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Data pre-processing: Overview
Maxfilter 

(MEG - MEGIN)

ICA

Sensor normalization 

(MEG –MEGIN)

Bad channel & 

segment detection

Downsampling

Filtering

Re-referencing

(EEG)



SSS & Maxfell filtering (MEG - MEGIN Neuromag)
• A program provided by MEGIN (but see also MNE-Python)

• Signal-Space Separation (SSS) separates components 
attributable to sources inside a sphere within the sensors array 
(the internal components), and components attributable to 
sources outside of a sphere of sensors.

• Maxwell filtering is a related procedure that omits the higher-order 
components of the internal subspace, which are dominated by 
sensor noise.

MaxFilter User’s Guide
Taulu et al., 2005
Taulu & Kajola, 2005
Taulu & Simola, 2006



SSS & Maxfell filtering (MEG - MEGIN Neuromag)

Jas et al., 2018



MEG - Empty room recording
• Useful for MEG data, especially resting state data

Rier et al., 2022



Impedances - EEG
• Higher impedance = lower SNR

• Impedances up to 10 kΩ are usually acceptable, but values below 5 kΩ are recommended.

Kappenman & Luck, 2010



(Down)Sampling 
Sampling is the conversion of a continuous signal (e.g., brain activation in time & 
space) to a sequence of discrete sample (discretisation). 

Why is it important?

• Digital signal processing can only handle discrete numbers (finite precision).
• Sampling can provide the information necessary while allowing efficient 

processing.



Sampling 
Convenient to sample equidistantly, i.e. neighbouring samples have the same 
'distance to each other

Sampling Rate/Frequency: How densely are samples taken? 
100 samples per second à 100 samples/s à 100 Hz
10 samples per centimetre à 10 samples/cm

Sampling Interval/Distance: How far apart are the samples?
100 Hz à (1/100)*1s = 0.01 s = 10 ms
10 samples/cm à (1/10)*1 cm = 0.1 cm = 1mm 

Sampling depth (quantisation), Sampling range, Resolution/precision



Sampling - Aliasing 

Nyquist – Shannon Sampling Theorem:
If you sample a signal with a sampling rate of X Hz, make sure the signal doesn’t 
contain frequencies above X/2 Hz.

Nyquist Frequency = half of the sampling rate of a discrete signal.

The highest frequency in the signal should be smaller than the Nyquist Frequency.

1s

Signal frequency = 10 Hz
Sampling Frequency = 1000 Hz

Aliased Frequency = 5 Hz
Sampling Frequency = 15 Hz



Filter
• Filters are temporal models that restrict the frequency range of dynamics that are 

observable in a time series.
• We typically use filters to:

§ reduce low frequencies (= high-pass filter; e.g., <1Hz)

§ reduce high frequencies (=low-pass filter; e.g., >90Hz)
§ reduce electrical line noise (=notch filter/band-stop filter; e.g., 50/60Hz)
§ focus on a frequency range of interest (= band-pass filter; e.g., 13-30Hz)

Cheveigné & Nelken, 2019



Filter Noise?

Noise?

Neuronal Oscillations

We typically use filters to reduce very 
low (<1Hz), very high (variable, 
typically 40Hz+) frequencies and 
electrical line noise (50Hz).

Order: low-pass filter, down-sample, 
high-pass filter



Filter



Filter

Widmann et al., 2015

Order 18 linear-phase low-pass finite impulse 
response [FIR] The cutoff frequency (1) in the center
of the transition band (2) separates passband (3) and 
stopband (4). The deviation from designed passband 
(one) and stopband magnitude (zero) is described by 
passband ripple (5) and stopband attenuation (6). 

srate = 500;
forder = 5;
freqs = [1 40]
[b,a] = butter(forder,freqs./srate);
fvtool(b, a, 'fs', srate)



Filter

srate = 100;
twin = 60;
forder = 5;

x = randn(twin*srate,1);
figure;
subplot(2,1,1);hold on
plot(x,'k','Linewidth',2);
xlim([100 200]);axis off ; 

subplot(2,1,2);hold on;
[b,a] = butter(forder,[8 12]./srate); 
y1 = filtfilt(b,a,x); 
plot(y1,'r','Linewidth',2);
xlim([100 200]);axis off ; 

• Filters common and powerful, but complex. 
• Filtering can ‘generate’ oscillations.



Filter
• Filters common and powerful, but complex. 
• Filtering can distort the signal.



Filter
• The optimal filter strongly depends on your specific data and questions. 
• General rule: Filter as much as necessary, but as little as possible. 



Bad channels
• Drifts, lost good contact, 

malfunctioning
• Detect & remove or interpolate 

(reduced dimensionality)



Bad channels

Tuyisenge et al., 2018

Correlation (Corr)
Variance (Varn)
Deviation (Devn) 
Amplitude (Ampl) 
Gradient (Grad)
Kurtosis (Kurt)
Hurst exponent (Hurs)



Dealing with artifacts

eye blink

transient muscle

continuous muscle

eye movement

ongoing alpha oscillation

Signals are a mixed bag of signals from brain and non-brain sources and the environment.



Dealing with artifacts
Two types of Artifacts

• Nonstereotypical Artifacts
• Sterotypical Artifacts

The sources can be environmental, physiological, or even neural.

Two philosophies on how to deal with Artifacts:
• Artifact rejection: Reject data containing Artifacts à data loss
• Artifact correction/attenuation: Statistical correction of Artifacts à data 

transformation; avoid over-/ under-correction 



Dealing with artifacts
The Artifact rejection philosophy:

“Because most Artifacts are transient in nature, all sections of 
data containing Artifacts should be rejected from further analysis”

• Downside: - 30-50% of the recorded trials might be lost.

  - Some Artifacts cannot be easily detected.



Dealing with artifacts
The Artifact correction/attenuation philosophy:

“Some Artifacts like eye blinks are stereotypical in nature, thus they 
can be statistically modeled, and contributions removed.”

• Downside: - Have these tools high sensitivity and specificity?

  - Non-stereotypical Artifacts cannot be modeled.



Dealing with artifacts - ICA
Stereotypical artifacts have typical signatures.

-0.2 0 0.2 0.4
Time (ms)

A Eye blink IC

-0.2 0 0.2 0.4
Time (ms)

C Electrical heartbeat IC

10 20 30 40
Frequency (Hz)

-0.2 0 0.2 0.4
Time (ms)

B Lateral eye movement IC

10 20 30 40
Frequency (Hz)

-0.2 0 0.2 0.4
Time (ms)

D EMG/Noise IC

10 20 30 40
Frequency (Hz)

1 sec

10 20 30 40
Frequency (Hz)

1 sec 1 sec

1 sec

Debener et al., 2010



Dealing with artifacts - ICA
Un-mixing overview.

X raw data (channels x frames)
W un-mixing weights (channels x components)
A component activations (components x frames)

Debener et al., 2010



Dealing with artifacts - ICA
Back-projection overview

Debener et al., 2010



Dealing with artifacts

Viola et al., 2009



Dealing with artifacts - ICA
(Semi-)Automatic detection of IC’s



Dealing with artifacts - GLM

Quinn et al., 2022



Dealing with artifacts - GLM

Quinn et al., 2022



Sensor Normalisation (MEG - MEGIN Neuromag)
• MEGIN Neuromag data have two sensor types, planar gradiometers and magnetometers.



Sensor Normalisation (MEG - MEGIN Neuromag)
• Sensor types have distinct sensitivity profiles. 



Sensor Normalisation (MEG - MEGIN Neuromag)
• Before beamforming, we would need to normalise these two sensor types so that they can 

contribute equally to the beamformer calculation.

• This is done by scaling the different sensor types so that their variances over time are 

equal.

Magnetometers

Gradiometers



Re-referencing (EEG)

• Voltage is measured between ACTIVE and 
GROUND [DRL] (A-G)

• Voltage is measured between REFERENCE 
and GROUND [CMS] (R-G)

• Output is difference between these voltages         
(A-g)-(R-G) = A-R

• Any noise in common to A and R will be 
eliminated. 



Re-referencing (EEG)

https://pressrelease.brainproducts.com/referencing/



Data pre-processing: Overview
Maxfilter 

(MEG - MEGIN)
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Sensor normalization 
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Resources



Resources

https://mne.tools

https://mne.tools/


Reporting - Examples
“Data were low-pass filtered at 40 Hz (FIR filter, filter order: 100, window 
type: Hann), downsampled to 250 Hz and high-pass filtered at 1 Hz (FIR 
filter, filter order: 500, window type: Hann) to remove drifts from the data.”

“Independent Component Analysis (ICA) denoising was carried out using 
a 30 component FastICA decomposition (Hyvarinen, 1999) on the EEG 
channels. This decomposition explained an average of 99.2% of variance 
in the sensor data across datasets. Artefactual components containing 
blinks were automatically identified by correlation with the simultaneous 
V-EOG channel. ICA components linked to saccades were identified by 
correlation with a surrogate H-EOG channel, i.e., the difference between 
channels F7 and F8. Between 2 and 7 components were rejected in each 
dataset, with an average of 2.66 across all datasets.”



Reporting - Examples
“Bad segments were identified by segmenting the ICA-cleaned data into 
arbitrary 2-second chunks (distinct from the STFT time segments) and 
using the G-ESD algorithm to identify outlier (bad) samples with high 
variance across channels. An average of 31 seconds of data (minimum 6 
seconds and maximum 114 seconds) were marked as bad in this step. 
This procedure is biased towards low-frequency artefacts due to the 1/f 
shape of electrophysiological recordings. Therefore, to identify bad 
segments with high-frequency content, the same procedure was 
repeated on the temporal derivative of the ICA-cleaned data. An average 
of 27 seconds of data (minimum 2 seconds, maximum 109 seconds) 
were marked as bad when using the differential of the data.”
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