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1 Introduction

Statistical methods used to analyse functional neuroimaging data are essential for a
proper interpretation of the results of experiments that ultimately aim at a better un-
derstanding of the neuroanatomy of human brain function. The analysis of functional
imaging experiments often involves the formation of a Statistical Parametric Map (spm).
The conceptual idea of spms was �rst introduced by Friston et al. (1990). In such maps,
the value at each position or voxel is a statistic that expresses evidence against a null
hypothesis of no experimentally induced activation at that voxel. The construction of an
spm can be decomposed into three main steps :

� Spatial transformations: In the most general case, functional imaging experiments
require the acquisition of data from several subjects, or several groups of subjects.
Sophisticated techniques have been designed to normalise the anatomy of di�erent
brains into a standard stereotactic space (Friston et al., 1996b; Ashburner & Friston,
1997). Spatial smoothing is also usually performed to allow for interindividual gyral
variation and to improve the signal to noise ratio. Note that smoothing does not
always improves the signal to noise ratio and the relationship between smoothing
and sensitivity is discussed further in this chapter.

� Construction of an spm. This is a key step because it requires the (generally non
unique) modelling of e�ects of interest or of no interest for the experimental protocol
analysed. The General Linear Model (GLM) o�ers the exibility needed. This step
is fully described in the previous chapter (Holmes & Friston, 1997), the output of
which is a three dimensional (3D) statistic image or \map" formed of thousands of
correlated Student t statistics.

� Statistical inference from the spm. This step is the focus of this chapter.

Images contains a great number of voxels so that the spm are not directly interpretable.
An essential step was to �nd a way to correct for the multiple comparison problem. A
di�culty with this correction lies in the non independence of voxel intensities due to both
the initial resolution of images and to post processing smoothing. The non independence
of voxels cannot be treated by \Bonferroni" procedures that treat voxels as if they were
independent because they are much too stringent and would wipe out statistically reliable
activation signals from the results.

Since the �rst attempts to analyse a voxel based activation map, a number of statistical
techniques have been developed for the analysis of spms. Essential to the development
of these techniques is (Gaussian) Random Field Theory that deals with the behaviour of
stochastic processes de�ned over a space of any dimensions (D). Usually, D is 3 (analysis
of a volume) but can be greater (e.g search over time, with potential application in fmri,
or search over scale space multi �ltering strategy). In this chapter we review for the
general reader some important tests (based on results from this �eld of mathematics)
can be used for the assessment of signi�cant activations in spms. These techniques have
become increasingly important because they are general, require very little computation
and provide an extensive characterisation of the di�erent kinds of response expected in
activation studies.
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This chapter is organised in (almost) chronological order and we will show that this
order also corresponds to the di�erent kinds of risk of error associated with the di�erent
statistical tests described. These tests can be looked upon as a hierarchy of procedures
with decreasing localising power but potentially increasing sensitivity.

We briey review some important extensions to these statistical tests, and introduce
alternative non parametric approaches which do not use Random Fields theory and are
free from any assumptions (Holmes et al., 1996). Finally we discuss relevant issues related
to image smoothness.

2 Testing for the intensity of an activation in SPMs

2.1 Theory

Friston et al. (1991) proposed a procedure addressing the multiple comparison problem.
Using very basic results on random processes (Cox & Miller, 1990), they derived a test
for bi-dimensional (2D) processes that e�ciently controlled for non independence in the
data.

Building on this result, Worsley et al. (1992) used a mathematically more conventional
procedure to extend the test in three or more dimensions.

We describe briey how this was achieved emphasising assumptions about the volume or
image to be analysed and critically assess validity of these correction procedures whilst
proposing practical guidelines. Although results are available for di�erent random �elds
(Worsley, 1994), we will concentrate on the use of the results established for Gaussian
random �elds. t-maps, usually generated by testing contrasts, are therefore transformed
to Gaussianised t-maps using a voxel by voxel t-to-Z probability transformation such
(that �(Z) = 	(t), where �(�) is the standard normal cumulative density function
(cdf) and 	(�) the Student t-distribution with appropriate degrees of freedom).

To test for the signi�cance for an activation intensity in a spm, it is necessary to assess
the probability that the maximum value in the map (Zmax) is greater than a given
threshold t under the null hypothesis (when no activation is present). To approximate
this probability Worsley et al. used the expected Euler characteristic E [�t] of a binarised
map thresholded at t. The Euler characteristic is a geometrical measure that, loosely
speaking, counts the number of connected components minus the number of \holes"
in volume of the image V . At high thresholds this characteristic simply counts the
number of regions above t. Moreover, for such high thresholds, suprathreshold clusters
are independent and the number of clusters Ct above t follows approximately a Poisson
distribution (Adler, 1981, p.161) with mean E [�t], i.e.

Pr(C = x) = 1=x!(E [�t])
xe�E[�t] = �(x;E [�t]) (1)

For high t, we have

Pr(Zmax � t) � Pr(�t � 1) � 1� e�E[�t] � E [�t] (2)
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where �t is de�ned over a compact convex subset V of <D whose boundary has zero
Lebesgue measure (�). The expected Euler characteristic is:

E [�t] = �(V )j�j1=2(2�)�(D+1)=2HeD(t)e
�t2=2 (3)

where �(V ) is the volume or image being analysed (V and � are measured with the same
units. We make the simpli�cation V = �(V ) in the rest of the chapter). HeD(t) is the
Hermite polynomial of degree D in t (He0(t) = 1;He1(t) = t;He2(t) = t2 � 1). Notice
that the \threshold" t here is not set by the user : the value of t is simply the local
maxima or indeed any value that is tested, as opposed to the threshold used for spatial
extent tests (see section (3).

� is the variance covariance matrix of the partial derivative of the process in the D direc-
tions of space and is crucial for the assessment of E [�t] and therefore to the calculation
of p-values. In three dimensions (x; y; z), we have
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For an image (or volume) generated by white noise smoothed by a Gaussian point spread
function (PSF) with dispersion � (leading to a Gaussian auto-covariance function with
dispersion 2�), we have � = ��1

2 . In most cases, the PSF can be assumed to be aligned
with the coordinate axes of the volume analysed, giving null o�-diagonal elements for �
and �. In this case the Full Width at Half Maximum (fwhm) of the PSF relates to j�j
with

j�j�1=2 = (4 ln(2))�D=2
DY
i=1

fwhmi

leading to the de�nition of RESolution ELementS (RESELS):

V j�j1=2 = RESELS(4 loge 2)
D=2;

where RESELS are equal to the volume of the search region divided by the product of
the fwhms of the PSF in each dimension (Worsley et al., 1992). Note that even when
the actual form of the PSF is unknown (and possibly not Gaussian), smoothness values
are often described in terms of fwhm. The smoothness parameter is usually de�ned as
j�j�1 such that it relates simply to the fwhm of a Gaussian kernel, and is assessed using
the partial derivatives of the spm, a valid procedure as long as the PSF of the spm is
aligned with the coordinate axes (Figure 1 for an illustration). Note that this estimation
is itself subject to noise (see section 7).

A very similar formula to (3) was established by V.P.Nosko (1969), formally proved by
A.M.Hasofer (1976) and reported in Adler (1981, p.133). It gives an asymptotic result
for the expected number Mt(V ) of maxima above a level t in V as:

E [Mt(V )] = V j�j1=2(2�)�(D+1)=2tD�1e�t
2=2 [1 +O(1=t)] (5)
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Figure 1: 2D illustration of the relationship between the variance (or standard deviation)
of the derivative of the spm and the width of the kernel. (a) little smoothing and (b)
large smoothing. fwhm is in pixel (identical in x and y).

Clearly, for high t, equations (3) and (5) give similar results. In the current implementa-
tion of spm software (that we will denote as spm� to avoid confusion with the statistical
maps themselves) equation (5) is used as it gives slightly more conservative results.

2.2 Assumptions

For equations (2) and (3) to hold, several assumptions have to be made: a discrete spm
approximates a continuous, zero-mean, unit variance, homogeneous, smoothed Gaussian
Random Field (GRF); the threshold t is high; and the volume V is large compared to
the resolution of the map.

1. The zero-mean and unit variance conditions hold under the null hypothesis, pro-
vided the statistical model used is correct.

2. The homogeneity condition implies that both the statistical and the spatial char-
acteristics of the volume are constant with position. This might be of concern with
3D acquisition but is still a very reasonable �rst approximation. However, e�ects
of nonstationarity of the PSF due to both instrumental or physiological factors are
still need to be assessed.

3. Strictly speaking, a random �eld is Gaussian if the joint distribution of any subset of
points has a multivariate Gaussian distribution. This implies that at the univariate
level each point or position should have a Gaussian distribution. In spm

�, this is
ensured by the voxel by voxel t-to-Z transformation. At the multivariate level the
condition is satis�ed when the degrees of freedom (df ) of the t-statistic are large
enough (e.g. df � 30). In general, it is di�cult to address the validity of this
assumption for lower degrees of freedom and results provided by Worsley (1994)
for t-�elds should be used when working with low df. However, spatial or temporal
smoothing, usually applied to increase signal to noise ratio, minimises the risk of
breaching the multivariate Gaussian assumption. Worsley (1993) showed that with
df � 3 singularities will almost certainly occur in any continuous random t-�eld.
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4. How high should t be ?

Although equations (3) and (5) only hold for high t, these results are used in such a
way that for small t, the probability computed by equation (2) is high and therefore
not generally of interest.

5. A discrete lattice should approximate a continuous smoothed random �eld well
and allow for a good estimation of the smoothness of an spm. The estimation can
be obtained when sampling is high compared to the resolution of an spm. For
Gaussian PSFs, we found that a good smoothness estimation was obtained when
the fwhm in any direction is at least 2 or 3 times greater than the voxel size.
In PET, the resolution of the original image volumes usually ensures that it is
the case even when post-processing smoothing is fairly low (� 6 mm fwhm). In
fmriwhere the resolution of the data is high, when the method is applied to raw
data the assessment of the smoothness fails. However, because we are dealing with
an underlying biological signal that is smooth we can get around the problem simply
by undersampling the fmrimaps or to apply a small amount of spatial �ltering to
ensure validity of the assumption.

6. Results presented byWorsley et al. (1992) and Friston et al. (1991)) are accurate for
search volumes V that are large compared to the resolution of the spm (practically
at least three or four times the fwhm of the spm). Results accurate for any volume
have been developed by Worsley et al. (1995b). When analysing the brain volume,
current estimations based on the equations described above are accurate enough.

2.3 Discussion

The signi�cance test we have presented provides strong control over the type I error at
the voxel level. Strong control over type I error is obtained if the probability of falsely
rejecting any hypothesis is less than the given level �, regardless of the truth of other
hypotheses. See Hochberg & Tamhane (1987) for rigorous de�nitions. Note that rejecting
the null hypothesis at any voxel also rejects the so called \omnibus hypothesis" (is there
any signal in the entire volume ?). As noted above, this test has been extended to other
types of random �eld by Worlsey et al. (1994) e.g. �2; F and t-�elds. F -�elds have
potentially important applications for model selection at the voxel level. An example
of their application is the "non linear" regression that tests for the best model that
describes the relationship between the measured brain response (regional perfusion) and
a non categorical parameter (e.g. rate of presentation (Buechel & Friston, 1997)).

3 Testing for the signi�cance of the spatial extent of

an activation

3.1 Theory

The previous described procedure tests for the signi�cance of a simple increase in intensity
of an activation in an spm. Early work using Monte Carlo simulations suggested that
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using information about the spatial properties of potential brain signals, and testing for
the signi�cance of the spatial extent of activated regions above a given threshold, could
greatly improve the sensitivity of functional imaging experiments (Poline & Mazoyer,
1993). We present here a theoretical test that again uses results from Gaussian Random
Field theory (Friston et al., 1994).

The �rst step is to start with asymptotic results for the distribution (and expectation)
of an area nu of regions de�ned by thresholding an spm at u. These results derived by
Nosko (1976; 1969; 1970) are also reported by Adler (1981, p.158). They show that at
high threshold u the conditional distribution of nu is such that

lim
u!1

P
�
j�j1=2(2�)�1 u2 n2=Du > v j nu > 0

�
= exp (�v)

However, this approximate distribution signi�cantly overestimates the area nu. To correct
for this overestimation, Friston et al. used the fact that the expected area E [nu] can also
be derived from results previously described in section 2 :

E [nu] = V �(�u)=E [Mu(V )]

Where E [Mu(V )] is the number of expected regions above u given by equation (5) and
V �(�u) the number of expected voxels above u. The corrected distribution for nu then
becomes :

Pr(nu > v) = exp (��v2=D) (6)

with

� =

 
�(D=2 � 1)E [Mu(V )]

V �(�u)

!2=D

and �(�) the standard normal cdf.

This formula establishes the distribution of an area nu given the occurrence of a region

above u. The parameter we are primarily interested in is the maximum value of nu,
numax, in V . The probability of having a maximum value of nu greater than v is simply
one minus the probability that all the Mu(V ) supra threshold regions in V have areas
less than v, times the probability of having Mu(V ) regions. Using equations 1 and 6 we
obtain:

Pr(numax > v) =
1X
i=1

Pr(Mu(V ) = i)
�
1 � Pr(nu < v)i

�
= 1� exp (�E [Mu(V )] Pr(nu � v))

= 1� exp
�
�E [Mu(V )] exp

�
�� v2=D

��
(7)

with � as de�ned above. For a full development of these equations see Friston et al. (1994)
.

3.2 Discussion

3.2.1 Improved sensitivity

Generally, as expected, the test provides an improved sensitivity compared to intensity
testing alone, although this is not necessarily the case. A power analysis (Friston et al.,
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1994), shows that if the underlying signal to be detected is wider than the resolution of
the spm, power increases with a low threshold (assuming a Gaussian shaped underlying
signal). However, if signal width is smaller than the noise PSF, power increases with
high values of u and the optimal sensitivity is found for the intensity test. As all kinds
of signal are potentially present in an spm, it seems that the optimal procedure is to use
either a series of thresholds or combined criteria. The next section deals speci�cally with
this question.

3.2.2 The loss of voxelwise control over the risk of error

It is essential to note that the new extent test does not provide control of the risk of error
at the voxel level and therefore individual voxels cannot be declared as \signi�cantly
activated" within a region. The localising power of the extent test has moved from the
voxel level to the region (cluster) level. The localising power depends on u since high
thresholds provide better localisation and greater insurance that non-activated parts of
the brain are not grouped with activated regions by the thresholding process. Although
nothing can be said at the voxel level, the interpretation of results will clearly be di�erent
depending on threshold (the higher the threshold, the greater is the chance that most of
the voxels in the cluster are part of a underlying signal). Indeed, an essential parameter
is the expected number of voxels in noise E [nu] that should be compared to the observed
number of voxels forming a supra-threshold region. This comparison will help quantify
the regional speci�city of the test. Another good indicator is the probability of occurrence
based on the voxel by voxel test as computed in section 2 for voxels with an intensity u.

3.2.3 How high should t be to insure the validity of analysis ?

It is di�cult to generalise since the magnitude of t that guarantees validity depends on
the smoothness (j�j�1). However, in most PET studies, t values between 2.5 and 3 can
be used safely as demonstrated by simulations. In fmri experiments that generally have
higher spatial resolution, safe values should be higher (� 3).

3.2.4 E�ect of smoothing on detection

Interestingly, smoothing has an opposite e�ect on the sensitivity of the extent test com-
pared to the voxel intensity test described in section 2. This is because as smoothing
increases the probability that Zmax crosses the level t by chance decreases. Clearly, when
smoothing increases the probability that a large region occurs above u by chance increases
as well. This is illustrated in �gure 12 which plots, for �xed values of t or area n, the
probability of occurrence by chance (noise only case) as a function of smoothness. It is
usually the case that greater smoothing improves the detection of signi�cant activation
at the voxel level while relatively small degrees of low pass �ltering tend to improve the
sensitivity of spatial extent detection. This last observation is only generally true and
results depend on the shape of the activated area : for instance, �lters that are too large
will wipe out peaky signals.

Although no assumption has been made about the shape of the spatial autocovariance

8



function of an spm, because of the nature of this extent test, it is likely to be more sensitive
to non stationarity of the PSF than the intensity test. In terms of implementation, a
connectivity scheme has to be chosen for D � 2. We recommend an 18-connectivity
scheme for D = 3 and a 4-connectivity scheme for D = 2.

4 Testing for both peak height and spatial extent

4.1 Rationale

The sections above showed that sensitivity to Gaussian signals depends on the choice of
intensity thresholds, u, wide signals being best detected with low thresholds, sharp signals
with high thresholds. Not only is it generally impossible to predict which test would be
best for a particular analysis, but, because of the complexity of the underlying anatomy
of the brain, several kinds of signal (wide or sharp) might occur simultaneously. It is
also not valid to use both tests without correcting for the implicit multiple comparison
involved. If the two tests were independent, a simple \Bonferroni" correction would be
appropriate. However, the maximum intensity and spatial extent of a region above u

are not independent and such corrections would lead to an over conservative test. In the
next section we develop a test based on both spatial extent and peak intensity of regions
above u.

4.2 Method

In this section we describe a combined test based on two parameters (peak height and
spatial extent).

First, we derive an approximation for the probability that a given cluster will have a
spatial extent S greater than s0, and maximum intensity or peak height H greater than
h0, using results from Gaussian random �eld theory (Poline et al., 1996a). The derivation
of this result is based on modelling the shape of a region above u (near a local maximum)
as an inverted paraboloid. The �rst terms of the Taylor expansion of the processes'
second derivative are then used to obtain an approximate distribution for the conditional
distribution of nu, knowing the height hu above u. We use this approximation and the
known marginal distribution of hu (hu has an approximate exponential distribution with
mean 1=u (Adler, 1981, Ch.6)), to get an approximate conjoint distribution :

P(nu � s0; hu � h0) �
Z 1

h=h0
	�

n
� ac j�j�1=2u�D=2hD=2=s0

o
ue�uhdh (8)

where 	� is one minus the �2 cumulative distribution function with degrees of freedom
� = 4u2=D, given by

	�(x) =
Z 1

x

t�=2�1e�t=2

2�=2�(�=2)
dt:

Figure 2 shows the match between the theoretical approximation and the conjoint dis-
tribution derived with simulations of white noise convolved with a Gaussian PSF.
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Figure 2: Left: Theoretical (predicted) bivariate distribution of spatial extent and peak
height for regions occurring above an image threshold of t = 3 in a 64 � 64 � 32 volume
(128 � 128 � 64 mm3) with resolution 17.5 mm in x and y, and 12.5 mm in z. Data
intensity is presented in a log scale to increase the visibility of the tail of the distribution.
Middle: Observed bivariate distribution of spatial extent peak height under the same
conditions as above. Right: Di�erence between the two.

Second, a way of combining the spatial extent and the maximum intensity is chosen in
order to select events (an occurrence of a cluster) that will be rejected at a given risk of
error under the null hypothesis of pure noise. We note that there are an almost in�nite
number of possibilities for this step: in a two-parameter testing procedure a statistical
threshold becomes a curve in a plane.

For our proposed combined test, the risk of error is simply de�ned as the minimum of
the risk for spatial extent nu and the risk for maximum peak height H. This gives a
rejection area de�ned by

minfPr(nu � s0);P(H � h0)g = constant

which leads to the probability of rejection of a given cluster :

Pr
joint

= Pr(nu � s0) + Pr(H � h0)� Pr(nu � s0;H � h0) (9)

We then use Prjoint the probability that the spatial extent and peak height probability
of a single cluster falls in the rejection area to compute the probability that at least one
cluster is rejected in the volume V . If k clusters occur in the volume V , the probability
that at least one of them will be rejected is simply

Pr(rejection j C = k) = (1 � (1� Pr
joint

)k):

Summing over k, weighted by the probability that C = k, we get

Pr(rejection) =
1X
k=0

(1� (1� Pr
joint

)k)E [Mt(V )]
k
e�E[Mt(V )]=k!

= 1 � e�E[Mt(V )] Prjoint : (10)

Simulations in pure noise for various values of u and various resolutions show that the
conjoint test protects against type I risk of error � (except if the threshold is very low
(u=2) and the �-risk greater than 0.15). Figure 3 shows the expected versus observed
risk of error in 3D for various thresholds.
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Figure 3: Expected versus observed risk of error with two thresholds u in 3D volumes
(64 � 64 � 32 voxels or 128 � 128 � 64 mm3) at a �xed resolution (fwhmxy = 14:1 mm
and fwhmz = 11:8 mm). Top: high intensity threshold (t = 3:5). Bottom: low threshold
(t = 2:5). On the left: risk of error between 1% and 10%. On the right: risk of error
varying between 10% and 70%. The dashed line shows the results from the spatial extent
test, the dotted line from the peak height test and the dot and dashed line from the
combined test. The solid line corresponds to the y = x line. Results were assessed using
3 � 103 simulations.

The sensitivity of the combined test was assessed for 3 simulated signals : a sharp signal,
an extended signal and a signal with approximately the same probability of being detected
by either the intensity test (in section 2) or the spatial extent test (section 3). Results
(presented in �gure 4) show that the conjoint test should generally increase the overall
sensitivity of analyses, as well as increasing their validity by correcting for the implicit
multi-testing procedure.

4.3 Discussion

As for the spatial extent test, the risk of error is determined at the region level. In
fact, the two tests are conceptually very similar but the conjoint test is more general.
Note that it is always possible to know whether a supra-threshold region is unlikely to
occur because of its size or its height, giving further information on the type of regional
activation observed.

Also, we note that to derive equation (9) slightly stronger hypotheses were required. It
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Figure 4: Percentage of detected signal versus risk of error for three types of signal in
3�103 3D volumes (64�64�32 voxels or 128�128�64 mm3). Left: sharp peak. Middle:
extended signal. Right: \balanced" signal. The dashed line shows the results from the
spatial extent test, the dotted line from the peak height test and the dot and dashed line
from the combined test. Volume resolution was fwhmxy= 14:1 mm fwhmz= 11:8 mm
and threshold t = 3.

is assumed that the PSF, resulting from both the image reconstruction apparatus and
post processing �ltering, can be modeled by a Gaussian function. The robustness of the
conjoint test with regard to this assumption remains to be evaluated.

The conjoint test may prove to be an interesting alternative to multi-�ltering strategies,
methods not presented in this short review (Poline & Mazoyer, 1994; Worsley et al.,
1996). These strategies have ultimately a similar goal that is to detect signals of various
sizes in one statistically valid procedure. The conjoint (or bivariate) test however has
the advantage of requiring fewer computations and should preserve better the spatial
resolution large signals, an important feature for the analysis of fmri data.

5 Testing for the signi�cance of a set of regions

This section extends the previous tests and describes a new level of inference that is, in
general, more sensitive but has less localising power. The test is based on the number of
supra-threshold regions of size greater than ku compared to the expected number of such
regions. Control of the risk of error at the region level cannot be obtained, and control
over the risk of error now has to be considered at the set-level.

We �rst review the operational equations and then report power analyses (Friston et al.,
1995).
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5.1 Theory

Let Cnu be the number of regions de�ned with a threshold u and area greater than n

occurring in V . To test for this number we compute the probability of having Cnu regions
or more of size nu or more in V . This is also one minus the probability of obtaining less
than Cnu regions with size greater than nu :

Pr(Cnu � c) =
c�1X
i=0

1X
j=i

Pr(C�u = j)

 
j

i

!
Pr(nu � n)i Pr(nu < n)j�i

= 1�
c�1X
i=0

�(E [�u] Pr(nu � n)) (11)

Where Pr(C�u = j) is the probability of getting j regions above u of any size (� denotes
any value here) in V , given equation 1 that also de�nes �(�). The second equality above
can be seen directly by noting that the number of cluster of size nu or more is a restriction
of the process de�ned by the number of cluster (with any size) and therefore also follows
a Poisson law. The mean of this process is simply the mean of the original process times
the probability Pr(nu � n).

The equation is very general and reduces to the intensity test (section 2) and to the
spatial extent test (section 3) with appropriate parameters. If n = 0 and c = 1 then (11)
reduces to the probability found in section 2 (probability of having at least one cluster of
unspeci�ed size). If c = 1 and nu is left unspeci�ed, then the test reduces to the spatial
extent test.

5.2 Power analysis

We use a simulated \activation signal" that can be modeled mathematically and is phys-
iologically plausible. Brain signals are modeled by a Gaussian random process (therefore
distributed) of a certain width f (expressed as a proportion of the smoothness of noise)
and height (variance �2). Using this model, we can compute the probability of the alter-
native hypothesis depending on the parameters �. The smoothness under the alternative
hypothesis are (Friston et al., 1994):

u� = u (1 + �2)�1=2

j��j�1=2 = j�j�1=2
"

(1 + �2)

(1 + �2=(1 + f2))

#1=2

For a given risk of error, �, given by Prj�j(Cnu � x), the sensitivity of the test is simply
the probability Prj��j(Cnu� � x). Using this model, we simply vary the parameters u,
j�j, and n to assess the power of the di�erent tests. Traditionally, sensitivity is plotted
against the risk �: these plots are called Receiving Operator Curves (ROC). Figure 5
shows the result of this power analysis.

In �gures 6 and 7 we illustrate the use of such tests in a pet dataset (a verbal uency
experiment). In this case u = 3:2, and the spatial extent threshold was the expected
value given the smoothness and the volume analysed (8 voxels). The most sensitive test
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Figure 5: Top panel: ROC curve for set-level inference with u = 2:8 and n = 16 voxels.
Prj�j(Cnu � x) where j�j corresponds to a fwhm of 3 voxels and the volume V = 643.
Signal amplitude � = 0:3 and width f = 2. The dashed and broken lines corresponds
to the equivalent cluster and voxel-level ROC curves respectively. Lower panels: 3-
dimensional plot of power (� = 0:05) as a function of cluster number c and threshold u,
for the same smoothness, volume V and �. Left: f = 0:2 and right f = 2.

was that at the set level of inference, but note that amongst 8 clusters in the spm, one
or two are expected to occur by chance (expected number : 1:4). For the second region
listed in �gure 7 the conjoint test was much more signi�cant than the test on intensity
(because of the cluster size) and performed approximately as well for the other clusters.

5.3 Discussion

Clearly, results obtained with the set level of inference should be interpreted with cau-
tion when reporting the anatomical localisation of regions forming the signi�cant set.
However, if the number of observed regions (above u and of size greater than nu) is much
greater than the predicted number, (e.g. 0.5 regions expected, 5 observed) then it makes
sense to report all the clusters if only descriptively. Conversely, if 5 clusters are observed
but 2.5 are expected by chance, it is di�cult to elaborate on the regional speci�city of the
results, and the set-level of inference gives information that is only slightly more precise
than an omnibus test, thus providing very little regional information.

The set level of inference can be extended using a conjoint probability for both peak
height and spatial extent. Simply, Pr(nu � n) is changed for Prjoint = �joint in equation
(11). This maneuver will not add another parameter (peak height) : the set will simply be
formed by clusters that have a probability less than a chosen value pf �joint (for instance
�joint = 0:4, either because of the height or the extent above u).
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Figure 6: \Glass brain" view of an spm of a verbal uency experiment showing activation
in the frontal gyrus. The design matrix of the experimentalmodel is shown in the bottom
right corner. Figure 7 presents the statistical results associated with this spm.

6 Non parametric approaches: StatisticalNon Para-

metric Mapping (SnPM)

6.1 Rationale and Method

Recently, non parametric multiple comparisons procedures have been introduced for the
assessment of functional mapping experiments, based on randomisation or permutation
test theory (Holmes et al., 1996). By considering appropriate permutations of the labeling
of scans (labeling as \rest" & \active", or by some associated covariate such as scan score),
and computing statistic images for each labeling, a permutation distribution for the entire
statistic image can be obtained. From this null distribution of the statistic image, given
the data and appropriate null hypothesis, the permutation distribution of any statistic
summarising the statistic image can be found. Summarising each statistic image by

its maximum statistic gives the permutation distribution for Zmax, the 100(1 � �)th

percentile of which is the appropriate critical threshold for a single threshold test at
level �. Summarising each statistic image by the size of the largest cluster of voxels
with values above a pre-speci�ed threshold gives the permutation distribution of Smax,
and appropriate critical suprathreshold cluster sizes. Strong control over experimentwise
type I error is maintained (at the appropriate level) in both cases.

In addition to the usual attractions of non parametric method, namely minimal assump-
tions, guaranteed validity and exactness, exibility and intuitiveness, the approach is
especially attractive for small data sets such as those from single subject pet stud-
ies. Statistic images with low degrees of freedom exhibit high (spatial) frequency noise
therefore the statistic image is rough. The properties of such statistic images are not well
approximated by continuous random �elds with the same distributions. Continuous �elds
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P values & statistics:   

set−level {c} cluster−level {k,Z} voxel−level {Z} location {mm}

0.000   (8) 0.028   (27, 4.78) 0.018   (4.78) −46   24    20    

0.006   (126, 4.68) 0.027   (4.68) −2    8     48    

0.173   (4.20) 4     16    32    

0.889   (3.46) 4     14    44    

0.031   (76, 4.61) 0.037   (4.61) −36   24    −8    

0.154   (4.24) −36   32    0     

0.129   (26, 4.33) 0.108   (4.33) 32    −74   −24   

Height threshold {u} = 3.20, p = 0.001

Extent threshold {k} = 8 voxels

Expected voxels per cluster, E{n} = 8.2

Expected number of clusters, E{m} = 1.4

Volume {S} = 53132 voxels or 625 Resels

Degrees of freedom due to error = 25 

Smoothness = 9.8 11.2 12.5 mm {FWHM}

 = 4.1 4.8 5.3 {voxels}

Figure 7: This table present an example of the spm
� statistical results with the set,

cluster, and voxel level of inference (nu is denoted k in this table). Note the relative
sensitivity of this three tests and the loss of regional speci�city.

have features smaller than the voxel dimensions, leading to critical thresholds for single
threshold tests that are conservative for lattice representations of the continuous �eld.
An extreme example is a 3-dimensional strictly stationary continuous random t-�eld with
3 degrees of freedom, which almost certainly has a singularity (Worsley, 1993).

The noise in low degree of freedom statistic images results from variability of the residual
variance estimate. In pet it is reasonable to assume that the residual variability is
approximately constant over small localities, suggesting that variance estimates could
be locally pooled. A weighted local pooling of variance estimates is a smoothing of the
estimated variance image (since the degrees of freedom are the same at every voxel). An
example of a smoothed variance image for a pet dataset is shown in �gure 8a, where
weights from an isotropic three-dimensional Gaussian kernel of fwhm 12mm were used
(the kernel was truncated at the edges of the intracerebral volume). Clearly variance
estimates at proximate voxels are not independent. A theoretical distribution for such
smoothed variance images has proved elusive, thus precluding further parametric analysis.
The \pseudo" t-statistic image formed with such a variance image is shown in �gure 8b,
and is much smoother than the original variance map (not shown). Figure 9 illustrates
the results obtained with \pseudo" t-statistic.

6.2 Results and discussion

The ability to consider statistic images constructed with smoothed variance estimates
appears to makes the non parametric approach considerably more powerful than the
parametric approaches discussed. Non-parametric results for a pet data set are shown
in �gure 9a. 1000 permutations (including the actual allocation) of the 12! possible
permutations of scan scores were considered, and the (approximate) permutation distri-

16



(a)
−100

−50

0

50
−50

0

50

0

1

2

3

4

5

6

yx

S
m

oo
th

ed
 R

es
M

S

(b)
−100

−50

0

50
−50

0

50

−5

0

5

10

yx

ps
eu

do
T

Figure 8: Statistic images for pet dataset: (a) Mesh plot (intercommisural plane) of
estimated variance image smoothed with an isotropic Gaussian kernel of fwhm 12mm,
truncated at the edge of the intracerebral volume. (b) Mesh plot of \pseudo" t-statistic
computed with smoothed variance estimate.

bution of the maximum \pseudo" t-statistic computed. The resulting single threshold
test identi�es many more signi�cant voxels than the parametric single threshold test
using the expected Euler characteristic on the \Gaussianised" t-statistic (�gure 9b).

Using raw t-statistic images, the non-parametric approach on the whole agrees largely
with parametric approaches, which is a comforting observation. Disadvantages of the non-
parametric approach are a greater need for computer resources and a possible limitation
when dealing with too small a number of relabellings.

Alternatively, the variance estimate can be improve by including more scans in the spm�

analysis, taken from other subjects, while tests of the appropriate statistical contrast
include only the actual subjects \of interest". This procedure assumes that physiological
and instrumental noise variances are similar across pooled subjects (and that experimen-
tal e�ects have been removed using multilinear regression (Holmes & Friston, 1997). This
assumption would not usually apply for patient studies. An example of such an analysis
with normal subjects is given in (Poline et al., 1996b).

7 Discussion and conclusion

7.1 Which test should be used and when ?

As the nature of a signal is unknown, it is impossible to predict which would be the
best procedure to use for a given data set. Although, strictly speaking, it might not
be valid to use several tests concurrently, the complex relationship between them and
their nested aspect, should ensure that the risk of error is not excessively increased by
the multi-testing procedure. In future, Monte Carlo simulation will assess the extent of
departure from the � risk of false positives chosen by the experimenter. We summarise
the tests described above (�gure 10) by a schematic uni-dimensional graph. Figure 11
gives an overview of the characteristics of the tests. For completeness we have added
\omnibus" tests in this �gure that give a probability value for the general overall pattern
of the SPM although they are not described in this paper (see Worsley et al. (1995a) and
Friston et al. (1996a)).
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(a) (b)

Figure 9: (a)\Glass brain" views of the signi�cant voxels at � = 0:05 from a non paramet-
ric single threshold test using \pseudo" t-statistic images. (b) Orthogonal \glass brain"
views of the signi�cant voxels at � = 0:05 for the same pet dataset using the para-
metric approach. The smoothness of the \Gaussianised" t-statistic image was estimated
at 16:4 � 17:5 � 13:5mm, equivalently 273 resels, for 66689 intracerebral voxels. Voxels
above the critical threshold u�=0:05 are shown black. Suprathreshold clusters of voxels
were identi�ed using a primary threshold of ��1(1� 0:001), identifying two signi�cantly
large clusters of voxels, shown translucent grey.

7.2 Sensitivity and Speci�city

In statistical analyses the risk of error is usually chosen to be 5%. We emphasise that
this is an arbitrary threshold that may be too stringent on some occasion. In any case,
a failure to reject the null hypothesis is never proof that the alternative hypothesis is

untrue. In other words, we can never be sure that a region is not activated. We therefore
recommend the discussion of results that do not reach the 5% level but are improbable
under the hypothesis of noise only (risk of error of 5 to 20% for instance).

7.3 How do we choose the parameters ?

The more parameters used by the tests, the more di�cult it isto choose a priori optimal
values for them apriori. Currently, three parameters must be chosen : the fwhm of
the Gaussian kernel used for smoothing (a�ecting directly j�j), the threshold u (for the
cluster level of inference) and the area n used in the set level of inference. An obvious way
of proceeding is to acquire experience by analysing standard data sets and then �xing
the parameters to some appropriate values.

However, this procedure would require that the volume analysed (V ) and the smoothness
parameter remain identical from one study to another. As this is not generally the case,
we suggest setting u and n using statistical thresholds. For instance, u can be set such
that, given V and j�j�1=2, we have Pr(Zmax � u) = �, where � will depend on the regional
speci�city required for the experiment (e.g. for high regional speci�city: � = 0:75). In
an analogous way, n can be set using the expected area above u (E [nu]) as a reference
: nu = �E [nu] where � � 1 for a moderate regional speci�city. Future versions of spm�

software will provide default values based on a desired regional speci�city. Note that
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Figure 10: Symbolic representation of the intensity test, the cluster size (or conjoint) test
and of the test over a set of region.

repeatedly trying di�erent parameters will invalidate the con�dence level to an unknown
degree and should therefore, be avoided. Note also that no correction is made for the
number of contrasts performed: the risk of error is set per contrast.

7.4 Smoothness Variability

It is essential to note that in general, the value of j�j and the variance of an spm are
the only values that need to be estimated when assessing the signi�cance of activation
in spms (there is no error of measure on the volume V ). An error on the assessment of
� directly inuences the estimation of the signi�cance of results. Using the frequency
(spectral) representation of the process (i.e. the spm, denoted X) we were able to derive
the variance of the estimate of the smoothness. The principle of this computation is the
following. We �rst assume that the PSF of the spm is known and use this to compute
the variance covariance matrix of the vector U :

U = (U1; U2; :::; UD+1) =

0@ dvar [X(x)];
d

var

"
@X

@x1

#
;

d
var

"
@X

@x2

#
; :::

1A
where x = (x1; x2; :::; xD) are the D dimensions of the space and ^ signi�es that the
variance is only estimated from the data (as the sum of squares divided by the number
of data points). The smoothness estimation is a simple function of the vector U , say
f(U ) and once the variance covariance matrix of its component have been found we
use the Taylor expansion to obtain an estimate of the variance of f(U) (where f(U) =� dvar [X(x)]

�D
j�j�1 in D dimensions):

var [f(U )] =
X

i;j2(1;:::;D+1)

@f(U)

@Ui

@f(U )

@Uj

dcov [Ui; Uj]

For instance, using this approximation, we found that the standard deviation of the
smoothness estimation �� was around 25% of the smoothness value (using common
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Figure 11: Overview of the characteristics of the hierarchy of test proposed for the
inference in SPM. Note that the sensitivity is only generally increasing and in some
occasions more regionally speci�c tests will also be more sensitive.

values for PET experiment). Figure 12 shows the e�ect of this uncertainty on the p-
values obtained with the intensity or the cluster size tests 1.

7.5 Smoothness estimation on the residuals

Previously (spm�95), smoothness is assessed on Gaussianised t-maps (G-tm) that are not
generally free of physiological signal. This technique has two major drawbacks. First,
the estimation is not stable (the variance of the estimate being far from negligible (Poline
et al., 1995), and second, the signal in the Gt-m will bias any estimation. A rigorous
method that overcomes these drawbacks based on previously derived theoretical results
is presented here (Worsley et al., 1992), which is implemented in the new versions of
spm

�. To free the smoothness estimation from signal introduced by an experimental
design, we propose using the residual processes that are left after removing the e�ects
modeled in the design matrix. We make the assumption that the smoothness of these
�elds will approximate the smoothness of the component processes of the t-�eld under
the null hypothesis. The residual �elds are de�ned by

Ri(x) = Yi(x)� Ŷi(x) = Yi(x)�D�̂(x)

where x is a location in space, i indexes the ith observation, D (denotedX in the previous
chapter (Holmes & Friston, 1997)) is the design matrix of the experiment, the �̂ are the
estimated e�ects, Yi are the original values (scans) and Ŷi the �tted values. The Ri are
free from all linear e�ects explicitly modeled in the analysis. We �rst demonstrate (using
simulated stationary Gaussian smoothed processes) that smoothnesses of residual �elds
Ri and of original �elds Yi, are equivalent and that this holds whatever the degrees of

1Note that the variance of the process (the spm) is often known but is assessed in a more general

case and therefore the the estimation of dvar [X(x)] can be \included" in the smoothness estimation. In
other words, the smoothness estimation has generally to include the map variance estimation.
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Figure 12: Upper panel : Variation of cluster size probability for a 3D process (or spm)
with the smoothness de�ned as the fwhm of a Gaussian kernel (de�ned in pixels) and the
variation of the smoothness estimate (dashed line : +2 standard deviation: ��, dotted
and dashed line : �2��). Threshold for the cluster de�nition was 2:8, size of the spm :
5104 pixels. Lower panel : Variation of the Z value probability for 2D data for Z = 4
with the smoothness value and with the variation �� of its estimate (dashed line : +2��,
dotted and dashed line : �2��).

freedom (df ) in Ri. The smoothness of 36 Ri using noise only random �elds (8.2,8.2,5.9
fwhm in (x,y,z)) was assessed for a series of design matrices of decreasing rank, giving
7, 15, and 25 df. We then used results derived by Worsley et al. to relate the smoothness
j�j of the original component �elds (estimated with Ri) to the smoothness j�yj of the
Gaussianised t �elds with j�yj = �n0��

2 with �2 the variance of the original processes
and �n0 a correction factor derived by Worsley et al. (1992), that depends on the number
of independent residual �elds n0.

Table 1 presents the theoretical (Theo) smoothness values for the Gaussianised t-�elds
(i.e. true values corrected by �n0), the values estimated using 36 Ri (Res) and the values
estimated using t-maps (Gt-m) (with random orthogonal contrasts). It is seen that
the values assessed on t-maps and on the residual maps are good estimates. However,
we also demonstrated that the smoothness estimate can be biased under an alternative
hypothesis, by assessing its value using the Gt-m of a dataset in which half of the images
contain a cubic signal (size 17 � 17 � 9 voxels, and magnitude sets to 0.3 noise SD).
The contrast used to create the t-�elds (25 df ) tested for the main activation e�ect.
These simulations show that the discrepancy between the theoretical value and the Gt-m
estimate is important; Theo : (8.1, 8.1, 5.8), Gt-m : (10.1, 10.4, 7.1) fwhm in (x,y,z)).
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df 7 15 25

Theo. Res. Gt-m. Theo. Res. Gt-m. Theo. Res. Gt-m.

x 7.5 7.6(.1) 7.9(.2) 7.9 8.0(.1) 7.8(.2) 8.1 8.1(.1) 8.3(.2)

y 7.5 7.7(.1) 7.7(.1) 7.9 8.0(.1) 8.2(.2) 8.1 8.2(.1) 8.1(.2)

z 5.4 5.6(.1) 5.3(.1) 5.7 5.8(.1) 5.6(.2) 5.8 5.8(.1) 5.8(.2)

Table 1: Theoretical vs estimated (on residuals and Gt-m) smoothness values in pixels
fwhm. Res. : (SDM) 36 processes and Gt-m (SD) over random contrasts

Assessing the smoothness of the residuals �elds provides a much better estimate: (8.1,
8.0, 5.8)). Recent work has further re�ned this method and spms smoothness is now
assessed using normalised residuals.

7.6 A priori hypothesis

It should be noted that with a priori hypotheses about the localisation of signal, i.e if
a precise position (x,y,z) is tested, it is possible to use non corrected p-values. If the
precise localisation is not known, but a larger circumscribed region is interrogated for
the occurrence of an activation, the p-value should be corrected for that volume (for
instance using the results derived by Worsley (1995b) for small regions). More often
than not several hypotheses about the localisation are possible and therefore a correction
(Bonferroni) should be made for the number of regions to be interrogated to ensure the
validity of the statistical procedures.

7.7 Testing for commonalities

Often, the question of experimental interest relates to the commonalities between two
spms. A simple way to deal with this problem is to look for voxels that have a low
probability of occurrence in both spms. If the components of the design matrix (see the
chapter by Holmes et al., for description of the design matrix) used to produce the spms
are orthogonal then the resulting p-values in the conjoint map are the product of the
p-values in the original spms.

Conclusion

We have presented the tests used to assess signi�cance of spms and have discussed the
parameters that inuence the output of these tests.

Acknowledgement We thank our colleagues and especially S.Kiebel for providing some of the
results presented here. JBP is funded by an European Union grant, Human Capital and Mobility, no
ERB4001GT932036. APH and KJF are funded by the Wellcome Trust. We are deeply in debt to
P.Fletcher, J.Ashburner and J.Greene for their help.

22



References

Adler, R. 1981. The Geometry of Random Fields. New York: Wiley.

A.M., Hasofer. 1976. The Mean Number of Maxima Above High Levels in Gaussian Random Fields.
Journal of Applied Probability, 13, 377{379.

Ashburner, J., & Friston, K.J. 1997. Spatial Transformation of Images. Chap. 2 of: SPM short course

notes. http://www.fil.ion.ucl.ac.uk/spm/course/notes.html: Wellcome Department of Cog-
nitive Neurology.

Buechel, C., & Friston, K.J. 1997. E�ective Connectivity in Neuroimaging. Chap. 6 of: SPM short

course notes. http://www.fil.ion.ucl.ac.uk/spm/course/notes.html: Wellcome Department
of Cognitive Neurology.

Cox, D.R., & Miller, H.D. 1990. The Theory of Stochastics processes. London: Chapman and Hall.

Friston, K.J., Frith, C.D., Liddle, P.F., Dolan, R.J., Lammertsma, A.A., & Frackowiak, R.S.J. 1990.
The Relationship Between Global and Local Changes in pet Scans. Journal of Cerebral Blood Flow
and Metabolism, 10, 458{466.

Friston, K.J., Frith, C.D., Liddle, P.F., & Frackowiak, R.S.J. 1991. Comparing Functional (PET)
Images: The Assessment of Signi�cant Change. Journal of Cerebral Blood Flow and Metabolism,
10, 690{699.

Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., & Evans, A.C. 1994. Assessing the
Signi�cance of Focal Activations Using their Spatial Extent. Human Brain Mapping, 1, 214{220.

Friston, K.J., Poline, J.-B., Holmes, A.P., Price, C.J., & Frith, C.D. 1995. Detecting Activations in PET
and fMRI: Levels of Inference and Power. NeuroImage, 4, 223{235.

Friston, K.J., Poline, J.-B., Strother, S., Holmes, A.P., Frith, C.D., & Frackowiak, R.S.J. 1996a. A
Multivariate Analysis of pet Activation Studies. Human Brain Mapping, 4, 140{151.

Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.-B., Heather, J.D., & Frackowiak, R.S.J. 1996b.
Spatial Registration and Normalization of Images. Human Brain Mapping, 2, 165{189.

Hochberg, Y., & Tamhane, A.C. 1987. Multiple Comparisons Procedures. John Wiley & Sons.

Holmes, A.P., & Friston, K.J. 1997. Statistical Models and Experimental Design.
http://www.fil.ion.ucl.ac.uk/spm/course/notes.html: Wellcome Department of Cog-
nitive Neurology. Chap. 3.

Holmes, A.P., Blair, R.C., Watson, J.D.G., & Ford, I. 1996. Non-Parametric Analysis of Statistic Images
from Functional Mapping Experiments. Journal of Cerebral Blood Flow and Metabolism, 16, 7{22.

Poline, J.-B., & Mazoyer, B.M. 1993. Analysis of Individual Positron Emission Tomography Activation
Maps by Detection of High Signal-to-Noise Ratio Pixel Clusters. Journal of Cerebral Blood Flow

and Metabolism, 13, 425{437.

Poline, J.-B., & Mazoyer, B.M. 1994. Enhanced Detection in Brain Activation Maps Using a Multi
Filtering Approach. Journal of Cerebral Blood Flow and Metabolism, 14, 639{641.

Poline, J.-B., Worsley, K.J., Holmes, A.P., Frackowiak, R.S.J., & Friston, K.J. 1995. Estimating Smooth-
ness in Statistical Parametric Maps: Variability of p-values. Journal of Computed Assisted Tomog-
raphy, 19(5), 788{796.

Poline, J.-B., Worsley, K.J., Evans, A.C., & Friston, K.J. 1996a. Combining Spatial Extent and Peak
Intensity to Test for Activations in Functional Imaging. NeuroImage, In Press.

Poline, J.-B., Vandenberghe, R., Holmes, A.P., Friston, K.J., & Frackowiak, R.S.J. 1996b. Reproducibil-
ity of PET Activation Studies: Lessons from a Multi-centre European Experiment. NeuroImage,
4, 34{54. On behalf of the European Union concerted action on functional imaging.

V.P., Nosko. 1969. The Characteristics of Excursions of Gaussian Homogeneous Random Fields Above
a High Level. Pages 216{222 of: Proc. USSR-Japan Symp. on Probability.

V.P., Nosko. 1970. On shines of Gaussian random �elds. Tech. rept. Vestnik Moscov. Univ. Ser. I Mat.
Meh. In Russian.

23



V.P., Nosko. 1976. Local Structure of Gaussian Random Fields in the Vicinity of High Level Shines.
Soviet Mathematics Doklady, 10, 1481{1484.

Worsley, K.J. 1993. Instability of Localisation of Cerebral Blood Flow Activation Foci with Parametric
Maps. Journal of Cerebral Blood Flow and Metabolism, 13(6), 1041{1042. In reply to S.F. Taylor,
S.M. Minoshima and R.A. Koeppe.

Worsley, K.J. 1994. Local Maxima and the Expected Euler Characteristic of Excursion Sets of �2, F ,
and t Fields. Advances in Applied Probability, 26, 13{42.

Worsley, K.J., Evans, A.C., Marrett, S., & Neelin, P. 1992. A Three-Dimensional Statistical Analysis
for CBF Activation Studies in Human Brain. Journal of Cerebral Blood Flow and Metabolism, 12,
900{918.

Worsley, K.J., Poline, J.-B., Frackowiak, R.S.J., & Friston, K.J. 1995a. A Test for Distributed, Non
Focal Brain Activation. NeuroImage, 2, 183{194.

Worsley, K.J., Marrett, S., Neelin, P., Friston, K.J., & Evans, A. 1995b. A Uni�ed Statistical Approach
for Determining Signi�cant Signals in Images of Cerebral Activation. Pages 327{333 of: T.Jones,
V.Cunningham, R.Myers, & D.Bailey (eds), Quanti�cation of Brain FUnction using pet. San
Diego: Academic Press.

Worsley, K.J., Marrett, S., Neelin, P., & Evans, A.C. 1996. A Three-Dimensional Statistical Analysis
for CBF Activation Studies in Human Brain. Human Brain Mapping, In press.

24


