## Bayesian Inference

Noor Sajid<br>Wellcome Centre for Human Neuroimaging, UCL



Which route would you choose?

## Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

## Overview

## Brief primer on ill-posed problems

Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

## Primer

Formally, define the probability of an event, e:

$$
p(e)=\frac{\sum e}{\sum s}, \in[0,1]
$$

where $s$ the sample space of all possible outcomes.

Holds under the assumption that each outcome in the sample space is equally likely

## Primer

Formally, define the probability of an event, e:

$$
p(e)=\frac{\sum e}{\sum s}, \in[0,1]
$$

where $s$ the sample space of all possible outcomes.


## Primer

Formally, define the probability of an event, e:

$$
p(e)=\frac{\sum e}{\sum s}, \in[0,1]
$$

Fair a six-sided die, the sample space:

$$
\begin{array}{r}
s \in\{1,2,3,4,5,6\} \text { i.e., } \sum s=6 \\
\text { if } e \in\{2,4,6\} \text { i.e., } \sum e=3 \Rightarrow p(e)=\frac{3}{6}=0.5
\end{array}
$$

## Ill-posed problem



## Ill-posed problem



## Ill-posed problem



Forward: $p($ effect $\mid$ cause $) \in[0,1]$ Inverse: $p$ (cause $\mid$ effect $) \in[0,1]$

## Ill-posed problem



## Example of ill-posed problem*


neural source: $\theta$
*Example from Peter Zeidman and Chris Mathys

## Example of ill-posed problem*


neural source: $\theta$

$$
\begin{gathered}
\theta=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \mathrm{y}=\left[\begin{array}{ccc}
0.2 & \cdots & 0.9 \\
\vdots & \ddots & \vdots \\
0.4 & \cdots & 0.1
\end{array}\right] \\
p(\theta=[\cdot] \mid y) \\
\text { i.e., } p(\text { cause } \mid \text { effect })
\end{gathered}
$$

*Example from Peter Zeidman and Chris Mathys

## Example of ill-posed problem*


neural source: $\theta$

$$
\begin{gathered}
\theta=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], y=\left[\begin{array}{ccc}
0.2 & \cdots & 0.9 \\
\vdots & \ddots & \vdots \\
0.4 & \cdots & 0.1
\end{array}\right] \\
p(\theta=[\cdot] \mid y) \\
\text { i.e. } p(\text { cause } \mid \text { effect })
\end{gathered}
$$

## ill-posed problems

*Example from Peter Zeidman and Chris Mathys

## Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

## Random variables

Random variable, $X$ is a function that assigns a real number to each outcome in the sample space, $\Omega$, of a random process:

$$
X: \Omega \rightarrow \mathbb{R},
$$

where $\mathbb{R}$ denotes the set of real numbers.

We can have two types of random variables: discrete and continuous

## Example of continuous random variable

Here, we want to infer:

$$
p(\theta \mid y) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$



## Example of continuous random variable

Here, we want to infer:

$$
p(\theta \mid y) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$




## Example of continuous random variable

Here, we want to infer:

$$
p(\theta \mid y) \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \pi=\frac{1}{\sigma^{2}}
$$




## Example of continuous random variable

Here, we want to infer:

$$
p(\theta \mid y) \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \pi=\frac{1}{\sigma^{2}}
$$




## Example of continuous random variable

Here, we want to infer:

$$
p(\bar{\theta} \mid y) \sim \mathcal{N}(\bar{\mu}, \Sigma), \quad \bar{\theta}=\binom{\theta_{1}}{\theta_{2}}
$$



neural source: $\theta$

## Overview

Brief primer on ill-posed problems

## Random variables and PDFs

Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

## Different kinds of probabilities

We assume a probability space $\Omega$ with subsets $y$ and $\theta$.

From this, we can define 3 kinds of probabilities:

1. Joint probabilities e.g., $p(\theta, y)$


## Joint probability



## Different kinds of probabilities

We assume a probability space $\Omega$ with subsets $y$ and $\theta$.

From this, we can define 3 kinds of probabilities:

1. Joint probabilities e.g., $p(\theta, y)$
2. Marginal probabilities e.g., $p(\theta)$


## Marginal probability



$$
p(\theta)=\int p(y, \theta) d y
$$



## Example for discrete random variables

- Let $A$ be the statement 'the sun is shining'
- Let $B$ be the statement 'it is raining'
- $\bar{A}$ negates $A, \bar{B}$ negates B

|  | $B$ | $\bar{B}$ | Marginal <br> probabilities |
| :---: | :---: | :---: | :---: |
| $A$ | 0.1 | 0.5 |  |
| $\bar{A}$ | 0.2 | 0.2 |  |
| Marginal <br> probabilities |  |  | Sum of all <br> probabilities <br> $\sum p(\cdot, \cdot)=1$ |

## Different kinds of probabilities

We assume a probability space $\Omega$ with subsets $y$ and $\theta$.

From this, we can define 3 kinds of probabilities:

- Joint probabilities e.g., $p(\theta, y)$
- Marginal probabilities e.g., $p(y)$
- Conditional probabilities e.g., $p(\theta \mid y)$



## Conditional probability

$$
p(\theta \mid y)=\int p(y, \theta) d y
$$

$$
\begin{aligned}
p(\theta, y) & =p(y \mid \theta) p(\theta) \\
& =p(\theta \mid y) p(y)
\end{aligned}
$$



- Let $A$ be the statement 'the sun is shining'
- Let $B$ be the statement 'it is raining'
- $\bar{A}$ negates $A, \bar{B}$ negates B


## What is the probability that the sun is shining given that it is not raining?

|  | $B$ | $\bar{B}$ | Marginal <br> probabilities |
| :---: | :---: | :---: | :---: |
| $A$ | 0.1 | 0.5 | 0.6 |
| $\bar{A}$ | 0.2 | 0.2 | 0.4 |
| Marginal <br> probabilities | 0.3 | 0.7 | $\sum p(\cdot, \cdot)=1$ |

## Axioms of probability

1. $\int p(y, \theta) d \theta d y=1$
(Normalisation)
2. $p(\theta)=\int p(y, \theta) d y$
(Marginalisation - the sum rule)
3. $p(\theta, y)=p(y \mid \theta) p(\theta)$

$$
=p(\theta \mid y) p(y) \quad \text { (Conditioning }- \text { the product rule })
$$

## Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes' rule and approximate inference
Demo: variational Bayes in SPM

## Bayes' rule

Product rule states that:

$$
p(\theta \mid y) p(y)=p(y \mid \theta) p(\theta)
$$

Next, we rearrange:

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

Apply the sum and product rules:

$$
p(y)=\int p(y, \theta) d \theta=\int p(y \mid \theta) p(\theta) d \theta
$$

## Bayes' rule

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

## Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

## Demo

General linear model formulation:

$$
\begin{gathered}
{[20 \cdot 1] \quad[20 \cdot 1]} \\
\bar{y}=x \bar{\beta}+\bar{\epsilon} \\
{[20 \cdot 2][2 \cdot 1]} \\
\left|\begin{array}{cc}
1 & 18 \\
1 & 32 \\
1 & \ldots
\end{array}\right|\left|\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right|
\end{gathered}
$$

where, $\overline{\epsilon_{i}} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

## Demo

General linear model formulation:

$$
\begin{gathered}
{[100 \cdot 1] \quad{ }^{[100 \cdot 1]}} \\
\bar{y}=x \bar{\beta}+\bar{\epsilon} \\
{[100 \cdot 2][2 \cdot 1]} \\
\left|\begin{array}{cc}
1 & 18 \\
1 & 32 \\
1 & \ldots
\end{array}\right|\left|\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right|
\end{gathered}
$$

where, $\overline{\epsilon_{i}} \sim \mathcal{N}\left(0, \sigma^{2}\right)$


## Demo

Likelihood:

$$
p(y \mid \bar{\beta}) \sim \mathcal{N}(x \bar{\beta}, \Sigma) \quad \Sigma=\left\lceil\begin{array}{lll}
\sigma^{2} & & \\
& \sigma^{2} & \\
& & \ldots
\end{array}\right]
$$

Prediction is given by $x \bar{\beta}$; uncertainty can be thought of as following a normal distribution over that prediction.

## Demo

Likelihood:

$$
p(y \mid \bar{\beta}) \sim \mathcal{N}(x \bar{\beta}, \Sigma) \quad \Sigma=\left[\begin{array}{lll}
\sigma^{2} & & \\
& \sigma^{2} & \\
& & \sigma^{2}
\end{array}\right]
$$

Prior:

$$
p(\bar{\beta}) \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Prediction is given by $x \bar{\beta}$; uncertainty can be thought of as following a normal distribution over that prediction.

## Demo

Posterior: $\quad p(\bar{\beta} \mid y)=\frac{p(y \mid \bar{\beta}) p(\bar{\beta})}{p(y)}$
where,

$$
p(y)=\int p(y \mid \bar{\beta}) p(\bar{\beta}) d \beta
$$

## Variational inference

- Calculate the evidence by marginalising out the parameters from the joint density:

$$
p(y)=\int p(y \mid \bar{\beta}) p(\bar{\beta}) d \beta
$$

- The evidence integral is not available in closed form + computing this requires variational inference.
- We introduce a variational density $q$ that can be integrated: $q(\bar{\beta}) \approx p(\bar{\beta} \mid y)$
- We now make a move from $p(y) \rightarrow \log p(y)$ to make the computations easier.


## Deriving the free energy

Assumptions: $p(\bar{\beta} \mid y) \neq 0$ and $q(\bar{\beta}) \neq 0$

$$
\begin{aligned}
\log p(y) & =\log p(y)+\int \log \frac{p(\bar{\beta} \mid y)}{p(\bar{\beta} \mid y)} d \beta \\
& =\int q(\bar{\beta}) \log p(y) d \beta+\int q(\bar{\beta}) \log \frac{p(\bar{\beta} \mid y)}{p(\bar{\beta} \mid y)} d \beta \\
& =\int q(\bar{\beta}) \log \frac{p(\bar{\beta}, y)}{p(\bar{\beta} \mid y)} d \beta \\
& =\int q(\bar{\beta}) \log \frac{p(\bar{\beta}, y)}{q(\bar{\beta})} d \beta+\int q(\bar{\beta}) \log \frac{q(\bar{\beta})}{p(\bar{\beta} \mid y)} d \beta \quad \begin{array}{l}
\text { KLee energy }
\end{array} \quad \begin{array}{l}
\text { divergence is } 0 \\
\text { iff } q(\cdot)=p(\cdot \mid y)
\end{array}
\end{aligned}
$$

## Demo

Posterior: $\quad p(\bar{\beta} \mid y)=\frac{p(y \mid \bar{\beta}) p(\bar{\beta})}{p(y)}$
where, $\quad p(y)=\int p(y \mid \bar{\beta}) p(\bar{\beta}) d \beta$
$p(\bar{\beta} \mid y) \sim \mathcal{N}(\mu, \Sigma)$ and $\log p(y) \approx F$

Matlab demo

## Overview

Brief primer on ill-posed problems
Random variables and PDFs
Axioms of probability
Bayes rule and approximate inference
Demo: variational Bayes in SPM

Probability theory is nothing but common sense reduced to calculation.

- Pierre-Simon Laplace, 1819

