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Overview of SPM 

Realignment Smoothing 

Normalisation 

General linear model 

Statistical parametric map (SPM) Image time-series 

Parameter estimates 

Design matrix 

Template 

Kernel 

Gaussian  
field theory 

p <0.05 

Statistical 
inference 



Passive word 
listening 
versus rest 

7 cycles of  
rest and listening 

Blocks of 6 scans 
with 7 sec TR 

Question: Is there a change in the BOLD response 
between listening and rest? 

Stimulus function 

One session 

A very simple fMRI experiment 



stimulus 
function 

1. Decompose data into effects and 
error 

2. Form statistic using estimates of 
effects and error 

Make inferences about effects of interest Why? 

How? 

data linear 
model 

effects 
estimate 

error 
estimate 

statistic 

Modelling the measured data 



BOLD signal 
Tim

e 
single voxel 
time series 

Voxel-wise time series analysis 

model 
specification 
parameter 
estimation 
hypothesis 

statistic 

SPM 



BOLD signal 
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Single voxel regression model 
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Mass-univariate analysis: voxel-wise GLM 
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Model is specified by 
1. Design matrix X 
2. Assumptions about e 

N: number of scans 
p: number of regressors 

eXy += β

The design matrix embodies all available knowledge about 
experimentally controlled factors and potential confounds. 
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GLM assumes Gaussian “spherical” (i.i.d.) errors 

sphericity = i.i.d. 
error covariance is 
scalar multiple of 
identity matrix: 
Cov(e) = σ2I 
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Examples for non-sphericity: 

non-identity 

non-independence 



Parameter estimation 

eXy += β
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Ordinary least squares 
estimation (OLS) 

(assuming i.i.d. error): 
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Objective: 
estimate parameters 
to minimize ∑

=

N

t
te

1

2

y X 



y 
e 

Design space 
defined by X 

x1 

x2 

A geometric perspective on the GLM 

PIR
Rye

−=
=

β̂ˆ Xy =

yXXX TT 1)(ˆ −=β

TT XXXXP
Pyy

1)(

ˆ
−=

=

Residual forming 
matrix R 

Projection matrix P 

OLS estimates 



Deriving the OLS equation 
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Correlated and orthogonal regressors 

When x2 is orthogonalized with 
regard to x1, only the parameter 
estimate for x1 changes, not that 
for x2! 

Correlated regressors =  
explained variance is shared 
between regressors 
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What are the problems of this model? 

1. BOLD responses have a delayed 
and dispersed form. HRF 

2. The  BOLD signal includes substantial amounts of low-
frequency noise. 

3. The data are serially correlated (temporally autocorrelated)  
→  this violates the assumptions of the noise model in 
  the GLM 



∫ −=⊗
t

dtgftgf
0

)()()( τττ

The response of a linear time-invariant (LTI) system is the convolution of the input 
with the system's response to an impulse (delta function). 

Problem 1: Shape of BOLD response 
Solution: Convolution model 

hemodynamic 
response 
function 
(HRF) 

expected BOLD response  
= input function ⊗ impulse response function (HRF) 



Convolution model of the BOLD response 

Convolve stimulus function with 
a canonical hemodynamic 
response function (HRF): 

 ⊗ HRF 
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Problem 2: Low-frequency noise  
Solution: High pass filtering 

SeSXSy += β

discrete cosine 
transform (DCT) set 

S = residual forming matrix of DCT set 



High pass filtering: example 

blue =  data 
black =  mean + low-frequency drift 
green =  predicted response, taking into account 
 low-frequency drift 
red =  predicted response, NOT taking into 
 account low-frequency drift 
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1st order autoregressive process: AR(1) 
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Problem 3: Serial correlations 



Dealing with serial correlations 

• Pre-colouring: impose some known autocorrelation structure on 
the data (filtering with matrix W) and use Satterthwaite correction 
for df’s. 

• Pre-whitening:  
 

1. Use an enhanced noise model with multiple error covariance 
components, i.e. e ~ N(0, σ2V) instead of e ~ N(0, σ2I).  
 

2. Use estimated serial correlation to specify filter matrix W for 
whitening the data. 

WeWXWy += β



How do we define W ? 

• Enhanced noise model 

 

• Remember linear transform  
for Gaussians 

 

• Choose W such that error  
covariance becomes spherical 

 

• Conclusion: W is a simple function of V  
 ⇒ so how do we estimate V ? 

WeWXWy += β
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Estimating V: 
Multiple covariance components 
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Estimation of hyperparameters λ with ReML (restricted maximum 
likelihood). 

V 

enhanced noise model error covariance components Q 
and hyperparameters λ 



Contrasts & 
statistical parametric maps 

Q: activation during 
listening ? 

c = 1 0 0 0 0 0 0 0 0 0 0 

Null hypothesis: 01 =β
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WeWXWy += β

c = 1 0 0 0 0 0 0 0 0 0 0 

)ˆ(ˆ
ˆ

β
β
T

T

cdts
ct =

cWXWXc

cdts
TT

T

++

=

)()(ˆ

)ˆ(ˆ

2σ

β

( )
)(

ˆ
ˆ

2

2

Rtr
WXWy∑ −

=
β

σ

ReML-
estimates 

WyWX += )(β̂

)(2

2/1

eCovV
VW

=

= −

σ
+−= )(WXWXIRX

t-statistic based on ML estimates 
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For brevity: 



• head movements 

• arterial pulsations (particularly bad in brain stem) 

• breathing 

• eye blinks (visual cortex) 

• adaptation effects, fatigue, fluctuations in concentration, etc. 

Physiological confounds 



Outlook: further challenges 

• correction for multiple comparisons 

• variability in the HRF across voxels 

• slice timing 

• limitations of frequentist statistics 
→ Bayesian analyses 

• GLM ignores interactions among voxels 
→ models of effective connectivity 

These issues are discussed in future lectures. 



Correction for multiple comparisons 

• Mass-univariate approach:  
We apply the GLM to each of a huge number of voxels (usually > 
100,000). 

• Threshold of p<0.05 → more than 5000 voxels significant by 
chance! 

• Massive problem with multiple comparisons!  

• Solution: Gaussian random field theory 



Variability in the HRF 

• HRF varies substantially across voxels and subjects 

• For example, latency can differ by ± 1 second 

• Solution: use multiple basis functions 

• See talk on event-related fMRI 



Summary 

• Mass-univariate approach: same GLM for each voxel 

• GLM includes all known experimental effects and confounds 

• Convolution with a canonical HRF 

• High-pass filtering to account for low-frequency drifts 

• Estimation of multiple variance components (e.g. to account for 
serial correlations) 
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Supplementary slides 

 



1. Express each function in 
terms of a dummy variable τ. 
 
 
 

2. Reflect one of the functions: 
g(τ)→g( − τ). 

 
 
 
 
3. Add a time-offset, t, which 

allows g(t − τ) to slide along 
the τ-axis. 

4.Start t at -∞ and slide it all the way to +∞. Wherever the 
two functions intersect, find the integral of their product. In 
other words, compute a sliding, weighted-average of 
function f(τ), where the weighting function is g( − τ). 
 
 
The resulting waveform (not shown here) is the convolution 
of functions f and g. If f(t) is a unit impulse, the result of this 
process is simply g(t), which is therefore called the impulse 
response. 

Convolution step-by-step (from Wikipedia): 
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