Principles of Dynamic Causal Modelling

SPM course for EEG/MEG, May 2023

QUEEN SQUARE INSTITUTE OF NEUROLOGY Amirhossein Jafarian, PhD

Available online at www.sclencedirect.com

NeuroImage

www.elsevier.com/locate/yning

NeuroImage 19 (2003) 1273-1302

Dynamic causal modelling

K.J. Friston,* L. Harrison, and W. Penny

The Wellcome Department of Imaging Neuroscience, Institute of Neurology, Queen Square, London WCIN 3BG, UK

Received 18 October 2002; revised 7 March 2003; accepted 2 April 2003

- Structural connectivity
 Presence of axonal connections
- Functional connectivity
 Statistical dependencies between regional time series
- Effective connectivity

Causal influences between neuronal populations, and experimental contexts!

Karl Friston

O. Sporns 2007, Scholarpedia

Principal of DCM

Model estimation and comparison in DCM

 $F \approx \ln p(y|m) = \operatorname{accuracy}(m) - \operatorname{complexity}(m)$

DCM optimises the free energy of a model (wrt parameters) to infer parameters that can accurately replicate the data and are not too complex!

Richard Feynman

Hermann von Helmholtz

Noisy observed data

Fitted curve to data

 $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$ Example: curve fitting! M = 0M = 10 0 0 Not Accurate Not Accurate -1 -1 0 0 x \boldsymbol{x} M = 3M = 9Hidden generator of data Accurate Very Complex Not complex Very Accurate 0 \boldsymbol{x} \boldsymbol{x}

Model estimation and comparison in DCM

Example: curve fitting!

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

 $F \approx \ln p(y|m) = \operatorname{accuracy}(m) - \operatorname{complexity}(m)$

Model (hypothesis) comparison using Bays factor (or log BF)

 $\ln BF = F_1 - F_2$

Categories for levels of evidence from Kass and Raftery (1995)

Bayes factor	Log (base e) Bayes factor	Posterior probability	Evidence level		
1 to 3	0 to 1	0.5 to 0.73	Not worth more than a bare mention		
3 to 20	1 to 3	0.73 to 0.95	Positive		
20 to 150	3 to 5	0.95 to 0.99	Strong		
> 150	> 5	> 0.99	Very strong		

Intuition of Hodgkin & Huxley in balancing complexity and accuracy

Sir Alan Hodgkin

 $I_{ion} = G_{Na} (V_m - E_{Na}) + G_K (V_m - E_K) + G_L (V_m - E_L)$ Fig. 3 Best fit curves of the form $G_k = \overline{g}_K n^j$ (j = 1-4) for simulated conductance vs. time data. The inset shows an enlargement of the first millisecond of the response. The initial inflection in the curve cannot be well-fit by a simple exponential dotted line) which rises linearly from zero. Successively higher powers of j (j=2: dot-dashed; j=3: dashed nne) result in a better fit to the initial inflection. In this case, j=4 (solid line) gives the best fit. G

Sir Andrew Huxley

H&H refined the linear model by inclusion of nonlinear terms, having considered balancing complexity with accuracy which is highly relevant to the Free energy concept.

Data features in DCM:

Cortical Column, and brain activity!

Montcastle

Hubel and Wiesel

Mesoscale models of cortical column's electrical activity

Canonical neural mass models

Karl Friston

Backward extrinsic connections

Deep pyramidal → inhibitory interneurons

> Deep pyramidal → superficial pyramidal

Canonical neuronal mass models: population model

Mean Potential to firing rate conversion

For small membrane potentials, firing rates are small. By increasing the potential firing rate increases but up to a point where it saturate!

Different NMM models in SPM12:

Neural mass model

- **ERP** NMM based on Jansen & Rit (1995)
- **SEP** ERP with faster dynamics for evoked potentials
- CMC, TFM Canonical Microcircuit Model
- **LFP** J&R with spike frequency adaptation mechanisms
- **NFM** Extension of ERP model to a neural field model

In (Convolution) NMM, synaptic mechanisms h(t) has a fixed shape regardless of input firing rates.

Different NMM models in SPM12:

Conductance based models (Morris-Lecar)

- NMM based on Morris & Lecar (1981)
- **MFM** dynamics of mean & cov of neuronal population ensemble

CMM, CMM_NMDA canonical micro circuit and mean field model, includes (ligand gated) NMDA receptors

In conductance based models, presynaptic inputs directly influence synaptic mechanisms and they incudes details physiology.

$$\frac{Mg^{+}}{dt} = \frac{1}{C} \frac{Mg^{+}}{[g_{L}(V_{L} - V) + g_{AMPA}(V_{AMPA} - V) + g_{GABA}(V_{GABA} - V) + g_{NMDA} m(V)(V_{NMDA} - V)] + u$$

membrane capacitance

Firing rates

$$\frac{dg_*}{dt} = \frac{1}{\tau_*} \left(\sum_{k=sp,inh,dp,ss} H_k \sigma_k - g_* \right) + u_2, \quad * = [AMPA, GABA, NMDA]$$
Time constant

ss: Spiny stellate cells sp: Superficial pyramidal cells in: Inhibitory interneurons dp: Deep pyramidal cells

dp

SD

Principal of DCM

Prior in DCM

Klass Stephan

Miss match negativity with agency recorded by MEG, fMRI

The subject received an auditory cue, instructing them to respond to auditory tones or control the tones (by pressing a button).

After 2s, a series of tones was presented. Deviant tones (red striped circles) differed in frequency from the preceding tone.

Whether a tone was a standard or deviant was independent of whether the tone was triggered by the computer or the subject.

Statistical analysis of fMRI data

Standard respond (SR) Standard control (SC) Deviant control (DC) Deviant respond (DR)

DCM infers neuronal parameters that generates standard response (baseline condition).

 Condition-specific parameters is embedded in DCM to model other conditions (deviants) with respect to the baseline condition!

Standards

Principles of multimodal dynamic causal Modelling

Amirhossein Jafarian, PhD,

Meg

Multimodal DCM: structural (MRS) + functional (MEG)

Multimodal dynamic casual modelling of MEG and fMRI

PC >	Desktop > spm12-master > toolbox
Nam	ne ^
THE .	DAISS
31	DARTEL
	dcm_fnirs
	dcm_meeg
[]]	DEM
11.	FieldMap
	Longitudinal
	mci
调	MEEGtools
1	mixture
11	mlm
	Neural Models
	NVC
潮	OldNorm
1	OldSeg
畫	Shoot
	spectral
100	SPEM_and_DCM
1	SRender
1 .	TSSS

Neuronal drive function

Simulating neuronal drive function

Q1) Whether neurovascular coupling is excited by presynaptic versus postsynaptic neuronal drive;

Q2) Whether distal neuronal sources exert changes on regional BOLD responses;

Q3) Whether the parameters of neurovascular coupling are region specific or equal for all regions

Q4) Whether a static vs linear model best describes the dynamics of astrocyte responses associated with the release of vasoactive agents (e.g., calcium).

Q5) Whether the power of ERP signals drive the BOLD or ERP signals?

80

-40 338

677

1354

Time (secs)

1015

1692

2031

2369

40

2708

3047

Input

Neuronal / haemodynamic model

Structure learning: Comparing hypothesis

Model space design to investigate function of neurovascular coupling.

Model	F1: Parameterisation	F2: Distal inputs?	F3: Region- specific?	F4: Direct vs Delay	Pos
1	Pre	Yes	Yes	Direct	
2	Pre	No	Yes	Direct	0.1
3	Pre	Yes	No	Direct	0.1
4	Pre	No	No	Direct	0
5	Post	N/A	Yes	Direct	ect s
6	Post	N/A	No	Direct	ЭЩ Ш
7	Pre (Friston et al.,	Yes	No	Direct	-0.2
	2017)				-0.3
8	Pre (Friston et al.,	No	No	Direct	
	2017)				
9	Pre	Yes	Yes	Delay	
10	Pre	No	Yes	Delay	0.1
11	Pre	Yes	No	Delay	a O
12	Pre	No	No	Delay	
13	Post	N/A	Yes	Delay	
14	Post	N/A	No	Delay	-0.2
15	Pre (Friston et al., 2017)	Yes	No	Delay	-0.3
16	Pre (Friston et al., 2017)	No	No	Delay	

Posterior estimation of neurovascular coupling

The most likely neurovascular coupling mechanisms that induce BOLD responses receive instantaneous local presynaptic neuronal activity, with region-specific parameterization!

Meg

Multimodal DCM: structural (MRS) + functional (MEG)

Inclusion of empirical prior -MRS data- into DCM pipeline

Which specific synaptic connections should be influenced by transformed MRS data and how?

Appendix:

Thanks for your attention

and special thanks to

QUEEN SQUARE INSTITUTE OF NEUROLOGY

- Prof Karl Friston
- Dr Peter Zeidman
- Prof Vladimir Litvak
- •Ms Huilin Wei
- Dr Cornelia McCormick
- Prof Gareth R Barnes
- Prof Eleanor A Maguire
- Dr Mansoureh Fahimi Hanazaee
- Dr Dimitris Pinotsis

- Prof James Rowe
- Dr Laura Hughes
- •Ms Melek Karadag Assem,
- Ms Juliette Lanskey
- Dr David Whiteside
- Dr Negin Holand
- •Ms Rebecca Williams

and many more collogues ...