ).

λ

z

y
The aim of DCM is to estimate parameters 
at the neuronal level such that the modelled 
and measured BOLD signals are 
maximally* similar.

Basics of DCM: Neuronal and BOLD level



The neuronal system

State changes of the system 
states are dependent on:

– the current state z
– external inputs u
– its connectivity θ

A System is a set of elements zn(t) which interact in a spatially and 
temporally specific fashion

),,( θuzF
dt
dz

=

z1 z2 z3

System states zt

Connectivity parameters θ

Inputs ut
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Integration of a first-order linear differential equation gives an
exponential function:

If z1z2 is 0.10 s-1 this means 
that, per unit time, the increase 
in activity in z2 corresponds to 
10% of the activity in z1z2
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Linear dynamics: 2 nodes
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activity in z2 is 
coupled to z1 via 
coefficient a21
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Neurodynamics: 2 nodes with input
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Neurodynamics: 2 nodes with input

activity in z2 is 
coupled to z1 via 
coefficient a21
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Modulatory input 
u2 activity through 
coefficient a21
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Neurodynamics: positive modulation

Modulatory input 
u2 activity through 
coefficient a21

u1

u2 z1

z2 1
2

1
2
21

2
2

1

212

1

00
00

1
01

u
c

z
z

b
u

z
z

a
s

z
z









+
















+
















−

−
=












21a



Bilinear neural state equation in DCM for fMRI
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Neurodynamics: reciprocal connections

reciprocal 
connection
disclosed by u2
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• Cognitive system is modelled at its underlying 
neuronal level (not directly accessible for fMRI).

• The modelled neuronal dynamics (x) are 
transformed into area-specific BOLD signals (y) by 
a hemodynamic model (λ).

λ

x

y

Basics of DCM: 
Neuronal and BOLD level



0 20 40 60

0
2
4

0 20 40 60

0
2
4

seconds

Haemodynamics: reciprocal connections

blue: neuronal activity
red: bold response

h(u,θ) represents the modelled 
BOLD response (balloon model) 
to inputs in this network 

BOLD

(without noise)

BOLD

(without noise)

h1

h2

u1

u2 z1

z2



0 20 40 60

0
2
4

0 20 40 60

0
2
4

seconds

Haemodynamics: reciprocal connections

BOLD

with 

Noise added

BOLD

with 

Noise added

y1

y2

u1

u2 z1

z2

euhy += ),( θ

y represents simulated 
observation of BOLD response, 
i.e. includes noise



The hemodynamic “Balloon” model
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NeuroImage
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Region-specific 
HRFs!

• 3 hemodynamic 
parameters:

• important for model 
fitting, but of no interest 
for statistical inference

• Computed separately for 
each area → region-
specific HRFs!



endogenous 
connectivity

direct inputs

modulation of
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Measured vs Modelled BOLD signal

Recap
The aim of DCM is to estimate
- neural parameters {A, B, C}
- hemodynamic parameters 
such that the modelled and measured 
BOLD signals are maximally similar.
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Overview

• Brain connectivity: types & definitions

• Functional connectivity

• Psycho-physiological interactions (PPI)

• Dynamic causal models (DCMs)
– Basic idea
– Neural level
– Hemodynamic level
– Preview: priors & inference on parameters and models

• Practical examples



Bayesian statistics

)()|()|( θθθ pypyp ∝
posterior       ∝ likelihood    ∙  prior

)|( θyp )(θp

Express our prior knowledge or “belief” about parameters of the model

new data prior knowledge

Parameters governing
• Hemodynamics in a single region
• Neuronal interactions

Constraints (priors) on
• Hemodynamic parameters

- empirical 

• Self connections
-principled

• Other connections
- shrinkage



Inference about DCM parameters:

Bayesian single subject analysis

• The model parameters are 
distributions that have a mean ηθ|y
and covariance Cθ|y.

– Use of the cumulative normal 
distribution to test the probability 
that a certain parameter is above a 
chosen threshold γ:

 γ ηθ|y

Classical frequentist test across Ss

• Test summary statistic: mean ηθ|y

– One-sample t-test: Parameter > 0?

– Paired t-test:
parameter 1 > parameter 2? 

Bayesian model averaging



Overview

• Brain connectivity: types & definitions

• Dynamic causal models (DCMs)

• Practical examples
– Design of experiments and models
– Simulating data



Planning a DCM-compatible study

• Suitable experimental design:
– any design that is suitable for a GLM 
– preferably multi-factorial (e.g. 2 x 2)

• e.g. one factor that varies the driving (sensory) input
• and one factor that varies the contextual input

• Hypothesis and model:
– Define specific a priori hypothesis
– Which parameters are relevant to test this hypothesis?
– If you want to verify that intended model is suitable to test this hypothesis, 

then use simulations
– Define criteria for inference
– What are the alternative models to test?



Multifactorial design: 
explaining interactions with DCM

Task factor
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DCM

Let’s assume that an SPM analysis 
shows a main effect of stimulus in z1
and a stimulus × task interaction in 
z2.  

How do we model this using DCM?
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DCM roadmap
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So, DCM….
• enables one to infer hidden neuronal processes from fMRI data

• tries to model the same phenomena as a GLM

– explaining experimentally controlled variance in local responses

– based on connectivity and its modulation

• allows one to test mechanistic hypotheses about observed effects

• is informed by anatomical and physiological principles.

• uses a Bayesian framework to estimate model parameters

• is a generic approach to modeling experimentally perturbed dynamic 
systems.

– provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

– DCM is not model or modality specific (Models will change and the method 
extended to other modalities e.g. ERPs)



Some useful references
• The first DCM paper: Dynamic Causal Modelling (2003).  Friston et al. 

NeuroImage 19:1273-1302. 

• Physiological validation of DCM for fMRI: Identifying neural drivers with 
functional MRI: an electrophysiological validation (2008). David et al. PLoS 
Biol. 6 2683–2697

• Hemodynamic model: Comparing hemodynamic models with DCM (2007). 
Stephan et al. NeuroImage 38:387-401

• Nonlinear DCMs:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan 
et al. NeuroImage 42:649-662

• Two-state model: Dynamic causal modelling for fMRI: A two-state model 
(2008). Marreiros et al. NeuroImage 39:269-278

• Group Bayesian model comparison: Bayesian model selection for group 
studies (2009). Stephan et al. NeuroImage 46:1004-10174

• 10 Simple Rules for DCM (2010). Stephan et al. NeuroImage 52.



Thank you for your attention
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