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1 Introduction

This chapter describes how to identify the spatial and intensity transformations that map
one image onto another. A general technique is presented that implements non-linear
spatial (stereotactic) normalisation and image realignment.

Spatial transformations are important in many aspects of functional image analysis.
In functional imaging, particularly for functional magnetic resonance imaging (fMRI),
the signal changes due to any h�modynamic response can be small compared to signal
changes that can result from subject motion, so prior to performing the statistical tests,
it is important that the images are as closely aligned as possible. Subject head move-
ment in the scanner can not be completely eliminated, so motion correction needs to be
performed as a preprocessing step on the image data. The �rst step in the correction
is image registration, which involves determining the parameter values for a rigid body
transformation that optimise some criteria for matching each image with a reference im-
age (see Section 3). Following the registration, the images are transformed by resampling
according to the determined parameters.

Sometimes it is desirable to warp images from a number of individuals into roughly
the same standard space to allow signal averaging across subjects. Unlike the case for
positron emission tomography (PET) images, it is not necessary to combine fMRI data
from a number of subjects to achieve a signi�cant activation signal. However, since dif-
ferent people may have di�erent strategies for performing tasks in the scanner, spatial
normalisation of the images is useful for determining what happens generically over in-
dividuals. A further advantage of using spatially normalised images is that activation
sites can be reported according to their Euclidian coordinates within a standard space
(Fox, 1995). The most commonly adopted coordinate system within the brain imaging
community is that described by Talairach & Tournoux (1988). The normalisation usually
begins by matching the brains to a template image using an a�ne transformation (see
Section 5), followed by introducing non-linear deformations described by a number of
smooth basis functions (Friston et al., 1995b) (see Section 6). Matching is only possi-
ble on a coarse scale, since there is not necessarily a one-to-one mapping of the cortical
structures between di�erent brains. Because of this, the images are smoothed prior to
the statistical analysis in a multi-subject study, so that corresponding sites of activation
from the di�erent brains are superimposed (see Section 2.2).

For studies of a single subject, the sites of activation can be accurately localised by
superimposing them on a high resolution structural image of the subject (typically a T1

weighted MRI). This requires the registration of the functional images with the structural
image. As in the case of movement correction, this is normally performed by optimising
a set of parameters describing a rigid body transformation, but the matching criterion
needs to be more complex since the images are often acquired using di�erent modalities
or MR contrasts (see Section 4). A further use for this registration is that a more precise
spatial normalisation can be achieved by computing it from a more detailed structural
image. With the functional and structural images in register, the computed warps can
be applied to the functional images.
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1.1 Overview

The next sections of this chapter are arranged as follows:

� The Underlying Principles gives a brief introduction of some of the concepts that
are used throughout the rest of the chapter.

{ Resampling Images describes a number of di�erent interpolation methods that
can be used to spatially transform images.

{ Smoothing is included because image registration can be performedmore easily
on images that are smooth.

{ A�ne Transformations are among the commonest of spatial transformations
of images. Rigid body transformations (which are a subset of a�ne trans-
formations) are necessary for co-registering images of the same subject, and
a�ne transformations are also the �rst step in spatial normalisation.

{ Optimisation is necessary to determine the best parameters for matching im-
ages together. The optimisation framework that is used throughout the rest
of the chapter is introduced in this subsection.

{ The main sections concentrate on the nature of the spatial transformations re-
quired to match images. However, occasionally, some form of Intensity Trans-
formations of one of the images are required in order to achieve a better �t.

� Within Modality Image Co-registration is probably the simplest form of image reg-
istration. It involves �nding the best six parameter rigid body transformation to
minimise the di�erence between two images of the same subject. This section
introduces a basic method for performing a�ne registrations, and shows how to
constrain the registration to be rigid body.

� Between Modality Image Co-registration again involves rigid body transformations,
but in this case - since the images to be matched appear completely di�erent -
di�erent matching strategies need to be used. This section includes a description
of an image classi�cation method, whereby gray matter, white matter and CSF
are automatically identi�ed in images of di�erent modalities. The classi�cation is
important to this section because the registration ultimately relies on matching
homologous tissue classes together.

� A�ne Spatial Normalisation describes the �rst step involved in registering images
of di�erent subjects into roughly the same co-ordinate system. Unlike the previous
two sections - where the images to be matched together are from the same sub-
ject - zooms and shears are needed to register heads of di�erent shapes and sizes.
The main new idea introduced in this section is about how to incorporate prior
knowledge of the variability of head sizes into the registration.

� Non-linear Spatial Normalisation is about correcting for gross di�erences in head
shapes that can not be accounted for by a�ne normalisation alone. These non-
linear warps are modelled by linear combinations of smooth basis functions, and
a fast algorithm for determining the optimum combination of basis functions is
described.
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2 The Underlying Principles

Spatial transformations can be broadly divided into label based and non-label based. La-
bel based techniques identify homologous spatial structures, features or landmarks in
two images and �nd the transformations that best superpose the labeled points. These
transformations can be linear (Pelizzari et al., 1988) or non-linear (e.g., thin plate splines
(Bookstein, 1989)). Non-label based approaches identify a spatial transformation that
minimises some index of the di�erence between an object and a reference image, where
both are treated as unlabeled continuous processes. Again these can be linear, e.g., prin-
cipal axes (Alpert et al., 1990); image realignment (Woods et al., 1992; Collins et al.,
1994b; Lange, 1994) or non-linear e.g., plastic transformation (Friston et al., 1991; Collins
et al., 1994a) with some interesting developments using neural nets (Kosugi et al., 1993).

Without any constraints it is of course possible to transform any image such that it
matches another exactly. The issue is therefore less about the nature of the transforma-
tion and more about de�ning constraints under which a transformation is e�ected. The
validity of a transformation can usually be reduced to the validity of these constraints.
The �rst tenet of the general approach described here is that the constraints are explicit,
reasonable and operationally speci�ed. The reliability of label-based approaches is lim-
ited by the reproducibility of labeling. The second key aspect of our approach is therefore
that it is non label-based and automatic.

There are two steps involved in registering images together. There is the registration

itself, whereby the parameters describing a transformation are determined. Then there
is the transformation, where one of the images is transformed according to the set of pa-
rameters. This section will �rst touch on how the images are transformed via the process
of resampling, before brie
y describing how smoothing (low pass �ltering) is performed
in SPM. One of the more common image transformations (the a�ne transformation) is
then described, and �nally the general principal of how the parameters describing the
transformations are automatically determined.

2.1 Resampling Images

Once there is a mapping between the original and transformed coordinates of an image, it
is necessary to resample the image in order to apply the spatial transform. This involves
determining for each voxel in the transformed image, the corresponding intensity in the
original image. Usually, this requires sampling between the centers of voxels, so some
form of interpolation needed.

The simplest approach is to take the value of the closest neighbouring voxel. This is
referred to as nearest neighbour or zero-order hold resampling. This has the advantage
that the original voxel intensities are preserved, but the resulting image can be degraded
quite considerably.

Another approach is to use tri-linear interpolation (�rst-order hold) to resample the
data. This is slightly slower than nearest neighbour, but the resulting images have a less
`blocky' appearance. However, tri-linear interpolation has the e�ect of losing some high
frequency information from the image.
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Figure 1: Illustration of image interpolation in two dimensions. Points a through to p

represent the original regular grid of pixels. Point u is the point whos value is to be
determined. Points q to t are used as intermediates in the computation.

Figure 1 will now be used to illustrate bi-linear interpolation in two dimensions. Assuming
that there is a regular grid of pixels at coordinates xa; ya to xp; yp, having intensities va to
vp, and that the point to resample is at t. The value at points r and s are �rst determined
(using linear interpolation) as follows:

vr =
(xg�xr)vf+(xr�xf )vg

xg�xf

vs =
(xk�xs)vj+(xs�xj)vk

xk�xj

Then vu is determined by interpolating between vr and vs:

vu =
(yu�ys)vr+(yr�yu)vs

yr�ys

The extension of the approach to three dimensions is trivial.

Rather than using only the 8 nearest neighbours (in 3D) to estimate the value at a point,
more neighbours can be used in order to �t a smooth function through the points, and
then read o� the value of the function at the desired point. Polynomial interpolation

is one such approach (zero-order and �rst-order hold interpolation are simply low order
polynomial interpolations). We now illustrate how vq can be determined from pixels a to
d. The coe�cients (q) of a polynomial that runs through these points can be obtained
by computing:
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Figure 2: Sinc function in two dimensions, both with (right) and without (left) a Hanning
window.
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Then vq can be determined from these coe�cients by:

vq = ( 1 (xq � xa) (xq � xa)2 (xq � xa)3 )q

To determine vu, a similar polynomial would be �tted through points q, r, s and t.
Polynomial interpolation is normally performed using Lagrange polynomials. See (Press
et al., 1992) or (Jain, 1989) for more information on this or on interpolation in general.

The optimum method of transforming images without interpolation artifact is to do it in
Fourier space (Eddy et al., 1996). However, the rigid body transformations implemented
in SPM are performed in real space. The interpolation method that gives results closest
to Fourier interpolation is sinc interpolation. To perform a pure sinc interpolation, every
voxel in the image should be used to sample a single point. This is not feasible due to
speed considerations, so an approximation using a limited number of nearest neighbours
is used. Since the sinc function extends to in�nity, it is truncated by modulating with
a Hanning window (see Figure 2). The implementation of sinc interpolation is similar
to that for polynomial interpolation, in that it is performed sequentially in the three
dimensions of the volume. For one dimension the windowed sinc function using the I

nearest neighbours would be:

PI
i=1 vi

sin(�di)
�di

1
2 (1+cos(2�di=I))PI

j=1

sin(�dj)

�dj

1
2 (1+cos(2�dj=I))

where di is the distance from the center of the ith voxel to the point to be sampled, and
vi is the value of the ith voxel. This form of sinc interpolation is the preferred higher
order interpolation method within SPM.
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Figure 3: Convolution with a two dimensional Gaussian. The original image (left) is
convolved horizontally (center), and then this image is convolved vertically (right).

2.2 Smoothing

Image registration is normally performed on smoothed images (for reasons that will be
mentioned in Section 2.4). It is also important to smooth prior to the statistical analysis
of a multi-subject experiment. Because the spatial normalisation can never be exact,
homologous regions in the brains of the di�erent subjects can not be precisely registered.
The smoothing has the e�ect of `spreading out' the di�erent areas, and reducing the
discrepancy.

The smoothing used is a discrete convolution with a Gaussian kernel. The amplitude of
a Gaussian at j units away from the center is de�ned by:

gj =
e
�

j2

2s2p
2�s2

where the parameter s is de�ned by FWHMp
8ln(2)

, where FWHM is the full width at half

maximum of the Gaussian. The convolution of function s with g to give the convolved
function t is performed as:

ti =
Pd

j=�d s(i�j)gj

In SPM, the value of d in the above expression will represent a kernel length of about six
FWHMs. Beyond this distance, the magnitude of the function can be considered almost
negligible.

To convolve an image with a two dimensional Gaussian, the image is �rst convolved
in one direction, and then the result is convolved in the other (see Figure 3). A three
dimensional convolution is the same, except for an additional convolution in the third
dimension.
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2.3 A�ne Transformations

One of the simplest and well de�ned of spatial transformations is the a�ne transfor-
mation. For each point (x1; x2; x3) in an image, a mapping can be de�ned into the
coordinates of another space (y1; y2; y3). This is simply expressed as:

y1 =
y2 =
y3 =

m11x1 + m12x2 + m13x3 + m14

m21x1 + m22x2 + m23x3 + m24

m31x1 + m32x2 + m33x3 + m34

This mapping is often expressed as a simple matrix multiplication (y =Mx):

0
BBB@
y1
y2
y3
1

1
CCCA =

0
BBB@
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

1
CCCA

0
BBB@
x1
x2
x3
1

1
CCCA

The elegance of formulating these transformations in terms of matrices is that several
transformations can be combined by simply multiplying the matrices together to form a
single matrix.

2.3.1 Rigid Body Transformations

Rigid body transformations, necessary to co-register images of the same subject together,
are a subset of the more general a�ne transformations. In three dimensions a rigid body
transformation can be de�ned by six parameters. These parameters are, typically, three
translations (shifts) and three rotations about orthogonal axes. Amatrix that implements
the translation is:

0
BBB@
1 0 0 xtrans
0 1 0 ytrans
0 0 1 ztrans
0 0 0 1

1
CCCA

Matrixes that carry out rotations (�, � and 
 - in radians) about the X, Y and Z axes
respectively are:0
BBB@
1 0 0 0
0 cos(�) sin(�) 0
0 �sin(�) cos(�) 0
0 0 0 1

1
CCCA,
0
BBB@

cos(�) 0 sin(�) 0
0 1 0 0

�sin(�) 0 cos(�) 0
0 0 0 1

1
CCCA and

0
BBB@

cos(
) sin(
) 0 0
�sin(
) cos(
) 0 0

0 0 1 0
0 0 0 1

1
CCCA.

The order in which the operations are performed is important. For example, a rotation
about the X axis of �=2 radians followed by an equivalent rotation about the Y axis
would produce a very di�erent result if the order of the operations was reversed.

Voxel sizes of images need to be considered in order to register them with a rigid body
transformation. Often, the images (say f and g) will have voxels that are anisotropic. The
dimensions of the voxels are also likely to di�er between images of di�erent modalities.
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For simplicity, a Euclidian space is used, where measures of distances are expressed in
millimeters. Rather than interpolating the images such that the voxels are cubic and have
the same dimensions in all images, one can simply de�ne a�ne transformation matrices
that map from voxel coordinates into this Euclidian space. For example, if image f is of
size 128 � 128 � 43 and has voxels that are 2:1mm � 2:1mm � 2:45mm, we can de�ne
the following matrix:

Mf =

0
BBB@
2:1 0 0 �134:4
0 2:1 0 �134:4
0 0 2:45 �52:675
0 0 0 1

1
CCCA

This transformation matrix maps voxel coordinates to a Euclidian space whose axes are
parallel to those of the image and distances are measured in millimeters, with the origin
at the center of the image. A similar matrix can be de�ned for g (Mg).

The objective of any co-registration is to determine the rigid body transformation that
maps the coordinates of image f , to that of g. To accomplish this, a rigid body transfor-
mation matrix Mr is determined, such that Mg

�1MrMf will register the images. Once
Mr has been determined, Mf can be set to MrMf . From there onwards the mapping
between the images can be achieved by Mg

�1Mf . Similarly, if another image (h) is also
co-registered to image g in the same manner, then not only is there a mapping between
g and h (Mg

�1Mh), but there is also one between f and h which is simply Mf
�1Mh

(derived from Mf
�1MgMg

�1Mh).

2.4 Optimisation

The objective of optimisation is to determine a set of parameters for which some function
of the parameters is minimised (or maximised). One of the simplest cases is determining
the optimum parameters for a model in order to minimise of the sum of squared dif-
ferences between the model and a set of real world data (�2). Usually there are many
parameters in the model, and it is not possible to exhaustively search through the whole
parameter space. The usual approach is to make an initial parameter estimate, and begin
iteratively searching from there. At each iteration, the model is evaluated using the cur-
rent parameter estimates, and �2 computed. A judgement is then made about how the
parameter estimates should be modi�ed, before continuing on to the next iteration. The
optimisation is terminated when some convergence criterion is achieved (usually when
�2 stops decreasing).

The image registration approach described here is essentially an optimisation. One image
(the object image) is spatially transformed so that it matches another (the template
image), by minimising �2. The parameters that are optimised are those that describe
the spatial transformation (although there are often other nuisance parameters required
by the model, such as intensity scaling parameters). The algorithm of choice (Friston
et al., 1995b) is one that is similar to Gauss-Newton optimisation (see Press et al.(1992),
Section 15.5 for a fuller explanation of the approach), and it is illustrated here:

Suppose that di(p) is the function describing the di�erence between the object and
template images at voxel i, when the vector of model parameters have values p. For
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each voxel (i), a �rst approximation of Taylor's Theorem can be used to estimate the
value that this di�erence will take if the parameters p are increased by t:

di(p+ t) = di(p) + t1
@di(p)

@p1
+ t2

@di(p)

@p2
: : :

From this, a set of simultaneous equations (of the formAx ' b) can be set up to estimate
the values that t should take to minimise

P
i di(p+ t)2:

0
BBB@
�@d1(p)

@p1
�@d1(p)

@p2
: : :

�@d2(p)

@p1
�@d2(p)

@p2
: : :

...
...

. . .

1
CCCA
0
B@
t1
t2
...

1
CA '

0
B@
di(p)
di(p)
...

1
CA

From this we can derive an iterative scheme for improving the parameter estimates. For
iteration n, the parameters p are updated as:

p(n+1) = p(n) +
�
ATA

��1
ATb (1)

where A =

0
BBB@
�@d1(p)

@p1
�@d1(p)

@p2
: : :

�@d2(p)

@p1
�@d2(p)

@p2
: : :

...
...

. . .

1
CCCA and b =

0
B@
di(p)
di(p)
...

1
CA.

This process is repeated until �2 can no longer be decreased - or for a �xed number of
iterations. There is no guarantee that the best global solution will be reached, since
the algorithm can get caught in a local minimum. To reduce this problem, the starting
estimates for p should be set as close as possible to the optimum solution. The number of
potential local minima can also be decreased by working with smooth images. This also
has the e�ect of making the �rst order Taylor approximation more accurate for larger
displacements. Once the registration is close to the true solution, the registration can
continue with less smooth images.

In practice, ATA and ATb from Eqn. 1 are computed `on the 
y' for each iteration. By
computing these matrices using only a few rows of A and b at a time, much less computer
memory is required than is necessary for storing the whole of matrixA. Also, the partial
derivatives @di(p)=@pj can be rapidly computed from the gradients of the images using
the chain rule. These calculations will be illustrated more fully in the next few sections.

2.5 Intensity Transformations

The optimisation can be assumed to minimise two sets of parameters: those that describe
spatial transformations (ps), and those for describing intensity transformations (pt). This
means that the di�erence function can generically be expressed in the form:

di(p) = f(s(xi;ps))� t(xi;pt)

where f is the object image, s() is a vector function describing the spatial transformations
based upon parameters ps and t() is a scalar function describing intensity transformations
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based on parameters pt. xi is the ith coordinates that are sampled. The main sections
will simply consider matching one image to a scaled version of another, in order to
minimise the sum of squared di�erences between the images. For this case (assuming
that there are 12 parameters describing spatial transformations), t(xi;pt) is simply equal
to p13g(xi), where p13 is a simple scaling parameter and g is a template image. This is
most e�ective when there is a linear relation between the images. However, the intensities
in one image may not vary linearly with the intensities in the other, so it may be more
appropriate to match one image to some function of the other image. A simple example
of this could be to match image f to a scaled version of the square of image g. More than
one parameter could be used to parameterise the intensity transformation. For example,
we could assume some polynomial model for the intensity transformation. In this case,
t(xi;pt) would equal p13g(xi) + p14g(xi)2, so the and minimised function would have the
form:

P
i (f(xi;ps)� (p13g(xi) + p14g(xi)2))2

Alternatively, the intensities could vary spatially (for example due to inhomogeneities in
the MRI scanner). Linear variations can be accounted for by optimising a function of
the form:

P
i (f(xi;ps)� (p13x1ig(xi) + p14x2ig(xi) + p15x3ig(xi)))2

More complex variations could be included by modulating with other basis functions
(such as the DCT basis function set described in Section 6). The examples shown so
far have been linear in their parameters describing intensity transformations. A simple
example of an intensity transformation that is non-linear would be:

P
i (f(xi;ps)� p13g(xi)p14)2

Another idea is that a given image can be matched not to one reference image, but to a
series of images that all conform to the same space. The idea here is that (ignoring the
spatial di�erences) any given image can be expressed as a linear combination of a set of
reference images. For example these reference images might include di�erent modalities
(e.g., PET, SPECT, 18F-DOPA, 18F-deoxy-glucose, T1-weighted MRI T�

2-weighted MRI
.. etc.) or di�erent anatomical tissues (e.g., grey matter, white matter, and CSF seg-
mented from the same T1-weighted MRI) or di�erent anatomical regions (e.g., cortical
grey matter, sub-cortical grey mater, cerebellum ... etc.) or �nally any combination of
the above. Any given image, irrespective of its modality could be approximated with a
function of these images. A simple example using two images would be:

P
i (f(Mxi)� (p13g1(xi) + p14g2(xi)))2

3 Within Modality Image Co-registration

The most common application of within modality co-registration is in motion correction
of series of images. It is inevitable that a subject will move slightly during a series of
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scans, so prior to performing the statistical tests, it is important that the images are as
closely aligned as possible. Subject head movement in the scanner can not be completely
eliminated, so motion correction needs to be performed as a preprocessing step on the
image data.

Accurate motion correction is especially important for fMRI studies with paradigms
where the subject may move in the scanner in a way that is correlated to the di�erent
experimental conditions (Hajnal et al., 1994). Even tiny systematic di�erences can result
in a signi�cant signal accumulating over numerous scans. Without suitable corrections,
artifacts arising from subject movement correlated with the paradigm may appear as
activations. Even after the registration and transformations have been performed, it
is likely that the images will still contain artifacts correlated with movement. There
are a number of sources of these artifacts, including the approximations used in the
interpolation, aliasing e�ects due to gaps between the slices, ghosts in the images, slices
not being acquired simultaneously (so the data no longer obeys the rules of rigid body
transformations) and spin excitation history e�ects. Fortunately (providing that there are
enough images in the series), the artifacts can largely be corrected by using an ANCOVA
model to remove any signal that is correlated with functions of the movement parameters
(Friston et al., 1996). There will be more discussion about this correction in Chapter 9.

A second reason why motion correction is important is that it increases sensitivity. The
t-test used by SPM is based on the signal change relative to the residual variance - which
is computed from the sum of squared di�erences between the data and the linear model
to which it is �tted. Movement artifacts add to this residual variance, and so reduce the
sensitivity of the test to true activations.

Most current algorithms for movement correction consider the head as a rigid object.
In three dimensions, six parameters are needed to de�ne a rigid body transformation
(three translations and three rotations). However, we will begin by explaining how the
simpler within modality (12 parameter) a�ne registration can be implemented, before
illustrating how the rigid body constraints are incorporated.

3.1 Simple A�ne Registration

The objective is to �t the image f to a template image g, using a twelve parameter a�ne
transformation (parameters p1 to p12). The images may be scaled quite di�erently, so an
additional intensity scaling parameter (p13) is included in the model.

An a�ne transformation mapping (via matrix M, where the matrix elements are the
parameters p1 to p12) from position x in one image to position y in another is de�ned
by:

0
BBB@
y1
y2
y3
1

1
CCCA =

0
BBB@
p1 p4 p7 p10
p2 p5 p8 p11
p3 p6 p9 p12
0 0 0 1

1
CCCA
0
BBB@
x1
x2
x3
1

1
CCCA

We refer to this mapping as y =Mx.
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The parameters (p) are optimised by minimising the sum of squared di�erences between
the images according to the algorithm described in Section 2.4 (Eqn. 1). The function
that is minimised is: X

i

(f(Mxi)� p13g(xi))
2 (2)

Vector b is generated for each iteration as:

bi = f(Mxi)� p13g(xi)

Matrix A is constructed from the negative derivatives. The derivatives are computed as
follows:

The rate of change of residual i with respect to the scaling parameter (p13) is simply
�g(xi) (the negative intensity of image g at xi - the ith sample position).

The derivatives of the residuals with respect to the spatial transformation parameters (p1
to p12) are obtained by di�erentiating f(Mxi)� p13g(xi) with respect to each parameter
(pj) to give @f(Mxi)=@pj . The derivatives with respect to the translation parameters
are simply the gradient of image f in each direction (df(y)=dy1, df(y)=dy2 and df(y)=dy3
where y is Mxi). The remaining derivatives are generated from the image gradients
using the chain rule:

df(y)

dpj
= df(y)

dy1

dy1
dpj

+ df(y)

dy2

dy2
dpj

+ df(y)

dy3

dy3
dpj

In the above expression, only one of the terms on the right hand side is ever nonzero
when the parameters are the elements of the a�ne transformation matrix, allowing the
derivatives to be calculated more rapidly.

3.2 Constraining to be Rigid Body

Additional constraints need to be added to convert the algorithm so that it performs a
rigid body rather than an a�ne registration. These are incorporated by re-parameterising
from the 12 a�ne parameters, to the six that are needed to de�ne a rigid body transfor-
mation. Matrix M is now de�ned from the six parameters q as:

M = Mf
�1

 
1 0 0 q1
0 1 0 q2
0 0 1 q3
0 0 0 1

!
�

 
1 0 0 0
0 cos(q4) sin(q4) 0
0 �sin(q4) cos(q4) 0
0 0 0 1

!
�

 
cos(q5) 0 sin(q5) 0

0 0 0
�sin(q5) 0 cos(q5) 0

0 0 0 1

!
�

 
cos(q6) sin(q6) 0 0
�sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1

!
Mg

where Mf and Mg are described in Section 2.3.1.

The algorithm is modi�ed to use parameter set q, rather than the original p, simply
by incorporating an additional (7 � 13) matrix R such that ri;j = dpj=dqi. Matrix R
needs to be re-computed in each iteration, but this can be quickly done numerically. The
iterative scheme would then become:

q(n+1) = q(n) + (RT (ATA)R)
�1
R(ATb)

where the braces indicate the most e�cient way of performing the computations.
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4 Between Modality Image Co-registration (and Par-

titioning)

The co-registration of brain images of the same subject acquired in di�erent modalities
has proved itself to be useful in many areas, both in research and clinically. This method
concentrates on the registration of magnetic resonance (MR) images with positron emis-
sion tomography (PET) images, and on co-registering MR images from di�erent scanning
sequences. The aim is to co-register images as accurately and quickly as possible, with
no manual intervention.

Inter-modality registration of images is less straightforward than that of registering im-
ages of the samemodality. Two PET images from the same subject generally look similar,
so it su�ces to �nd the rigid-body transformation parameters that minimises the sum of
squares di�erence between them. However, for co-registration between modalities there is
nothing quite so obvious to minimise. AIR (Woods et al., 1992) is a widely used algorithm
for co-registration of PET to MR images, but it has the disadvantage that it depends
on pre-processing of the MR images. This normally involves laborious manual editing in
order to remove any tissue that is not part of the brain (ie. scalp editing). More recently,
the idea of matching images by maximising mutual information (MI) is becoming more
widespread (Collignon et al., 1995). This elegant approach evolved from methods similar
to AIR, and may prove to be more successful than the technique described here.

An alternative method is the manual identi�cation of homologous landmarks in both im-
ages. These landmarks are aligned together, thus bringing the images into registration.
This is also time-consuming, requires a degree of experience, and can be rather subjec-
tive. The method described here requires no pre-processing of the data, or landmark
identi�cation, and is still reasonably robust.

This method requires images other than the images that are to be registered (f and g).
These are template images of the same modalities as f and g (tf and tg), and probability
images of gray matter, white matter and cerebro-spinal 
uid. These probablistic images
will be denoted by the matrix B (where each column is a separate image). Images tf , tg
and B conform to the same anatomical space.

The between modality co-registration described here is a three step approach:

1. Determine the a�ne transformations that map between the images and the tem-

plates by minimisation of the sum of squares di�erences between f and tf , and g
and tg. These transformations are constrained such that only the parameters that
describe the rigid body component are allowed to di�er.

2. Segment or partition the images using the probability images and a modi�edmixture
model algorithm. The mapping between the probability images to images f and g
having been determined in step 1.

3. Co-register the image partitions using the rigid body transformations computed
from step 1 as a starting estimate.

For simplicity, we work in a Euclidian space, where measures of distances are expressed
in millimeters. To facilitate this, we need to de�ne matricesMf , Mg and Mt that map
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from the voxel coordinates of images f , g and the templates, into their own Euclidian
space (see Section 2.3.1). The objective is to determine the a�ne transformation that
maps the coordinate system of f , to that of g. To accomplish this, we need to �nd a rigid
body transformation matrixMr, such that Mg

�1MrMf will co-register the images.

4.1 Determining the mappings from images to templates.

It is possible to obtain a reasonable match of images of most normal brains to a template
image of the same modality using just a twelve (or even nine) parameter a�ne transfor-
mation. One can register image g to template tg, and similarly register f to tf using this
approach. We will call these transformation matricesMgt and Mft respectively. Thus a
mapping from f to g now becomesMg

�1MgtMft
�1Mf . However, this a�ne transforma-

tion between f and g has not been constrained to be rigid body. We modify this simple
approach in order to incorporate this constraint, by decomposing matrixMgt into matri-
ces that perform a rigid body transformation (Mgr), and one that performs the scaling
and shearing (Mta). ie. Mgt =MgrMta, and similarlyMft =MfrMta. Notice thatMta

is the same for both f and g. Now the mapping becomesMg
�1Mgr(MtaMta

�1)Mfr
�1Mf ,

and is a rigid body transformation.

Mgr =

 
1 0 0 q1
0 1 0 q2
0 0 1 q3
0 0 0 1

!
�

 
1 0 0 0
0 cos(q4) sin(q4) 0
0 �sin(q4) cos(q4) 0
0 0 0 1

!
�

 
cos(q5) 0 sin(q5) 0

0 0 0
�sin(q5) 0 cos(q5) 0

0 0 0 1

!
�

 
cos(q6) sin(q6) 0 0
�sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1

!

Mfr =

 
1 0 0 q7
0 1 0 q8
0 0 1 q9
0 0 0 1

!
�

 
1 0 0 0
0 cos(q10) sin(q10) 0
0 �sin(q10) cos(q10) 0
0 0 0 1

!
�

 
cos(q11) 0 sin(q11) 0

0 0 0
�sin(q11) 0 cos(q11) 0

0 0 0 1

!
�

 
cos(q12) sin(q12) 0 0
�sin(q12) cos(q12) 0 0

0 0 1 0
0 0 0 1

!

Mta =

 
q13 0 0 0
0 q14 0 0
0 0 q15 0
0 0 0 1

!
�

 
1 q16 q17 0
0 1 q18 0
0 0 1 0
0 0 0 1

!

We can now optimise the parameter set q = ( q1 q2 : : : ) in order to determine the
transformations that minimise the sum of squares di�erence between the images and
templates. The basic optimisation method has been described in previous sections, and
involves generating matrixATA and vectorATb for each iteration, solving the equations
and incrementing the parameter estimates.

For the purpose of this optimisation, we de�ne two matrices, M1 = (Mt
�1MftMf )

�1
,

and M2 = (Mt
�1MgtMg)

�1
. In the following description of A and b, we utilise the

notation that f(x) is the intensity of image f at position x, and similarly for g(x), tf(x)
and tg(x):

A =

0
BBBBBBB@

�
df(M1x1)

dq1
: : : �

df(M1x1)

dq6
0 : : : 0 �

df(M1x1)

dq13
: : : �

df(M1x1)

dq18
tf (x1) 0

�
df(M1x2)

dq1
: : : �

df(M1x2)

dq6
0 : : : 0 �

df(M1x2)

dq13
: : : �

df(M1x2)

dq18
tf (x2) 0

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 : : : 0 �
dg(M2x1)

dq7
: : : �

dg(M2x1)

dq12
�
dg(M2x1)

dq13
: : : �

dg(M2x1)

dq18
0 tg(x1)

0 : : : 0 �
dg(M2x2)

dq7
: : : �

dg(M2x2)

dq12
�
dg(M2x2)

dq13
: : : �

dg(M2x2)

dq18
0 tg(x2)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
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.

.

.

.
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.

.
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.

1
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b =

0
BBBB@

f(M1x1)� q19tf (x1)
f(M1x2)� q19tf (x2)

.

.

.
g(M2x1)� q20tg(x1)
g(M2x2)� q20tg(x2)

.

.

.

1
CCCCA

The parameters describing the non-rigid transformations (q13 to q18) could in theory be
derived from either f or g. In practice, we obtain a better solution by estimating these
parameters using both images, and by biasing the result so that the image that �ts the
template better has a greater in
uence over the parameter estimates. This is achieved
by weighting the rows of A and b that correspond to the di�erent images. The weights
are derived from the sum of squares di�erence between the template and object images,
obtained from the previous solution of q. These are:

IPI

i=1
(f(M1xi)�q19tf(xi))2

and IPI

i=1
(g(M2xi)�q20tg(xi))2

.

Once the optimisation has converged to the �nal solution, we can obtain the rigid body
transformation that approximately maps between f and g, and we also have a�ne trans-
formation matrices that map between the object images and the templates. These are
used in the next step.

4.2 Partitioning the images.

Healthy brain tissue can generally be classi�ed into three broad tissue types on the basis
of an MR image. These are gray matter (GM), white matter (WM) and cerebro-spinal

uid (CSF). This classi�cation can be performed manually on a good quality T1 image,
by simply selecting suitable image intensity ranges that encompass most of the voxel
intensities of a particular tissue type. However, this manual selection of thresholds is
highly subjective.

Many groups have used clustering algorithms to partition MR images into di�erent tissue
types, either using images acquired from a single MR sequence, or by combining infor-
mation from two or more registered images acquired using di�erent scanning sequences
(eg. proton-density and T2-weighted).

The approach we have adopted here is a modi�ed version of one of these clustering
algorithms. The clustering algorithm of choice is the maximumlikelihood `mixturemodel'
algorithm (Hartigan, 1975).

We assume that the MR image (or images) consists of a number of distinct tissue types
(clusters) from which every voxel has been drawn. The intensities of voxels belonging
to each of these clusters conform to a multivariate normal distribution, which can be
described by a mean vector, a covariance matrix and the number of voxels belonging to
the distribution.

In addition, we have approximate knowledge of the spatial distributions of these clusters,
in the form of probability images (provided by the Montreal Neurological Institute (Evans
et al., 1992; Evans et al., 1993; Evans et al., 1994)), which have been derived from MR
images of a large number of subjects (see Figure 4). The original images were segmented
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Figure 4: The prior probability images of GM, WM and CSF (courtesy of the Montreal
Neurological Institute).

into binary images of GM, WM and CSF, and all normalised into the same space using a
9 parameter (3 translations, 3 rotations and 3 orthogonal zooms) a�ne transformation.
The probability images are the means of these binary images, so that they contain values
in the range of 0 to 1. These images represent the prior probability of a voxel being
either GM, WM or CSF after an image has been normalised to the same space using a
9 parameter a�ne transformation.

The primary di�erence between the current approach and the pure Mixture Model, is in
the update of the belonging probabilities. The assignment of a probability for a voxel is
based upon determining the probability of it belonging to cluster ci given that it has the
intensity v. This is based upon simple Bayesian statistics:

p(cijv) = p(vjci)p(ci)PK

k=1
p(vjck)p(ck)

where p(vjci) is the probability density of the cluster ci at value v, and p(ci) is the prior
probability of the voxel belonging to cluster ci. In the conventional Mixture Model,
p(ci) is simply ni - the number of voxels known to belong to cluster ci. In the current
implementation, p(ci) is based upon knowledge from the apriori probability images. It
takes the form p(ci) = nibi=

P
bi, where bi is the value at the corresponding position of

the ith probability image and
P
bi is the integral over this image.

We describe here a simpli�ed version of the algorithm as it would be applied to a single
image. We use a 12 parameter a�ne transformation determined from the previous step
to map between the space of the MR image (f), and that of the probability images (B).
This allows simple `on-the-
y' sampling of the probability images into the space of the
image we wish to partition.

Generally, we use 6 or 7 clusters: one each for GM, WM & CSF, two or three clusters
to account for scalp, eyes etc. and a background cluster. Since we have no probability
maps for scalp and background, we estimate them by subtracting bGM , bWM & bCSF
from a map of all ones, and divide the results equally between the remaining clusters.

17



We then assign initial probabilities (P) for each of the I voxels being drawn from each of
the K clusters. These are based on the apriori probability images (ie. pik = bk(M1

�1xi).
Where identical apriori probability maps are used for more than one cluster, the starting
estimates are modi�ed slightly by adding random noise.

The following steps (1 to 6) are repeated until convergence (or a prespeci�ed number of
iterations) is reached.

1. Compute the number of voxels belonging to each of the K clusters (h) as:

hk =
PI

i=1 pik over k = 1::K.

2. Mean voxel intensities for each cluster (v) are computed. This step e�ectively
produces a weighted mean of the image voxels, where the weights are the current
belonging probability estimates:

vk =
PI

i=1
pikf(xi)

hk
over k = 1::K.

3. Then the variance of each cluster (c) is computed in a similar way to the mean:

ck =
PI

i=1
pik(f(xi)�vk)

2

hk
over k = 1::K.

4. Now we have all the parameters that describe the current estimate of the distribu-
tions, we have to re-calculate the belonging probabilities (P).

Evaluate the probability density functions for the clusters at each of the voxels:

rik = (2�ck)
�0:5

exp(�(f(xi)�vk)
2

2ck
) over k = 1::K and i = 1::I.

5. Then utilise the prior information (B) (this is the only deviation from the conven-
tional mixture model algorithm that is simply qik = rikhk):

qik = rik
hkbk(M1

�1xi)PI

j=1
bk(M1

�1xj)
over k = 1::K and i = 1::I.

Note that we have extended the mixture model by including an extra term:

bk(M1
�1xi)PI

j=1
bk(M1

�1xj)
.

This term sums to unity over voxels, and can be thought of as the probability
density function of a voxel from cluster k being found at location i, irrespective of
how many voxels of type k there are in the brain. Using this term, we can include
the prior information, without biasing the overall proportions of di�erent tissue
types.

6. And �nally normalise the probabilities so that they integrate to unity at each voxel.

pik =
qikPK

j=1
qij

over k = 1::K and i = 1::I.
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Figure 5: Examples of MR images partitioned into GM, WM and CSF. Top: T2 weighted
image. Bottom: T1 weighted image.

With each iteration of the algorithm, the parameters describing the distributions (v, c &
h) move towards a better �t and the belonging probabilities (P) change slightly to re
ect
the new distributions. The parameters describing the clusters that have corresponding
prior probability images tend to converge more rapidly than the other clusters - this is
partly due to the better starting estimates. The �nal values in P are in the range of 0 to
1, although most values tend to stabilise very close to one of the two extremes. Examples
of MR images classi�ed in this way can be seen in Figure 5.

Strictly speaking, the assumption that multinormal distributions should be used to model
MRI intensities is not quite correct. After Fourier reconstruction, the moduli of the com-
plex pixel values are taken, thus rendering any potentially negative values positive. Where
the cluster variances are of comparable magnitude to the cluster means, the distribution
deviates signi�cantly from normal. This only really applies for the background, where
the true mean voxel intensity is zero. The algorithm is modi�ed to account for this dis-
crepancy between the model and reality. For this background cluster, the value of v is
set to zero before the variance c is computed. Also, because the background cluster is
described by only a half Gaussian (and h represent the integrals of the distributions) it
is necessary to double the computed values of r (step 4 above).

The greatest problem that the technique faces is image non-uniformity. The current
algorithm assumes that the voxel values for GM (for example) have the same intensity
distribution throughout the image. The non-stationary nature of MR image intensities
from some scanners can lead to a signi�cant amount of tissue misclassi�cation.
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4.3 Co-registering the image partitions.

The previous step produces images of GM, WM and CSF from the original images f and
g. These image partitions can then be simultaneously co-registered together to produce
the �nal solution.

This optimisation stage only needs to search for the six parameters that describe a
rigid body transformation. Again, we call these parameters q, and de�ne a matrix Mfg

based upon these parameters (c.f. Mgr as de�ned earlier). We de�ne a matrix M as

(Mg
�1MfgMgt

�1MftMf )
�1
. The way that this matrix has been formulated means that

the starting estimates for q can all be zero, because it incorporates the results from the
�rst step of the co-registration. Very few iterations are required at this stage to achieve
convergence. No scaling parameters are needed, since the probability images derived
from f have similar intensities to those derived from g. The system of equations that we
iteratively solve (Ax ' b) to optimise the parameters q are as follows (using notation
where pg1(x2) means `probability of voxel at x2 from image g belonging to cluster 1'):

A =

0
BBBBBBBBBBBBBBBBBBBBB@

�dpf1(Mx1)

dq1
�dpf1(Mx1)

dq2
: : : pg1(x1) 0 0

�dpf1(Mx2)

dq1
�dpf1(Mx2)

dq2
: : : pg1(x2) 0 0

...
...

. . .
...

...
...

�dpf2(Mx1)

dq1
�dpf2(Mx1)

dq2
: : : 0 pg2(x1) 0

�dpf2(Mx2)

dq1
�dpf2(Mx2)

dq2
: : : 0 pg2(x2) 0

...
...

. . .
...

...
...

�dpf3(Mx1)

dq1
�dpf3(Mx1)

dq2
: : : 0 0 pg3(x1)

�dpf3(Mx2)

dq1
�dpf3(Mx2)

dq2
: : : 0 0 pg3(x2)

...
...

. . .
...

...
...

1
CCCCCCCCCCCCCCCCCCCCCA

b =

0
BBBBBBBBBBBBBBBBBB@

pf1(Mx1)� pg1(x1)
pf1(Mx2)� pg1(x2)

...
pf2(Mx1)� pg2(x1)
pf2(Mx2)� pg2(x2)

...
pf3(Mx1)� pg3(x1)
pf3(Mx2)� pg3(x2)

...

1
CCCCCCCCCCCCCCCCCCA

After this co-registration we have our �nal solution. It is now possible to map voxel x of
image g, to the corresponding voxel Mx of image f . Examples of PET-MRI, and T1-T2

co-registration using this approach are illustrated in Figure 6.

4.3.1 An alternative implementation for low resolution images.

Here we brie
y describe an approach that may be more appropriate for the registration of
SPECT or low resolution PET images to MRI. The tissue classi�cation model described
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Figure 6: An example of PET-MRI co-registration (Left) and T1-T2 co-registration
(Right), achieved using the techniques described here.

above is not ideal for partitioning low resolution images. It assumes that each voxel
contains tissue from only one of the underlying clusters, whereas in reality, many voxels
will contain a mixture of di�erent tissue types (Bullmore et al., 1995; Ashburner et al.,
1996).

An alternative is to only partition the MR image as described above, and generate an
image from the resulting segments that resembles a PET image. This can be achieved
by assigning the gray matter segment a value of 1, white matter a value of about 0.3,
and CSF a value of about 0.1, followed by smoothing. It is then possible to apply the
within-modality co-registration described in the previous section to co-register the real
and `fake' PET images.

4.4 Discussion.

We have described a strategy for the co-registration of brain images from di�erent modal-
ities that is entirely automatic. No manual editing of the images is required in order to
remove scalp. Nor does the investigator need to identify any mutual points or features,
or even set thresholds for morphological operations like brain segmentation. The only oc-
casional intervention that may be needed is to provide starting estimates to the �rst step
of the procedure. The procedure has so far been successfully applied to the registration
of T1 MRI to PET (blood 
ow), T1 to T2 MRI, and T2 to PET (in normal subjects).

In addition to providing a method of co-registration, another feature of the current ap-
proach is the generation of partitioned (or segmented) images that can be used for voxel
based morphometrics (Wright et al., 1995). The incorporation of the prior probabilities
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into the clustering algorithm produces a much more robust solution. However, a better
result is expected when the method is applied to two (or more) exactly registered images
from di�erent scanning sequences. Although the algorithm has only been illustrated for a
single image, the principle can be extended such that the classi�cation can be performed
using any number of registered images. The mixture model clustering algorithm is de-
scribed for multi-dimensional input data in Hartigan (1975), although the use of priors
is not included in the description.

5 A�ne Spatial Normalisation

In order to average signals from functional brain images of di�erent subjects, it is neces-
sary to register the images together. This is often done by mapping all the images into
the same standard space (Talairach & Tournoux, 1988). Almost all between subject co-
registration or spatial normalisation methods for brain images begin with determining the
optimal 9 or 12 parameter a�ne transformation that registers the images together. This
step is normally performed automatically by minimising (or maximising) some mutual
function of the images. Without constraints and with poor data, the simple parameter
optimisation approach can produce some extremely unlikely transformations. For exam-
ple, when there are only a few transverse slices in the image (spanning the X and Y

dimensions), it is not possible for the algorithms to determine an accurate zoom in the Z
direction. Any estimate of this value is likely to have very large errors. Previously in this
situation, it was better to assign a �xed value for this di�cult-to-determine parameter,
and simply �t for the remaining ones.

By incorporating prior information into the optimisation procedure, a smooth transition
between �xed and �tted parameters can be achieved. When the error for a particular
�tted parameter is known to be large, then that parameter will be based more upon
the prior information. The approach adopted here is essentially a maximum a posteriori

(MAP) Bayesian approach.

5.1 A Bayesian Approach.

Bayes rule is generally expressed in the continuous form:

p(apjb) = p(bjap)p(ap)R
q
p(bjaq)p(aq)dq

where p(ap) is the prior probability of ap being true, p(bjap) is the conditional probability
that b is observed given that ap is true and p(apjb) is the Bayesian estimate of ap being
true, given that measurement b has been made. The maximum a posteriori estimate for
parameters p is the mode of p(apjb). For our purposes, p(ap) represents a known prior
probability distribution from which the parameters are drawn, p(bjap) is the likelihood of
obtaining the parameters given the data b and p(apjb) is the function to be maximised.
The optimisation can be simpli�ed by assuming that all probability distributions are
multidimensional and normal (multi-normal), and can therefore be described by a mean
vector and a covariance matrix.

22



−10 −5 0 5 10 15 20
0

0.05

0.1

0.15

Parameter Value

P
ro

ba
bi

lit
y

(a) (b)

(c)

Figure 7: This �gure illustrates a hypothetical example with one parameter. The solid
Gaussian curve (a) represents the prior probability distribution (p.d.f), and the dashed
curve (b) represents a parameter estimate (from �tting to observed data) with its asso-
ciated certainty. We know that the true parameter was drawn from distribution (a), but
we can also estimate it with the certainty described by distribution (b). Without the
MAP scheme, we would probably obtain a more precise estimate for the true parameter
by taking the most likely apriori value, rather than the value obtained from a �t to the
data. The dotted line (c) shows the p.d.f that would be obtained from a MAP estimate.
It combines previously known information with that from the data to give a more precise
estimate.
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When close to the minimum, the optimisation becomes almost a linear problem. This
allows us to assume that the errors of the �tted parameters (p) can be locally approx-
imated by a multi-normal distribution with covariance matrix C. We assume that the
true parameters are drawn from a known underlying multi-normal distribution of known
mean (p0) and covariance (C0). By using the apriori probability density function (p.d.f)
of the parameters, we can obtain a better estimate of the true parameters by taking a
weighted average of p0 and p (see Figure 7):

pb = (C0
�1 +C�1)�1(C0

�1p0 +C�1p) (3)

The estimated covariance matrix of the standard errors for the MAP solution is then:

Cb = (C0
�1 +C�1)�1 (4)

pb and Cb are the parameters that describe the multi-normal distribution p(apjb).

5.2 Estimating C.

In order to employ the Bayesian approach, we need to computeC, which is the estimated
covariance matrix of the standard errors of the �tted parameters. If the observations are
independent, and each has unit standard deviation, then C is given by (ATA)�1. In
practice, we don't know the standard deviations of the observations, so we assume that
it is equal for all observations, and estimate it from the sum of squared di�erences:

�2 =
IX
i=1

(f(Mxi)� p13g(xi))
2 (5)

This gives a covariance matrix (ATA)�1�2=(I � J), where I refers to the number of
sampled locations in the images and J refers to the number of parameters (13 in this
case).

However, complications arise because the images are smooth, resulting in the observations
not being independent, and a reduction in the e�ective number of degrees of freedom
(from I � J). We correct for the number of degrees of freedom using the principles
described by Friston (1995a) (although this approach is not strictly correct (Worsley
& Friston, 1995), it gives an estimate that is close enough for our purposes). We can
estimate the e�ective degrees of freedom by assuming that the di�erence between f

and g approximates a continuous, zero-mean, homogeneous, smoothed Gaussian random

�eld. The approximate parameter of the Gaussian point spread function describing the
smoothness in direction d (assuming that the axes of the Gaussian are aligned with the
axes of the image coordinate system) can be obtained by (Poline et al., 1995):

wd =

vuut �2(I � J)

2
P

i (rd(f(Mxi)� g(xi)))2
(6)

If the images are sampled on a regular grid where the spacing in each direction is sd, the
number of e�ective degrees of freedom (�) becomes approximately (I � J)

Q
d

sd
wd(2�)

1=2 ,

and the covariance matrix can now be estimated by:

C = (ATA)�1�2=� (7)
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Note that this only applies when sd < wd(2�)1=2, otherwise � = I � J .

5.3 Estimating p0 and C0.

A suitable apriori distribution of the parameters (p0 and C0) was determined from a�ne
transformations estimated from 51 high resolution T1 weighted brain MR images using
basic least squares optimisation algorithm. Each transformation matrix was de�ned from
parameters q according to:

M =

0
BBB@
1 0 0 q1
0 1 0 q2
0 0 1 q3
0 0 0 1

1
CCCA�

0
BBB@
1 0 0 0
0 cos(q4) sin(q4) 0
0 �sin(q4) cos(q4) 0
0 0 0 1

1
CCCA�

0
BBB@

cos(q5) 0 sin(q5) 0
0 0 0

�sin(q5) 0 cos(q5) 0
0 0 0 1

1
CCCA : : :

: : :�

0
BBB@

cos(q6) sin(q6) 0 0
�sin(q6) cos(q6) 0 0

0 0 1 0
0 0 0 1

1
CCCA�

0
BBB@
q7 0 0 0
0 q8 0 0
0 0 q9 0
0 0 0 1

1
CCCA�

0
BBB@
1 q10 q11 0
0 1 q12 0
0 0 1 0
0 0 0 1

1
CCCA

The results for the translation and rotation parameters (q1 to q6) can be ignored, since
these depend only on the positioning of the subjects in the scanner, and do not re
ect
variability in head shape and size.

The mean zooms required to �t the individual brains to the space of the template (pa-
rameters q7 to q9) were 1.10, 1.05 and 1.17 in X, Y and Z respectively, re
ecting the fact
that the template was larger than the typical head. The covariance matrix was:

0
B@ 0:00210 0:00094 0:00134
0:00094 0:00307 0:00143
0:00134 0:00143 0:00242

1
CA

giving a correlation coe�cient matrix of:

0
B@ 1:00 0:37 0:59
0:37 1:00 0:52
0:59 0:52 1:00

1
CA

As expected, these parameters are correlated. This allows us to partially predict the
optimal zoom in Z given the zooms in X and Y , a fact that is useful for spatially
normalising images containing a limited number of transverse slices.

The means of the parameters de�ning shear were close to zero (-0.0024, 0.0006 and -
0.0107 for q10, q11 and q12 respectively). The variances of the parameters are 0.000184,
0.000112 and 0.001786, with very little covariance.
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5.4 Incorporating the Bayesian Approach into the Optimisa-

tion.

As mentioned previously, when the parameter estimates are close to the minimum the
registration problem is almost linear. Prior to this, the problem is non-linear and co-
variance matrix C no longer directly re
ects the certainties of the parameter estimates.
However, it does indicate the certainties of the changes made in the parameter esti-
mates at each iteration, so this information can still be incorporated into the iterative
optimisation scheme.

By combining Eqns. (1), (3) and (7), we obtain the following scheme:

pb
(n+1) = (C0

�1 + �)�1(C0
�1p0 + �pb

(n) + �) (8)

where � = ATA�=�2 and � = ATb�=�2.

Another way of thinking about this optimisation scheme, is that two criteria are simulta-
neously being minimised. The �rst is the sum of squares di�erence between the images,
and the second is a scaled distance squared between the parameters and their known
expectation.

5.4.1 Stopping Criterion.

The optimal solution is no longer that which minimises the sum of squares of the residuals,
so the rate of change of �2 is not the best indication of when the optimisation has
converged. The objective of the optimisation is to obtain a �t with the smallest errors.
These errors are described by the covariance matrix of the parameter estimates, which in
the case of this optimisation scheme is (�+C0

�1)�1. The `tightness' of the �t is re
ected
in the determinant of this matrix, so the optimal solution should be achieved when the
determinant is minimised. In practice we look at the rate of change of the log of the
determinant.

6 Non-linear Spatial Normalisation

Statistical Parametric Mapping using positron emission tomography (PET) or functional
magnetic resonance images (fMRI) necessitates the transformation of images from several
subjects into the same anatomical space. The basic idea is to use a target (or template)
image to de�ne the standard space into which the di�erent subjects are warped. By using
a template which conforms to the space of a standard coordinate system, such as that
de�ned by Talairach and Tournoux (1988), it is possible to report anatomical positions
in terms of Cartesian coordinates, relative to some reference.

There are a number of approaches to non-linear spatial normalisation. Some of these are
interactive, requiring the user to select homologous landmarks in the object and target
images to be co-registered using non-linear warps or deformations. The most notable of
these are the thin plate spline algorithms (Bookstein, 1989). However, the interactive
identi�cation of landmarks is time consuming, and also rather subjective.
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Other methods attempt to perform spatial normalisation in an automatic manner. There
is a potentially enormous number of parameters that could be solved for in spatial nor-
malisation problems (ie. the problem is very high dimensional). The forms of spatial
normalisation tend to di�er in how they cope with the large number of parameters re-
quired to de�ne the transformation. Some have abandoned the conventional optimisation
approach, and use viscous 
uid models (Christensen et al., 1993; Christensen et al., 1996).
The major advantage of these methods is that they ensure a one-to-one mapping in the
allowed spatial transformations. Others adopt a multi-resolution approach whereby only
a few of the parameters are determined at any one time (Collins et al., 1994b). Usually,
the entire volume is used to determine parameters that describe overall low frequency
deformations. The volume is then subdivided, and slightly higher frequency deformations
are found for each subvolume. This continues until the desired deformation precision is
achieved.

Another approach is to reduce the number of parameters that model the deformations.
This is often done by describing the deformation by a linear combination of basis func-
tions. This section describes one such approach.

The deformations required to transform images to the same space are not clearly de�ned.
Unlike rigid body transformations, where the constraints are explicit, those for non-
linear warping are more arbitrary. Di�erent subjects have di�erent patterns of gyral
convolutions, so there is not necessarily a single best transformation from one space
to another. Even if gyral anatomy can be matched exactly, this is no guarantee that
areas of functional specialisation will be matched in a homologous way. For the purpose
of averaging signals from functional images of di�erent subjects, very high resolution
spatial normalisation may be unnecessary or unrealistic.

6.1 A Basis Function Approach

The model for de�ning the non-linear warping uses deformations that consist of a linear
combination of basis functions. So, the transformation from coordinates x, to coordinates
y is:

y1 = x1 +
P

j tj1bj1(x)

y2 = x2 +
P

j tj2bj2(x)

y3 = x3 +
P

j tj3bj3(x)

where tjd is the ith coe�cient for dimension d, and bjd(x) is the jth basis function at
position x for dimension d. The basis functions used are those of the three dimensional
discrete cosine transform (DCT), because they have useful properties (which will be
explained later). The two dimensional DCT basis functions are shown in Figure 8, and a
schematic application of a deformation is shown for a two dimensional example in Figure
9.

Again, the optimisation involves minimising the sum of squared di�erences between the
object image (f) and a template image (g). The images may be scaled di�erently, so
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Figure 8: The lowest frequency basis functions of a two dimensional Discrete Cosine
Transform basis functions.

an additional parameter (u) is needed to accommodate this di�erence. The optimised
function is:

P
i f(yi)� ug(xi)

The approach described in Section 2.4 is used to optimise the parameters t1, t2, t3 and
u. This requires the derivatives of the function f(yi) � ug(xi) with respect to each
parameter, and these can be obtained using the chain rule:

df(y)

dtj1
= df(y)

dy1

dy1
dtj1

df(y)

dtj2
= df(y)

dy2

dy2
dtj2

df(y)

dtj3
= df(y)

dy3

dy3
dtj3

In these expressions, df(y)=dyd is simply the derivative in dimension d of image f , and
dyd=dtdi simply evaluates to bjd(x).

6.2 A Fast Algorithm

In this section, a slightly di�erent mathematical notation is used in order to illustrate
(using matrix terminology) how the computations are actually performed. The illustra-
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Dark − shift left, Light − shift right

Dark − shift down, Light − shift up

Deformation Field in X

Deformation Field in Y

Field Applied To Image

Deformed Image

Figure 9: For the two dimensional case, the deformation �eld consists of two scalar �elds.
One for horizontal deformations, and the other for vertical deformations. The images on
the left show the deformation �elds as a linear combination of the basis images (see Figure
8). The center column shows the deformations in a more intuitive sense. The deformation
�eld is applied by overlaying it on the object image, and re-sampling (right).
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tion is in two dimensions and it is left to the reader to generalise to three dimensions.
The images f and g are considered as matrices F and G respectively. For matrix F, the
value of the element at position m,n is denoted by fm;n. Row m of the same matrix will
be denoted by fm;:, and column n by f:;n. The transform coe�cients are also treated as
matrices Tx and Ty. The basis functions used by the algorithm can be generated from a
separable form from matricesBx and By, such that the deformation �elds can be rapidly
constructed by computing BxTxBy

T and BxTyBy
T .

The basis functions of choice are the lowest frequency components of the two dimensional
discrete cosine transform. This transform was chosen because the two dimensional DCT
is separable, it is a real transform (eliminating the need for complex arithmetic) and
because it's lowest frequencies give excellent energy compaction for smooth functions
(Jain, 1989). In one dimension, the DCT of a function is generated by multiplication
with the matrix BT , where the elements of B are de�ned by:

bm;1 =
1p
M m=1::M

bm;i =
q

2
M
: cos(�:(2:m�1):(i�1)

(2:M)
) m=1::M;i=2::I

Between each iteration, the image F is resampled according to the latest parameter
estimates. The derivatives of F are also resampled to give rxF and ryF. The algorithm
for generating ATA and ATb (� and �) for each iteration is then:

� = (0 )
� = (0 )

forj = 1 : : : J
C = byj;:

Tbyj;:
Ex = diag(�rxf :;j)Bx

Ey = diag(�ryf :;j)Bx

� = �+

0
B@

C
 (Ex
TEx) C
 (Ex

TEy) byj;:
T 
 (Ex

Tg:;j)

(C
 (Ex
TEy))T C
 (Ey

TEy) byj;:
T 
 (Ey

Tg:;j)

(byj;:
T 
 (Ex

Tg:;j))T (byj;:
T 
 (Ex

Tg:;j))T g:;j
Tg:;j

1
CA

� = � +

0
B@
byj;:

T 
 (Ex
T f:;j)

byj;:
T 
 (Ey

T f:;j)

g:;j
T f:;j

1
CA

end

In the above algorithm, the symbol `
' refers to the Kronecker tensor product. If A is a
matrix of order M �N , and B is a second matrix, then:

A
B =

0
B@
a11B : : : a1NB
...

. . .
...

aM1B : : : aMNB

1
CA

The notation diag(�rxf :;j)Bx simply means multiplying each element of row i of Bx by
�rxf i;j.
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This rather cumbersome looking algorithm is used since it utilises some of the useful
properties of Kronecker tensor products. This is especially important when the algo-
rithm is implemented in three dimensions. The performance enhancement results from a
reordering of a set of operations like (Bz
By 
Bx)T (Bz
By 
Bx), to the equivalent
(Bz

TBz)
 (By
TBy)
 (Bx

TBx). Assuming that the matricesBz, By and Bx all have or-
der M �N , then the number of 
oating point operations is reduced from M3N3(N3 + 2)
to approximately 3M(N2 +N ) + N6. If M equals 32, and N equals 4, we expect a
performance increase of about a factor of 23,000.

6.3 Regularisation - a Bayesian-like approach

As the algorithm stands, it is possible to introduce unnecessary deformations that only
reduce the residual sum of squares by a tiny amount. In this section we describe a form of
regularisation for biasing the deformations to be smooth, and so improve stability. The
principles behind the regularisation are Bayesian, and are essentially the same as those
described in Section 5. A Bayesian approach to non-linear image registration is nothing
new. The incorporation of prior knowledge about the properties of the allowed warps is
fundamental to all successful non-linear registration approaches. Gee et al.(1995) have
described one Bayesian approach to non-linear image registration.

The objective of spatial normalisation is to warp the images such that homologous regions
of di�erent brains are moved as close together as possible. A large number of parameters
are required to encompass the range of possible non-linear warps. With many parameters
relative to the number of independent observations, the errors associated with the �t
are likely to be very large. The use of constraints (such as preserving a one-to-one
mapping between image and template) can reduce these errors, but they still remain
considerable. For this purpose, the simple minimisation of di�erences between the images
is not su�cient. Although the normalised images may appear similar to each other,
the data may in-fact have been `over-�tted', resulting in truly homologous regions being
moved further apart. Other researchers circumvent this over-�tting problem by restricting
their spatial normalisation to just an a�ne transformation. A properly implemented
Bayesian approach should attempt to reach an optimum compromise between these two
extremes. Although the incorporation of an optimally applied MAP approach into non-
linear registration has the e�ect of biasing the resulting deformations to be smoother
than the true deformations, it is envisaged that homologous voxels should be registered
more closely than for unconstrained deformations.

This regularisation is achieved by minimising the sum of squares di�erence between the
template and the warped image, while simultaneously minimising the sum of squares of
the derivatives of the deformation �eld. If we assume linearity, in two dimensions this can
be expressed as minimising an expression of the form jAp� bj2 + �(jDxpj2 + jDypj2),
where Dxp and Dyp represent the derivatives of the deformation �eld. The parameter �
(ranging from 0 to in�nity) simply describes how much emphasis should be placed upon
the smoothness of the �nal solution. From this, we can derive an iterative scheme similar
to that shown in Eqn. 8:

p(n+1) = (�+ �(Dx
TDx +Dy

TDy))�1(�p(n) + �).
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The diagonal matrix Dx
TDx + Dy

TDy can be readily computed, and is equivalent to
C0

�1 from Eqn. 8. Brain lengths vary with a standard deviation of about 5% of the
mean, and may be appropriate to assume that there is roughly the same variability
in the lengths of the di�erent brain sub-structures. The relative sizes of voxels before
and after spatial normalisation is re
ected in the derivatives of the �elds that describe
the deformation. Therefore, the optimum value for � may be one that re
ects a prior
distribution of these derivatives with a standard deviation of about 0.05.

If the true prior distribution of the parameters is known (derived from a large number
of subjects), then the matrix (Dx

TDx + Dy
TDy) could be replaced by the inverse of

the covariance matrix that describes this distribution. This approach would have the
advantage that the resulting deformations are more typically \brain like", and so increases
the face validity of the approach.

6.4 Discussion

The criteria for `good' spatial transformations can be framed in terms of validity, reli-
ability and computational e�ciency. The validity of a particular transformation device
is not easy to de�ne or measure and indeed varies with the application. For example a
rigid body transformation may be perfectly valid for realignment but not for spatial nor-
malisation of an arbitrary brain into a standard stereotactic space. Generally the sorts
of validity that are important in spatial transformations can be divided into (i) Face va-
lidity, established by demonstrating the transformation does what it is supposed to and
(ii) Construct validity, assessed by comparison with other techniques or constructs. In
functional mapping face validity is a complex issue. At �rst glance, face validity might
be equated with the co-registration of anatomical homologues in two images. This would
be complete and appropriate if the biological question referred to structural di�erences
or modes of variation. In other circumstances however this de�nition of face validity
is not appropriate. For example the purpose of spatial normalisation (either within or
between subjects) in functional mapping studies is to maximise the sensitivity to neuro-
physiological change elicited by experimental manipulation of sensorimotor or cognitive
state. In this case a better de�nition of a valid normalisation is that which maximises
condition-dependent e�ects with respect to error (and if relevant inter-subject) e�ects.
This will probably be e�ected when functional anatomy is congruent. This may or may
not be the same as registering structural anatomy.

The method described here does not have the potential precision of some other methods
for computing non-linear deformations, since the deformations are only de�ned by a few
hundred parameters. However, it may be meaningless to attempt an exact match between
brains beyond a certain resolution. There is not a one-to-one relationship between the
cortical structures of one brain and those of another, so any method that claims to match
brains exactly must be folding the brain to create sulci and gyri that do not really exist.

The current method is relatively fast (takes in the order of 30 seconds per iteration).
The speed is partly a result of the small number of parameters involved, and the simple
optimisation algorithm that assumes an almost quadratic error surface. Because the
images are �rst matched using a simple a�ne transformation, there is less `work' for
the algorithm to do, and a good registration can be achieved with only a few iterations

32



(about 10).

When higher spatial frequency deformations are to be �tted, more DCT coe�cients are
required to describe the deformations. There are practical problems that occur when
more than about the 8 � 8 � 8 lowest frequency DCT components are used. One of
these is the problem of storing and inverting the curvature matrix (ATA). Even with
deformations limited to 8�8�8 coe�cients, there are at least 1537 unknown parameters,
requiring a curvature matrix of about 18Mbytes (using double precision 
oating point
arithmetic). An alternative optimisation method (which does not require this storage) is
needed when more parameters are to be estimated. One possible approach is to substitute
the Gauss-Newton optimisation for a conjugate gradient method (Press et al., 1992).

A second problem with attempting to �t higher spatial frequencies (especially with very
little regularisation), is one of stability. With too many parameters, the lack of hard
constraints can result in extremely unlikely deformations. Part of the stability problem
is due to there being nothing to constrain the deformation �elds to be di�eomorphic (ie.
a unique one-to-one correspondence from one space to the other - see (Christensen et al.,
1996)). The use of a limited number of smooth basis functions, and the regularisation
technique described in this paper only reduces the likelihood of the di�eomorphism con-
straint being broken. Although this approach ensures that each point in the template's
space maps to only one point in the space of the object, the reverse is not true, and it is
possible to produce deformations that loop back on themselves.

In order to satisfy the di�eomorphism constraint, future work may involve restricting
the determinants of the Jacobians at each point of the deformation �eld to be greater
than zero. The current method of regularisation assumes a prior distribution for these
determinants that allows them to be negative. If the prior distribution were assumed to be
log-normal, then the non-negativity constraint on the determinants would be enforced.
The choice of a log-normal distribution is because the determinants of the Jacobians
represent the relative volumes of the warped and unwarped voxels, and the likelihood
of a voxel doubling in volume should be the same as the likelihood of its volume being
halved.

Optimisation problems are best solved with smooth functions. For this particular case,
the template and object images are smoothed (to about 8mm FWHM) to facilitate the
optimisation. Not only does using smooth images facilitate a more rapid solution to
the problem, but it also reduces the number of possible local minima. However, it
does have the disadvantage that some �ne grain information is lost. An approach that
successively optimises the problem at di�erent resolutions may be more appropriate. This
would involve normalising initially at a low resolution to determine the lowest frequency
deformations, and gradually increasing the resolution in order to determine the �ner
deformations. This is an approach that has been adopted by a number of investigators
(e.g. Collins et al). However, even using a multiscale approach, there is no guarantee of
obtaining the global minimum solution. A further complication arises from the fact that
there is no one-to-one match between the small structures (especially gyral and sulcal
patterns) of any two brains. Even identical twins have di�erent patterns of cortical
folding (Bartley et al., 1997). This means that it is not possible to obtain an objective
high frequency match however good the algorithm is. For the purposes of functional
imaging, it is probably best to accept that there is a lower bound in terms of how
accurately it is possible to register cortical areas together. If one accepts this, then it
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seems logical to opt for a smooth solution, and use only a small number of parameters
to de�ne the deformations.

7 Summary

Prior to any statistical analysis within the SPM package, it is important that all the
functional images (PET or fMRI) from each subject are aligned together. This step
is performed by determining a rigid body transformation for each of the images that
registers them to the �rst in the series. This step is a within modality procedure, and
results in an optimisation of the parameters by minimising the residual sum of squares.

Often, it is desirable to register a structural image to the functional image series. Again,
this is a rigid body registration, but because the structural image is acquired in a di�er-
ent modality to the functional images, the registration can not simply be performed by
minimising the residual sum of squares. Within SPM, these between modality registra-
tions are performed by �rst partitioning the images into gray and white matter and then
simultaneously registering the partitions together.

Images from several subjects can be analyzed together by �rst normalising them all to
the same space. In order to facilitate reporting of signi�cant activations by their location
within a standard coordinate system, this space is usually that described by Talairach
and Tournoux (1988). Brains vary in shape and size so more parameters are needed
to describe the spatial transformations. The spatial normalisation usually begins by
determining the optimum 12 parameter a�ne transformation to register the brain with
a template image. The template image is of the same modality as the image to be
registered, so the optimisation is simply done by minimising the residual sum of squares.
This 12 parameter transformation corrects for the variation in position and size of the
image, before more subtle di�erences are corrected by a non-linear registration. In order
to reduce the number of parameters to be �tted, only smoothly varying deformations
are determined by the non-linear registration. These deformations are modeled by a
linear combination of smooth basis functions, and a fast optimisation method has been
developed to determine the best coe�cients for each of the basis functions. Once the
transformation parameters have been determined from one image, they can be applied
to any other image that is in register with it.

34



References

Alpert, N. M., Bradshaw, J. F., Kennedy, D., & Coreia, J. A. 1990. The principal axis trans-

formation - a method for image registration. J. nucl. med., 31, 1717{1722.

Ashburner, J., Haslam, J., Taylor, C., Cunningham, V. J., & Jones, T. 1996. A cluster analysis

approach for the characterization of dynamic PET data. Chap. 59, pages 301{306 of:

Quanti�cation of brain function using PET.

Bartley, A. J., Jones, D. W., & Weinberger, D. R. 1997. Genetic variability of human brain

size and cortical gyral patterns. Brain, 120, 257{269.

Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deforma-

tions. IEEE trans pattern anal machine intelligence, 11(6), 567{585.

Bullmore, E., Brammer, M., Rouleau, G., Everitt, B., Simmons, A., Sharma, T., Frangou,

S., Murray, R., & Dunn, G. 1995. Computerized brain tissue classi�cation of magnetic

resonance images: A new approach to the problem of partial volume artifact. NeuroImage,

2, 133{147.

Christensen, G. E., Rabbitt, R. D., & Miller, M. I. 1993. 3D brain mapping using using a

deformable neuroanatomy. Physics in medicine and biology, 39, 609{618.

Christensen, G. E., Rabbitt, R. D., & Miller, M. I. 1996. Deformable templates using large

deformation kinematics. IEEE transactions on image processing, 5, 1435{1447.

Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marchal, G. 1995.

Automated multi-modality image registration based on information theory. Pages 263{

274 of: Information processing in medical imaging.

Collins, D. L., Peters, T. M., & Evans, A. C. 1994a. An automated 3D non-linear image

deformation procedure for determination of gross morphometric variability in human brain.

Proc. conference on visualisation in biomedical computing, 180{190.

Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. 1994b. Automatic 3D intersubject

registration of MR volumetric data in standardized taliarach space. J. comput. assist.

tomogr., 18, 192{205.

Eddy, W. F., Fitzgerald, M., & Noll, D. C. 1996. Improved image registration by using Fourier

interpolation. Magnetic resonance in medicine, 36, 923{931.

Evans, A. C., Collins, D. L., & Milner, B. 1992. An MRI-based stereotactic atlas from 250

young normal subjects. Soc. neurosci. abstr., 18, 408.

Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. 1993.

3D statistical neuroanatomical models from 305 MRI volumes. Pages 1813{1817 of: Proc.

IEEE-nuclear science symposium and medical imaging conference.

Evans, A. C., Kamber, M., Collins, D. L., & Macdonald, D. 1994. An MRI-based probabilistic

atlas of neuroanatomy. Pages 263{274 of: Shorvon, S., Fish, D., Andermann, F., Bydder,

G. M., & H, Stefan (eds), Magnetic resonance scanning and epilepsy. NATO ASI Series

A, Life Sciences, vol. 264. Plenum Press.

Fox, P. T. 1995. Spatial normalization origins: Objectives, applications, and alternatives.

Human brain mapping, 3, 161{164.

35



Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. 1991. Plastic transformation

of PET images. J. comput. assist. tomogr., 15, 634{639.

Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J., Williams, S. C. R., Frackowiak, R.

S. J., & Turner, R. 1995a. Analysis of fMRI time series revisited. NeuroImage, 2, 45{53.

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R.

S. J. 1995b. Spatial registration and normalization of images. Human brain mapping, 2,

165{189.

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R. 1996. Movement-

related e�ects in fMRI time-series. Magnetic resonance in medicine, 35, 346{355.

Gee, J. C., Briquer, L. Le, & Barillot, C. 1995. Probablistic matching of brain images. Pages

113{125 of: Information processing in medical imaging.

Hajnal, J. V., Mayers, R., Oatridge, A., Schwieso, J. E., Young, J. R., & Bydder, G. M. 1994.

Artifacts due to stimulus correlated motion in functional imaging of the brain. Magnetic

resonance in medicine, 31, 289{291.

Hartigan, J. A. 1975. Clustering algorithms. New York: John Wiley & Sons, Inc. Pages 113{129.

Jain, A. K. 1989. Fundamentals of digital image processing. Pretence-Hall.

Kosugi, Y., Sase, M., Kuwatani, H., Kinoshita, N., Momose, T., Nishikawa, J., & Watanabe,

T. 1993. Neural network mapping for nonlinear stereotactic normalisation of brain MR

images. J. comput. assist. tomogr., 17, 455{460.

Lange, N. 1994. Some computational and statistical tools for paired comparisons of digital

images. Statistical methods in medial research, 3, 23{40.

Pelizzari, C. A., Chen, G. T. Y., Spelbring, D. R., Weichselbaum, R. R., & Chen, C. T. 1988.

Accurate three-dimensional registration of CT, PET and MR images of the brain. J.

comput. assist. tomogr., 13, 20{26.

Poline, J.-B., Friston, K. J., Worsley, K. J., & Frackowiak, R. S. J. 1995. Estimating smoothness

in statistical parametric maps: Con�dence intervals on p-values. J. comput. assist. tomogr.,

19(5), 788{796.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992. Numerical recipes

in C (second edition). Cambridge: Cambridge.

Talairach, J., & Tournoux. 1988. Coplanar stereotaxic atlas of the human brain. New York:

Thieme Medical.

Woods, R. P., Cherry, S. R., & Mazziotta, J. C. 1992. Rapid automated algorithm for aligning

and reslicing PET images. J. comput. assist. tomogr., 16, 620{633.

Worsley, K. J., & Friston, K. J. 1995. Analysis of fMRI time-series revisited - again. NeuroImage,

2, 173{181.

Wright, I. C., McGuire, P. K., Poline, J.-B., Travere, J. M., Murray, R. M., Frith, C. D.,

Frackowiak, R. S. J., & Friston, K. J. 1995. A voxel-based method for the statistical

analysis of gray and white matter density applied to schizophrenia. NeuroImage, 2, 244{

252.

36


