Dynamic Causal Modelling

SPM for MRI Course, October 2017

Peter Zeidman Wellcome Trust Centre for Neuroimaging, University College London

Learning Objectives

By the end of today, you should be able to:

- 1. Place DCM in the fMRI analysis pipeline
- 2. State the difference between structural, functional and effective connectivity
- 3. Explain how a generative model helps to separate the BOLD signal into neuronal activity (effective connectivity), haemodynamics and noise.
- 4. Explain the interpretation of the parameters in the neuronal formula in DCM for fMRI
- 5. Explain how parameter estimates and the log model evidence are used to test hypotheses

Contents

- Overview of DCM
 - Effective connectivity, DCM framework, generative models
- Specific models for fMRI
 - Neural model, haemodynamic model
- Bayesian inference
 - Model inversion, parameter inference

Contents

Overview of DCM

- Effective connectivity, DCM framework, generative models
- Specific models for fMRI
 - Neural model, haemodynamic model
- Bayesian inference
 - Model inversion, parameter inference

Dynamic Causal Modelling

is a framework

for inferring systems / effective connectivity

in the brain

The system of interest

Experimental Stimulus

(Hidden) Neural Activity

Observations (BOLD)

?

Stimulus from Buchel and Friston, 1997 Brain by Dierk Schaefer, Flickr, <u>CC 2.0</u>

Connectivity

Structural Connectivity

Physical connections of the brain

Functional Connectivity

Dependencies between BOLD observations

Effectivity Connectivity

Causal relationships between brain regions

"Connectome" by jgmarcelino. CC 2.0 via Wikimedia Commons Figure 1, Hong et al. 2013 PLOS ONE. KE Stefan, SPM Course 2011

Where DCM sits in the pipeline

(-	
Ea	
4	
IT	

Functional MRI acquisition and image reconstruction Image preprocessing (realignment, coregistration, normalisation, smoothing) Statistical Parameter Mapping (SPM) / General Linear Model

Dynamic Causal Modelling (DCM)

Timeseries extraction from Regions of Interest (ROIs)

DCM Framework

How brain activity **z** changes over time

$$\dot{z} = f(z, u, \theta^n)$$

What we would see in the scanner, y, given the neural model?

 $y = g(z, \theta^h)$

Stimulus from Buchel and Friston, 1997 Figure 3 from Friston et al., Neuroimage, 2003 Brain by Dierk Schaefer, Flickr, <u>CC 2.0</u>

DCM Framework

Stimulus from Buchel and Friston, 1997 Figure 3 from Friston et al., Neuroimage, 2003 Brain by Dierk Schaefer, Flickr, <u>CC 2.0</u>

DCM Framework

DCM Framework

Model 1:

Model comparison: Which model best explains my observed data?

Model 2:

DCM Framework

1. We embody each of our hypotheses in a generative model.

The generative model separates neural activity from haemodynamics

- 2. We perform model estimation (inversion) This identifies parameters $\theta = \{\theta^n, \theta^h\}$ which make the model best fit the data. (Variational EM.)
- 3. We inspect the estimated parameters and / or we compare models to see which best explains the data.

Contents

- Overview of DCM
 - Effective connectivity, DCM framework, generative models
- Specific models for fMRI
 - Neural model, haemodynamic model
- Bayesian inference
 - Model inversion, parameter inference

The Neural Model

The brain activity in each of n regions:

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$

The "response" of these regions is their change over time:

$$\dot{z} = \begin{bmatrix} \dot{z_1} \\ \vdots \\ \dot{z_n} \end{bmatrix} = f(z, u, \theta)$$
Neural response function Parameters (e.g. connection strengths)
Experimental input

The Neural Model

$$\dot{z} = \begin{bmatrix} \dot{z_1} \\ \vdots \\ \dot{z_n} \end{bmatrix} = f(z, u, \theta)$$

Friston et al., Neuroimage, 2003

Friston et al., Neuroimage, 2014

Friston et al., Neuroimage, 2017

The Neural Model

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j)z + Cu$$

Where does this come from?

$$\dot{z} = f(z, u)$$

= $f(z_0, u) + \frac{\delta f}{\delta z} z + \frac{\delta f}{\delta u} u + \frac{\delta^2 f}{\delta z \delta u} uz + \cdots$
 $\approx \left(A + \sum_j B^j u_j\right) + Cu$

Taylor series

The Neural Model

- Subjects viewed moving dots during fMRI
- On some trials, subjects were instructed to pay attention to the speed of the dots' motion
- Question: How does attention to motion change the strength of the connections between V1, V5 and Superior Parietal Cortex?

 $z_1 = (az)$

"How does brain activity, z, change over time?"

 $+ cu_1$

Inhibitory self-connection (Hz). Rate constant: controls rate of decay in region 1. More negative = faster decay.

"How does brain activity, z, change over time?"

Change of activity in V1:

$$\dot{z}_1 = a_{11}z_1 + c_{11}u_1$$

Change of activity in V5:

$$\dot{z}_2 = a_{22}z_2 + a_{21}z_1$$

$$\uparrow \qquad \uparrow$$
Self decay V1 input

"How does brain activity, z, change over time?"

Rows are incoming connections

$$\dot{z} = Az + Cu_1$$

"How does brain activity, z, change over time?"

For m inputs:

a₂₂

Attention u

DCM Framework

How brain activity **z** changes over time

$$\dot{z} = f(z, u, \theta^n)$$

What we would see in the scanner, y, given the neural model?

 $y = g(z, \theta^h)$

Stimulus from Buchel and Friston, 1997 Figure 3 from Friston et al., Neuroimage, 2003 Brain by Dierk Schaefer, Flickr, <u>CC 2.0</u>

The Haemodynamic Model

Contents

- Overview of DCM
 - Effective connectivity, DCM framework, generative models
- Specific models for fMRI
 - Neural model, haemodynamic model
- Bayesian inference

- Model inversion, parameter inference

Bayesian Models

Model estimation

Inverting or estimating the model gives:

1. Posterior probability distribution for each parameter $p(\theta|y,m)$

2. Estimation of the model evidence p(y|m)

$$F \cong \log p(y|m) = \operatorname{accuracy} - \operatorname{complexity}$$

Free energy

Bayes Factors

Assuming the prior probability on each model is equal, two models (i and j) can easily be compared using the Bayes factor B:

Ratio of model evidence
$$B_{ji} = \frac{p(y|m = j)}{p(y|m = i)}$$

Evidence for model *j* relative to *i*

 $B_{ij} = \frac{1}{B_{ji}}$ Evidence for model *i* relative to *j*

Interpretation of Bayes factors			
B _{ij}	$p(m=i y) \ (\%)$	Evidence in favor of model i	
1-3	50-75	Weak	
3-20	75-95	Positive	
20-150	95-99	Strong	
≥150	≥99	Very strong	

Bayes factors can be interpreted as follows. Given candidate hypotheses i and j, a Bayes factor of 20 corresponds to a belief of 95% in the statement 'hypothesis i is true'. This corresponds to strong evidence in favor of i.

From Raftery et al. (1995)

Note: The free energy approximates the log of the model evidence. So the log Bayes factor is:

$$\log B_{ji} = \log p(y|m=j) - \log p(y|m=i) \approx F_j - F_i$$

Bayes Factors cont.

We might like to transform our Bayes factor into a posterior probability for each of models i and j. This is done using Bayes rule (assuming equal priors per model):

Bayesian Model Reduction

Summary

- DCM is a framework which enables us to make inferences about the effective connectivity of brain regions, which we can't directly observe
- We create one or more generative models, each expressing a hypothesis
- We invert the model(s), using Bayesian inference to estimate coupling parameters and the model evidence
- We compare models using Bayesian Model Selection

EXAMPLE

Neuropsychologia 50 (2012) 3621-3635

Research Report

Reading without the left ventral occipito-temporal cortex

Mohamed L. Seghier^{a,*}, Nicholas H. Neufeld^{a,b}, Peter Zeidman^a, Alex P. Leff^a, Andrea Mechelli^c, Arjuna Nagendran^a, Jane M. Riddoch^d, Glyn W. Humphreys^{d,e}, Cathy J. Price^a

^a Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London WC1N 3BG, UK

^b University of Toronto, Toronto, ON, Canada M5S 1A8

^c Institute of Psychiatry, King's College London, London SE5 8AF, UK

^d School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

^e Department of Experimental Psychology, Oxford University, Oxford OX3 9DU, UK

1. Extracted regions of interest. Spheres placed at the peak SPM coordinates from two contrasts:

A. Reading in patient > controlsB. Reading in controls

2. Asked which region should receive the driving input

Bayesian Model Averaging

Seghier et al., Neuropsychologia, 2012

Learning Objectives

By the end of today, you should be able to:

- 1. Place DCM in the fMRI analysis pipeline
- 2. State the difference between structural, functional and effective connectivity
- 3. Explain how a generative model helps to separate the BOLD signal into neuronal activity (effective connectivity), haemodynamics and noise.
- 4. Explain the interpretation of the parameters in the neuronal formula in DCM for fMRI
- 5. Explain how parameter estimates and the log model evidence are used to test hypotheses

Further Reading

The original DCM paper	Friston et al. 2003, Neurolmage	
Descriptive / tutorial papers		
Role of General Systems Theory	Stephan 2004, J Anatomy	
DCM: Ten simple rules for the clinician	Kahan et al. 2013, Neurolmage	
Ten Simple Rules for DCM	Stephan et al. 2010, Neurolmage	
DCM Extensions		
Two-state DCM	Marreiros et al. 2008, Neurolmage	
Non-linear DCM	Stephan et al. 2008, Neurolmage	
Stochastic DCM	Li et al. 2011, <i>NeuroImage</i> Friston et al. 2011, <i>NeuroImage</i> Daunizeau et al. 2012, <i>Front Comput</i> <i>Neurosci</i>	
Post-hoc DCM	Friston and Penny, 2011, <i>NeuroImage</i> Rosa and Friston, 2012, <i>J Neuro Methods</i>	
A DCM for Resting State fMRI	Friston et al., 2014, Neurolmage	

Extras

Inference on Models

We can compare models of single-subject data (DCM)

Or we can compare models of group-level data (Parametric Empirical Bayes, PEB)

Bayesian Model Averaging (BMA)

Having compared models, we can look at the parameters (connection strengths). We average over models, weighted by the posterior probability of each model. This can be limited to models within the winning family.

We marginalise over models *m*:

$$p(\theta|y) = \sum_{m} p(\theta|m, y) p(m|y)$$

SPM does this using sampling

