M/EEG source analysis

José David López

josedavid@udea.edu.co

2023

Key points:

• What is an ill-posed inverse problem?

• Prior knowledge -links to popular algorithms

• Validation of prior knowledge / Model evidence

The forward problem

The Inverse problem

The forward problem

Neurons

The forward problem

Head model

Neurons

MEG/EEG brain imaging

With the acquired data we may recover the neural activity

But the problem is ill-posed: # dipoles >> # sensors

NON INVERTIBLE!!! → Infinite solutions!!!

Bayesian formulation

$$\widehat{J} = E[p(J|Y)] \longrightarrow \widehat{J} = QL^T (\Sigma_{\epsilon} + LQL^T)^{-1} Y$$

Prior covariance matrices

PRIOR NOISE COVARIANCE

How do they work?

*Assuming no correlated sources

fMRI data

Maybe...

Summary: Some popular priors

Minimum norm

SAM,DICs Beamformer

 \mathcal{Q}

Dipole fit (Non-linear)

fMRI biased dSPM

LORETA

?

SPM12

Minimum Norm (IID

- independent and identically distributed)

Empirical Bayes Beamformer (EBB)

Multiple Sparse Priors (MSP/ Greedy Search (GS) Automatic relevance determination (ARD))

Software

- SPM12: <u>http://www.fil.ion.ucl.ac.uk/spm/software/spm12/</u>
- DAiSS- SPM12 toolbox for Data Analysis in Source Space (beamforming, minimum norm and related methods), developed by Vladimir Litvak: https://github.com/spm/DAiSS
- Fieldtrip: <u>http://fieldtrip.fcdonders.nl/</u>
- Brainstorm: <u>http://neuroimage.usc.edu/brainstorm/</u>
- MNE: <u>http://martinos.org/mne/stable/index.html</u>

Summary

- MEG/EEG inverse problem requires prior information in the form of a source covariance matrix.
- Different inversion algorithms- SAM, DICS, LORETA, Minimum Norm, dSPM... just have different prior source covariance structure.
- Historically- different MEG groups have tended to use different algorithms/acronyms.

See Mosher et al. 2003, Friston et al. 2008, Wipf and Nagarajan 2009, Lopez et al. 2014

How can I choose?

Y (measured field)

Measured

How do we chose between priors ?

Negative variational free energy (1)

$$\log p(\widehat{Y}) = F + KL[q(h)||p(h|Y)]$$

the divergence will be zero if the approximated distribution is equal to the posterior one:

$$q(h) = p(h|Y) \longrightarrow F = \log p(Y)$$

$$q_0(h) = \mathcal{N}(h; \nu, \Pi^{-1}) \longrightarrow q(h) = \mathcal{N}(h; \hat{h}, \Sigma_h)$$

This is from my PhD. thesis:

Define the log evidence as:

$$\log p(\boldsymbol{Y}) = \int q(\boldsymbol{h}) \log p(\boldsymbol{Y}) dh$$

Applying the definition of Eq. (3-6), log evidence can be extended to:

$$\log p(\mathbf{Y}) = \int q(\mathbf{h}) \log \frac{p(\mathbf{Y}, \mathbf{h})}{p(\mathbf{h} | \mathbf{Y})} dh = \int q(\mathbf{h}) \log \frac{p(\mathbf{Y}, \mathbf{h})q(\mathbf{h})}{q(\mathbf{h})p(\mathbf{h} | \mathbf{Y})} dh$$
$$= \int q(\mathbf{h}) \log \frac{p(\mathbf{Y}, \mathbf{h})}{q(\mathbf{h})} dh + \int q(\mathbf{h}) \log \frac{q(\mathbf{h})}{p(\mathbf{h} | \mathbf{Y})} dh$$
$$= F + \mathrm{KL}[q(\mathbf{h})||p(\mathbf{h} | \mathbf{Y})]$$

Negative variational free energy (2)

The free energy can be expressed as:

$$F = -\frac{N_t}{2} \operatorname{tr}(C_Y \Sigma_Y^{-1}) - \frac{N_t}{2} \log |\Sigma_Y| - \frac{N_c N_t}{2} \log(2\pi)$$
$$-\frac{1}{2} \operatorname{tr}\left((\widehat{h} - \nu)^T \Pi(\widehat{h} - \nu)\right) + \frac{1}{2} \log |\Pi \Sigma_h|$$

Reducing constant terms and assuming zero mean priors:

$$F = -\begin{bmatrix} Model \\ error \end{bmatrix} -\begin{bmatrix} Size of model \\ covariance \end{bmatrix} -\begin{bmatrix} Num of data \\ samples \end{bmatrix} \rightarrow Accuracy$$
$$-\begin{bmatrix} Error in \\ hyperparameters \end{bmatrix} +\begin{bmatrix} Error in covariance \\ of hyperparameters \end{bmatrix} \rightarrow Complexity$$

Trade-off between accuracy and complexity

Approach	Complexity term
AIC (Akaike, 1974)	N_q
BIC (Schwarz, 1978)	$rac{N_q}{2}\log N_t$
Linear function (Wipf and Nagarajan, 2009)	h
free energy (Friston et al., 2008)	$\frac{1}{2} \operatorname{tr} \left((h - \nu)^T \Pi (h - \nu) \right) - \frac{1}{2} \log \Pi \Sigma_h $

Trade-off between accuracy and complexity

Y (measured field)

Measured

How do we chose between priors ?

How do we chose between priors ?

Multiple Sparse Priors (MSP)

Multiple sparse priors (1)

All prior information can be included as the linear combination of a set of covariance components

$$\widehat{J} = QL^T (\Sigma_{\epsilon} + LQL^T)^{-1} Y$$

$$Q = \sum_{i=1}^{N_q} h_i D_i$$

$$D = \{D_1, \dots, D_{N_q}\}$$

 $h = \{h_1, \dots, h_{N_q}\}$

Multiple sparse priors (2)

Multiple Sparse priors

Conclusion

• M/EEG inverse problem can be solved... If you have some prior knowledge.

• All prior knowledge encapsulated in a source covariance matrix Q.

• Can test among priors (or develop new priors) within a Bayesian framework.

References

NeuroImage 84 (2014) 476-487

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Technical Note

Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM $\stackrel{\curvearrowleft}{\sim}$

J.D. López^{a,*}, V. Litvak^b, J.J. Espinosa^c, K. Friston^b, G.R. Barnes^b

^a Departamento de Ingeniería Electrónica, Universidad de Antioquia, Medellín, Colombia

^b Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, UK

^c Universidad Nacional de Colombia, Medellín, Colombia

ARTICLE INFO

ABSTRACT

Article history: Accented 3 Sentember 2013 The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial as-

Thank you

- Karl Friston
- Gareth Barnes
- Vladimir Litvak
- Guillaume Flandin
- Will Penny
- Jean Daunizeau

- Christophe Phillips
- Rik Henson
- Jason Taylor
- Tim Tierney
- Stephanie Mellor
- Kamlyn Ramkissoon

And all SPM developers

