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Structural, functional & effective connectivity

structural connectivity functional connectivity effective connectivity
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Sporns 2007, Scholarpedia

o anatomical/structural connectivity
presence of axonal connections

o functional connectivity
statistical dependencies between regional time series

o effective connectivity
causal (directed) influences between neurons or neuronal populations




Anatomical connectivity

Presence of axonal connections

Neurotransmitter
Molecules

o neuronal communication via D N6
synaptic contacts

o Measured with

= tracing techniques

= diffusion tensor imaging (DTI)




Knowing anatomical connectivity is not enough...

o Context-dependent recruiting of
connections :

= Local functions depend on network activity

o Connections show synaptic plasticity

= change in the structure and transmission
properties of a synapse

= even at short timescales

Look at functional and effective connectivity




Functional Connectivity

Statistical dependencies between regional time series

o Seed voxel correlation analysis

o Coherence analysis

o Eigen-decomposition (PCA, SVD)

o Independent component analysis (ICA)

o any technique describing statistical dependencies amongst regional
time series




Seed voxel correlation analyses

o hypothesis-driven choice of a seed voxel
o extract reference time series

o voxel-wise correlation with time series from all other voxels

Helmich R C et al. Cereb. Cortex 2009



Functional Connectivity

o Pro

= useful when we have no experimental control over the
system of interest and no model of what caused the data
(e.g. sleep, hallucinations, etc.)

o Con
= jnterpretation of resulting patterns is difficult / arbitrary
= no mechanistic insight

= usually suboptimal for situations where we have a priori
knowledge / experimental control

Effective Connectivity
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Effective Connectivity

Causal (directed) influences between neurons /neuronal populations

o /n vivoand /n vifro stimulation and recording

o Models of causal interactions among neuronal populations

= explain regional effects in terms of /nterregional connectivity
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Models for computing effective connectivity in fMRI data

o Structural Equation Modelling (SEM)
Mclntosh et al. 1991, 1994; Blichel & Friston 1997; Bullmore et al. 2000

o Regression models
(e.g. psycho-physiological interactions, PPIs)
Friston et al. 1997

o Volterra kernels
Friston & Biichel 2000

o Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

o Dynamic Causal Modelling (DCM)
bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008
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Psycho-physiological interactions (PPI)

o Bilinear model of how the psychological context A changes the influence
of areaBonarea C:

BxA—>C

o Replace a (main) effect with the timeseries of a voxel showing that effect

o A PPl corresponds to differences in regression slopes for different
contexts.
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Psycho-physiological interactions (PPI)

o Pro

= given a single source region, we can test for its context-dependent
connectivity across the entire brain

= easy to implement

o Con

= only allows to model contributions from a single area
= operates at the level of BOLD time series*
= jgnores time-series properties of the data *

* To be explained ©

DCM for more robust statements of effective connectivity
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Overview

Brain Connectivity: types & definitions

Dynamic Causal Modelling — in practice
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DCM: the basics

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical
pathways

— Temporal dependency of activity within and between areas (causality)
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Temporal dependence and causal relations

Seed voxel approach, PPI etc. Dynamic Causal Models

XXXXX

timeseries (neuronal activity)
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DCM: the basics

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical
pathways

— Temporal dependency of activity within and between areas (causality)

— Separate neuronal activity from observed BOLD responses
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DCM: Neuronal and hemodynamic level

o Cognitive system is modelled at its underlying
neuronal level (not directly accessible for fMRI).

o The modelled neuronal dynamics (Z) are transformed

into area-specific BOLD signals (Y) by a
hemodynamic model (A).

The aim of DCM is to estimate parameters at the
neuronal level such that the modelled and measured

BOLD signals are maximally* similar
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Neuronal model

o Aim: model temporal evolution of a set of neuronal states z,

System states z
t State changes are dependent on:

/ 1 \ — the current state z
‘ ‘ — external inputs u
— —
— its connectivity 0

Q:F(z,u,é’)

Connectivity parameters 0 t
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Why are DCM parameters rate constants?

Integration of a 15t order linear differential equation gives an exponential function:

Y dg
= ik —p 7, (1) = 2,(0) exp(a,t)

Decay function

If 2,22z, is -0.10 s* this means that,
per unit time, the decrease in

activity in z, corresponds to 10% of

the current activity in z,
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Neurodynamics: 2 nodes with input
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Neurodynamics: 2 nodes with input

ENEEEEE

activity in z,is
Us coupled to z, via
coefficient a,,

. . - 1
L, =ay7l tayl, Z, @ Ay, || £, 0
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Neurodynamics: 2 nodes with input

activity in z,is
Us coupled to z, via
coefficient a,,

2

Z.1 =ay; 4 +C U,
Z.2 =ay 4y T a7,

2 =Az+CuU

6=1{AC}
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Neurodynamics: modulatory input

o f
Modulatory input
u, activity u
through 2
coefficient a,,
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Z.1 = a4 +CpU,

Ly = (a21 "‘ L1+ 89,4,
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Neurodynamics: modulatory input

Modulatory input
u, activity
through
coefficient a,,

Z.1 = a4 +CpU,

: 2
Ly = (a21 + b21u2)41 +3a,,4,
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Neurodynamics: bilinear neural state equation
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DCM: Neuronal and hemodynamic level

o Cognitive system is modelled at its underlying
neuronal level (not directly accessible for fMRI).

. o The modelled neuronal dynamics (Z) are transformed |
: into area-specific BOLD signals (Y) by a :
i hemodynamic model (A). i
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Hemodynamics: reciprocal connections

. (without noise)
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The hemodynamic “Balloon” model

3 hemodynamic
parameters

Important for model
fitting, but of no interest

region-specific HRFs

Friston et al. 2000, Neurolmage
Stephan et al. 2007, Neurolmage

y(t) = A(v.0)
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DCM for fMRI: the full picture

n @@~

hemodynamic
model

uronal states
integration

modulatory
input u,(t)

driving >t

input u,(t)
“I“ >t

Stephan & Friston (2007), Handbook of Brain Connectivity




Modelled and measured BOLD signal

Recap
The aim of DCM is to estimate

- neural parameters {A, B, C}

- hemodynamic parameters

such that the and
BOLD signals are maximally

200 400 600 00 1000 1200 1400 1600 1800 2000
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Bayesian statistics: Priors in DCM

I Express our prior knowledge or “belief” about parameters of the model

posterior oc likelihood - prior Parameters governing

p(g ‘ y) oC p(y ‘ 9)p(9) o Hemodynamics in a single region

o Neuronal interactions

new data prior knowledge
Constraints (priors) on
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Inference about DCM parameters

Bayesian single subject analysis Classical frequentist test across Ss
The model parameters are Test summary statistic: mean 7,
distributions that have a mean _ One-sample t-test: Parameter >
Ngy @nd covariance Cy, 0?
— Use of the cumulative normal — Paired t-test:
distribution to test the parameter 1 > parameter 27

probability that a certain
parameter is above a chosen
threshold v:

N | Bayesian model averagin
v /l\r]ely | | Y ging

0 01 02! 03 04 05 068 07
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Overview

Brain Connectivity: types & definitions

I Dynamic Causal Modelling —in theory
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Planning a DCM compatible study

Suitable experimental design:

any design that is suitable for a GLM
preferably multi-factorial (e.g. 2 x 2)

= e.g.one factor that varies the driving (sensory) input

= and one factor that varies the contextual input

Hypothesis and model:

Nefine cnecific A nrinri hy
| A WS NN A Jr.l\—\.alll\.aulylllu 1

N
iy M i

are the alternative models?

—t

Define model space: Wha
Define criteria for inference
= Which parameters are relevant to test your hypothesis?

If you want to verify that intended model is suitable to test this hypothesis, use
simulations
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Multifactorial design: explaining interactions with DCM

Stimulus factor

Task factor

Task A Task B
E A1 B
(@p)]
(Q\|
E
= A2 B2

Let’'s assume that an SPM analysis
shows a main effect of stimulus in z,

and a stimulus x task interaction in z..

How do we model this using DCM?

Stim1/ Stim2/
Task A Task A
0o
Stim 1/ Stim 2/
Task B Task B

Stim1

Task A TaskB
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Simulation
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An Example: Brain Connectivity in Synesthesia

o Specific sensory stimuli lead to unusual, additional experiences
o Grapheme-color synesthesia: color
o Involuntary, automatic; stable over time, prevalence ~4%

o Potential cause: aberrant cross-activation between brain areas
= grapheme encoding area
= colorarea V4

= superior parietal lobule (SPL)

Hubbard, 2007

Can changes in effective connectivity explain synesthesia activity in V4?

Van Leeuwen et al. 2011 JNeurosci 39



An Example: Brain Connectivity in Synesthesia

Bottom-up Top-down

(Ramachandran & Hubbard, 2007) (Grossenbacher & Lovelace, 2007)
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G CG

Projectors z Associators
ABC
: ¥
ABC

0

0 0.2 04 |
Bottom-up Top-down

Effective connectivity determines conscious experiences...!
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Summary: DCM Roadmap

Haemodynamics
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Some useful references

e 10 Simple Rules for DCM (2010). Stephan et al. Neurolmage 52.

® The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. Neurolmage 19:1273-
1302.

e Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an
electrophysiological validation (2008). David et al. PLoS Biol. 6 2683—2697

e Hemodynamic model: Comparing hemodynamic models with DCM (2007). Stephan et al.
Neurolmage 38:387-401

e Nonlinear DCM:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al.
Neurolmage 42:649-662

e Two-state DCM: Dynamic causal modelling for fMRI: A two-state model (2008). Marreiros et
al. Neurolmage 39:269-278

e Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011). Li et al.
Neurolmage 58:442-457.

e Bayesian model comparison: Comparing families of dynamic causal models (2010). Penny et
al. PLoS Comput Biol. 6(3):e1000709.
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