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A	surprising piece	of	information
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Messerli,	F.	H.	(2012).	Chocolate	Consumption,	Cognitive	Function,	and	Nobel	Laureates.	

New	England	Journal	of	Medicine,	367(16),	1562–1564.
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This is a question referring to uncertain quantities. Like almost all scientific

questions, it cannot be answered by deductive logic. Nonetheless, quantitative

answers can be given – but they can only be given in terms of probabilities.

Our question here can be rephrased in terms of a conditional probability:

𝑝 𝑁𝑜𝑏𝑒𝑙 𝑙𝑜𝑡𝑠 𝑜𝑓 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 = ?

To answer it, we have to learn to calculate such quantities. The tool for this is

Bayesian inference.

So	will	I	win	the	Nobel	prize	if	I	eat	lots	of	chocolate?
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Calculating	with	probabilities:	the	setup
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We	assume	a	probability	space	Ωwith	subsets	𝐴 and	𝐵

In	order	to	understand	the	rules	of	probability,	we	need	to	understand	
three	kinds	of	probabilities

• Marginal probabilities	like	𝑝(𝐴)

• Joint probabilities	like	𝑝(𝐴, 𝐵)

• Conditional probabilities	like	𝑝(𝐵|𝐴)

Ω
𝐴 𝐵



Marginal	probabilities
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Ω

𝐴𝐴 𝐵

𝑝(𝐴)



Joint	probabilities
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Ω

𝐴 𝐵

𝑝(𝐴, 𝐵)



What	is	‘marginal’	about	marginal	probabilities?
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• Let	𝐴 be	the	statement	‘the	sun	is	shining’
• Let	𝐵 be	the	statement	‘it	is	raining’
• �̅� negates	𝐴,	 $𝐵 negates	𝐵
Consider	the	following	table	of	joint	probabilities:

Marginal	probabilities get	their	name	from	being	at	the	margins	of	tables
such	as	this	one.

! !" Marginal
probabilities

# $ #, ! = 0.1 $ #, !" = 0.5 $ # = 0.6

#̅ $ #̅, ! = 0.2 $ #̅, !" = 0.2 $ #̅	 = 0.4

Marginal
probabilities $ ! = 0.3 $ !" = 0.7

Sum	of	all	
probabilities
2$ 3,3 = 1



Conditional	probabilities

9

• In	the	previous	example,	what	is	the	probability	that	the	sun	is	shining	given	that	it	is	not	raining?

• This	question	refers	to	a	conditional	probability:	𝑝(𝐴| %𝐵)

• You	can	find	the	answer	by	asking	yourself:	out	of	all	times	where	it	is	not	raining,	which	proportion	
of	times	will	the	sun	be	shining?

• This	means	we	have	to	divide	the	joint	probability	of	‘sun	shining,	not	raining’	by	the	sum	of	all	joint	
probabilities	where	it	is	not	raining:

𝑝 𝐴 %𝐵 =
𝑝(𝐴, %𝐵)

𝑝 𝐴, %𝐵 + 𝑝(�̅�, %𝐵)
=
𝑝(𝐴, %𝐵)
𝑝( %𝐵)

=
0.5
0.7

≈ 0.71

! !" Marginal
probabilities

# $ #, ! = 0.1 $ #, !" = 0.5 $ # = 0.6

#̅ $ #̅, ! = 0.2 $ #̅, !" = 0.2 $ #̅	 = 0.4

Marginal
probabilities $ ! = 0.3 $ !" = 0.7

Sum	of	all	
probabilities
2$ 3,3 = 1



Considerations	like	the	ones	above	led	to	the	following	definition	of	the	
rules	of	probability:

1. ∑! 𝑝 𝑎 = 1 (Normalization)

2. 𝑝 𝐵 = ∑! 𝑝 𝑎, 𝐵 (Marginalization – the	sum	rule)

3. 𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝 𝐴 (Conditioning – the	product	rule)

These	are	axioms,	ie they	are	assumed	to	be	true.	Therefore,	we	cannot	test	
them	the	way	we	could	test	a	theory.	However,	we	can	see	if	they	turn	out	to	
be	useful.

The	rules	of	probability
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R. T. Cox showed in 1946 that the rules of probability theory can be derived from
three basic desiderata:
1. Representation of degrees of plausibility by real numbers

2. Qualitative correspondence with common sense (in a well-defined sense)
3. Consistency

By mathematical proof (i.e., by deductive reasoning) the three desiderata as set out
by Cox imply the rules of probability (i.e., the rules of inductive reasoning).

This means that anyone who accepts the desiderata must accept the rules of
probability.

«Probability	theory	is	nothing	but	common	sense	reduced	to	calculation.»

— Pierre-Simon	Laplace,	1819

The	rules	of	probability
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• The product rule of probability states that

𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝 𝐴

• If we divide by 𝑝 𝐵 , we get Bayes’ rule:

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴

𝑝 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴
∑! 𝑝 𝐵|𝑎 𝑝(𝑎)

• The last equality comes from unpacking 𝑝 𝐵 according to the product and sum
rules:

𝑝 𝐵 =*
!

𝑝 𝐵, 𝑎 =*
!

𝑝 𝐵|𝑎 𝑝(𝑎)

Bayes’	rule

12



• Why is Bayes’ rule important?
• It allows us to invert conditional probabilities, ie to pass from 𝑝 𝐵 𝐴 to 𝑝 𝐴 𝐵 :

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴

𝑝 𝐵

• In other words, it allows us to update our belief about 𝐴 in light of observation 𝐵

Bayes’	rule:	what	problem	does	it	solve?
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In our example, it is immediately clear that 𝑃 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 is very different from

𝑃 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 . While the first is hopeless to determine directly, the second is

much easier to find out: ask Nobel laureates how much chocolate they eat. Once we

know that, we can use Bayes’ rule:

𝑝 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 =
𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 𝑃 𝑁𝑜𝑏𝑒𝑙

𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

Inference on the quantities of interest in neuroimaging studies has exactly the same

general structure.

Bayes’	rule:	the	chocolate	example
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forward	problem

likelihood

inverse	problem

posterior	distribution

Inference	in	SPM

𝑝 𝜗 𝑦,𝑚

𝑝 𝑦 𝜗,𝑚
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Likelihood:

Prior:

Bayes’	theorem:

q

generative	model	𝑚

Inference	in	SPM

𝑝 𝑦 𝜗,𝑚

𝑝 𝜗 𝑚

𝑝 𝜗 𝑦,𝑚 =
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑝 𝑦 𝑚
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A	simple	example	of	Bayesian	inference
(adapted	from	Jaynes	(1976))

Assuming prices are comparable, from which manufacturer would you buy?

A: B:

Two manufacturers, A and B, deliver the same kind of components that turn out to

have the following lifetimes (in hours):
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A	simple	example	of	Bayesian	inference

How do we compare such samples?

• By comparing their arithmetic means

Why do we take means?

• If we take the mean as our estimate, the error in our estimate is the mean of the

errors in the individual measurements

• Taking the mean as maximum-likelihood estimate implies a Gaussian error

distribution

• A Gaussian error distribution appropriately reflects our prior knowledge about

the errors whenever we know nothing about them except perhaps their variance
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What next?

• Let’s do a t-test (but first, let’s compare variances with an F-test):

Is this satisfactory? No, so what can we learn by turning to probability

theory (i.e., Bayesian inference)?

A	simple	example	of	Bayesian	inference

Means	not	significantly	different!

19

Variances	not	significantly	different!



A	simple	example	of	Bayesian	inference

The procedure in brief:

• Determine your question of interest («What is the probability that...?»)

• Specify your model (likelihood and prior)

• Calculate the posterior using Bayes’ theorem

• Ask your question of interest of the posterior

All you need is the rules of probability theory.

(Sometimes you’ll encounter a nasty integral. But that’s only a technical difficulty,

not a conceptual one, and software packages like SPM will solve it for you –

normally).
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A	simple	example	of	Bayesian	inference

The question:

• What is the probability that the components from manufacturer B

have a longer lifetime than those frommanufacturer A?

• More specifically: given how much more expensive they are, how

much longer do I require the components from B to live.

• Example of a decision rule: if the components from B live 3

hours longer than those from A with a probability of at least

80%, I will choose those from B.
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A	simple	example	of	Bayesian	inference

The model:

Likelihood (Gaussian):

𝑝 𝑦! 𝜇, 𝜆 =1
!"#

$
𝜆
2𝜋

#
%
exp −

𝜆
2 𝑦! − 𝜇 %

This	is	the	probability	of	making	observations	 𝑦! !"#,…,$ if	the	mean of	the	sampling	
distribution	is	𝜇 and	its	precision is	𝜆.

Prior (Gaussian-gamma):
𝑝 𝜇, 𝜆 𝜇(, 𝜅(𝑎(, 𝑏( = 𝒩 𝜇 𝜇(, 𝜅(𝜆 )# Gam 𝜆 𝑎(, 𝑏(

This is our assumption about the realistic range in which we expect to find 𝜇 and 𝜆,
determined by the hyperparameters 𝜇(, 𝜅(, 𝑎(, and 𝑏(.
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A	simple	example	of	Bayesian	inference

• Applying Bayes’ rule gives us the posterior hyperparameters 𝜇$, 𝜅$, 𝑎$ and 𝑏$

• If we choose prior hyperparameters 𝜅( = 0 , 𝑎( = 0 , 𝑏( = 0 , the posterior
hyperparameters are:

𝜇$ = (𝑦 𝜅$ = 𝑛 𝑎$ =
𝑛
2

𝑏$ =
𝑛
2
𝑠%

• This means that all we need is 𝑛, the number of data points; (𝑦, their mean; and 𝑠%,
their variance.

• If we choose different prior hyperparameters, the equations for the posterior
hyperparameters look a bit more complicated, but in any case they can easily be
calculated for our example model.

• In many applications of Bayesian inference, the posterior cannot be calculated
analytically and written in terms of a function determined by hyperparameters. In
these cases, approximate Bayesian inference has to be used, using for example
Monte Carlo sampling or variational calculus.
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A	simple	example	of	Bayesian	inference

The joint posterior distributions of lifetimes 𝜇" of products from
manufacturer A and 𝜇# are 𝑝 𝜇" 𝑦$ " and 𝑝 𝜇# 𝑦% # , respectively.

We can now use them to answer our question: what is the probability that
parts from B live at least 3 hours longer than parts from A?

𝑝 𝜇# − 𝜇" > 3 = 4
&'

'

𝑝 𝜇" 𝑦$ " 4
(!)*

'

𝑝 𝜇# 𝑦% # d𝜇# d𝜇" = 0.9501

Note that the t-test told us that there was «no significant difference» even
though according to our Bayesian calculation there is a >95% probability
that the parts from Bwill last at least 3 hours longer than those from A.
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Bayesian	inference

The procedure in brief:

• Determine your question of interest («What is the probability that...?»)

• Specify your model (likelihood and prior)

• Ask your question of interest of the posterior

All you need is the rules of probability theory.
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Frequentist	(or:	orthodox,	classical)	versus	Bayesian	
inference:	hypothesis	testing

if then reject H0

• estimate	parameters	(obtain	test	stat.	𝑡∗)

•	define	the	null,	e.g.:	

• apply	decision	rule,	i.e.:

Classical

𝐻,: 𝜗 = 0

𝑝 𝑡 𝐻,

𝑝 𝑡 > 𝑡∗ 𝐻,

𝑡∗ 𝑡 ≡ 𝑡 𝑌

𝑝 𝑡 > 𝑡∗ 𝐻, ≤ 𝛼

26

if then accept H0

• invert	model	(obtain	posterior	pdf)

• define	the	null,	e.g.:	

• apply	decision	rule,	i.e.:

Bayesian

𝑝 𝜗 𝑦

𝐻,: 𝜗 > 𝜗,

𝑝 𝐻, 𝑦 ≥ 𝛼

𝑝 𝐻, 𝑦

𝜗,
𝜗



• The odds of 𝐴 relate to the probability of 𝐴 in the following way

𝑜 𝐴 =
𝑝(𝐴)
𝑝(�̅�)

=
𝑝(𝐴)

1 − 𝑝(𝐴)

𝑝 𝐴 =
𝑜(𝐴)

1 + 𝑜(𝐴)

• Bookmakers offer odds against events. For example, odds of 3:1 on a horse
imply a probability of *

*)-
= 0.75 for the horse not to win, ie a probability of

1 − 0.75 = 0.25 for the horse to win.

Bayes’	rule	for	odds
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• In terms of odds, Bayes rule is

𝑜 𝐻 𝑦 =
𝑝(𝐻|𝑦)
𝑝( G𝐻|𝑦)

=

𝑝 𝑦 𝐻 𝑝 𝐻
𝑝 𝑦

𝑝 𝑦 G𝐻 𝑝 G𝐻
𝑝 𝑦

=
𝑝 𝑦 𝐻
𝑝 𝑦 G𝐻

𝑝 𝐻
𝑝 G𝐻

=
𝑝 𝑦 𝐻
𝑝 𝑦 G𝐻

𝑜(𝐻)

• In sum:

𝑜 𝐻 𝑦

𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫
𝐨𝐝𝐝𝐬

=
𝑝 𝑦 𝐻
𝑝 𝑦 G𝐻

𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝
𝐫𝐚𝐭𝐢𝐨

𝑜(𝐻)

𝐩𝐫𝐢𝐨𝐫
𝐨𝐝𝐝𝐬

• The likelihood ratio is sometimes called the Bayes factor. This is because
multiplying the prior odds with this factor gives the posterior odds.

• The Bayes factor is a measure for how much making observation 𝑦 favours
hypothesis 𝐻 over hypothesis G𝐻.

Bayes’	rule	for	odds
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• The	fact	that	the	Bayes	factor	is	a	measure	of	strength	of	evidence	can	be
used	for	model	comparison

• Consider	hypotheses	(i.e.,	models)	𝐻, and	𝐻-.	Then	Bayes’	rule	for	the	odds
of	𝐻- over	𝐻, is

𝑝 𝐻- 𝑦
𝑝 𝐻, 𝑦

=
𝑝 𝑦 𝐻-
𝑝 𝑦 𝐻,

𝑝 𝐻-
𝑝 𝐻,

• The	likelihood	ratio	is	the	ratio	of	marginal	likelihoods (also	called	model
evidences):

𝑝 𝑦 𝐻$ = 4𝑝 𝑦 𝜗$ , 𝐻$ 𝑝 𝜗$ 𝐻$ d𝜗$

• In	terms	of	log-model	evidences,	the	log-Bayes	factor	is	simply	the	difference

log
𝑝 𝑦 𝐻-
𝑝 𝑦 𝐻,

= log 𝑝 𝑦 𝐻- − log 𝑝 𝑦 𝐻,

Model	comparison
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Model	comparison:	negative	variational	free	energy	F

30

𝐥𝐨𝐠 –𝐦𝐨𝐝𝐞𝐥 𝐞𝐯𝐢𝐝𝐞𝐧𝐜𝐞 ≔ log 𝑝 𝑦 𝐻

= log4𝑝 𝑦, 𝜗 𝐻 d𝜗

= log4𝑞 𝜗
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

≥ 4𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

=:−𝑭 = 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧𝐚𝐥 𝐟𝐫𝐞𝐞 𝐞𝐧𝐞𝐫𝐠𝐲Jensen’s	inequality

sum	rule

multiply	by	1 = ! "
! "

−𝐹 ≔4𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

= 4𝑞 𝜗 log
𝑝 𝑦 𝜗, 𝐻 𝑝 𝜗 𝐻

𝑞 𝜗 d𝜗

= 4𝑞 𝜗 log 𝑝 𝑦 𝜗, 𝐻 d𝜗

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 (𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐥𝐨𝐠&𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝)

− 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝐻

𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲

product	rule

Kullback-Leibler	divergence

a	lower	bound	on	the
log-model	evidence



Remarks	on	model	comparison	/	model	selection

• There	is	a	range	of	scores	that	help	in	choosing	a	well-performing	model:	AIC	
(Akaike	information	criterion),	BIC	(Bayesian	information	criterion),	Bayes	
factors,	LME	(log-model	evidence),	free	energy,	etc.	

• Each	model	gets	a	particular	score	(which	is	on	its	own	uninterpretable!)

• The	difference	in	score	between	models	is	what	counts

• However,	model	selection	is	not	straightforward.	AIC	and	BIC	penalize	complexity	
based	on	simple	heuristics,	which	may	not	reflect	complexity	accurately.	LME	is	
better	on	that	count,	but	is	very	sensitive	to	the	modeller’s	choice	of	priors.

• The	three	decisive	considerations:

1. Does	the	model	allow	me	to	answer	my	question	of	interest?

2. Does	the	prior	predictive distribution	of	observations	make	sense?

3. Does	the	posterior	predictive distribution	of	observations	make	sense?

When	the	answer	to	all	three	is	yes,	the	model	is	fine.
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A	note	on	uninformative	priors

• Using	a	flat	or	«uninformative»	prior	doesn’t	make	lead	to	inferences	that	are	
more	«data-driven».	It’s	a	modelling	choice	that	requires	just	as	much	
justification	as	any	other.

• For	example,	if	you’re	studying	a	small	effect	in	a	noisy	setting,	using	a	flat	prior	
means	assigning	the	same	prior	probability	mass	to	the	interval	covering	effect	
sizes	-1	to	+1	as	to	that	covering	effect	sizes	+999	to	+1001.

• Far	from	being	unbiased,	this	amounts	to	a	bias	in	favor	of	implausibly	large	
effect	sizes.	Using	flat	priors	is	asking	for	a	replicability	crisis.

• Put	another	way,	priors	which	are	too	uninformative	amount	to	an	implausible	
prior	predictive	distribution

• One	way	to	address	this	is	to	collect	enough	data	to	swamp	the	inappropriate	
priors.	A	cheaper	way	is	to	use	more	appropriate	priors.

• Classical	tests	often	imply	flat	priors.	But	also	in	a	Bayesian	context,	priors	which	
are	too	flat	are	common	because	they	give	a	higher	model	evidence	(which	is	a	
limitation	of	the	concept	of	model	evidence).

32



Applications	of	Bayesian	inference
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realignment smoothing

normalisation

general linear model

template

Gaussian 
field theory

p <0.05

statistical
inference

segmentation
and normalisation

dynamic causal
modelling

posterior probability
maps (PPMs)

multivariate
decoding
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grey matter CSFwhite matter

…

…

yi ci l

µk

µ2

µ1

s1 s 2 s k

class variances

class
means

ith voxel
value

ith voxel
label

class
frequencies

Segmentation	(mixture	of	Gaussians-model)
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PPM: regions best explained
by short-term memory model

PPM: regions best explained 
by long-term memory model

fMRI time series

GLM coeff

prior variance
of GLM coeff

prior variance
of data noise

AR coeff
(correlated noise)

short-term memory
design matrix (X)

long-term memory
design matrix (X)

fMRI	time	series	analysis
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m2m1 m3 m4

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

m1 m2 m3 m4

15

10

5

0

V1 V5stim

PPC

attention

1.25

0.13

0.46

0.39
0.26

0.26

0.10
estimated

effective synaptic strengths
for best model (m4)

models marginal likelihood

ln p y m( )

Dynamic	causal	modeling	(DCM)
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m1

m2
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( ) ( )1 2ln lnp y m p y m-

subjects

Fixed	effect

Random	effect

Assume	all	subjects	correspond	to	the	same	model

Assume	different	subjects	might	correspond	to	different	models

Model	comparison	for	group	studies
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Thanks
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