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Conventional decoding methods in neuroscience aim to predict discrete brain states from multivariate
correlates of neural activity. This approach faces two important challenges. First, a small number of examples
are typically represented by a much larger number of features, making it hard to select the few informative
features that allow for accurate predictions. Second, accuracy estimates and information maps often remain
descriptive and can be hard to interpret. In this paper, we propose a model-based decoding approach that
addresses both challenges from a new angle. Our method involves (i) inverting a dynamic causal model of
neurophysiological data in a trial-by-trial fashion; (ii) training and testing a discriminative classifier on a
strongly reduced feature space derived from trial-wise estimates of the model parameters; and
(iii) reconstructing the separating hyperplane. Since the approach is model-based, it provides a principled
dimensionality reduction of the feature space; in addition, if themodel is neurobiologically plausible, decoding
results may offer a mechanistically meaningful interpretation. The proposed method can be used in
conjunction with a variety of modelling approaches and brain data, and supports decoding of either trial or
subject labels. Moreover, it can supplement evidence-based approaches for model-based decoding and enable
structural model selection in cases where Bayesian model selection cannot be applied. Here, we illustrate its
application using dynamic causal modelling (DCM) of electrophysiological recordings in rodents. We
demonstrate that the approach achieves significant above-chance performance and, at the same time, allows
for a neurobiological interpretation of the results.
ch in Economics, University of
d. Fax: +41 44 634 4907
dersen).

1 Throughout this
tion result whose es
level. This implies, i
context of the underl
further details.

l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

How does the central nervous system represent information about
sensory stimuli, cognitive states, and behavioural outputs? Recent
years havewitnessed an enormous increase in research that addresses
the encoding problem from an inverse perspective: by asking whether
we can decode information from brain activity alone. Rather than
predicting neural activity in response to a particular stimulus, the
decoding problem is concerned with how much information about a
stimulus can be deciphered from measurements of neural activity.

The vast majority of recent decoding studies are based on functional
magnetic resonance imaging (fMRI). An increasingly popular approach
has been to relatemultivariate single-trial data to aparticularperceptual
or mental state. The technique relies on applying algorithms for pattern
classification to fMRI data. A classification algorithm is first trained on
data from a set of trials with known labels (e.g., stimulus A vs. stimulus
B). It is then tested on a set of trials without labels. Comparing the
predicted labelswith the true labels results in ameasure of classification
accuracy, which in turn serves as an estimate of the algorithm's
generalization performance. Successful above-chance classification
provides evidence that information about the type of trial (e.g., the
type of stimulus) can indeed be decoded from single-trial volumes of
data.1
Challenges for current decoding methods

There are two key challenges for current decoding methods. The
first challenge is concerned with the problem of feature selection. In
the case of fMRI, for instance, a whole-brain scan may easily contain
around 300,000 voxels, whereas the number of experimental
paper, the term ‘above-chance classification’ refers to a classifica-
timate of generalization ability is significantly above the chance
n particular, that an accuracy estimate can only be judged in the
ying number of test cases. See Classification in parameter space for
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2 It should be noted that when multiple models are evaluated and compared any
given model is always fitted to all trials (or subjects). Model comparison rests on
comparing generalization accuracies obtained by the different models with regard to
the same trials or subjects; it does not rest on fitting different models to different trial
types (or subject groups).

3 One could extend this and consider the sufficient statistics of the conditional
densities (e.g., by including the covariance matrix of a multivariate Gaussian density).
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repetitions (i.e., trials) is usually on the order of tens. This mismatch
requires carefully designed algorithms for reducing the dimensional-
ity of the feature space without averaging out informative activity.
Since an exhaustive search of the entire space of feature subsets is
statistically unwarranted and computationally intractable, various
heuristics have been proposed. One common approach, for example,
is to simply include only those voxels whose activity, when
considered by itself, significantly differs between trial types within
the training set (Cox and Savoy, 2003). This type of univariate feature
selection is computationally efficient, but it fails to find voxels that
only reveal information when considered as an ensemble. Another
method, termed searchlight analysis, finds those voxels whose local
environment allows for above-chance classification (Kriegeskorte
et al., 2006). Unlike the first approach, searchlight feature selection is
multivariate, but it fails to detect more widely distributed sets of
voxels that jointly encode information about the variable of interest.
The key question in feature selection is: how can we find a feature
space that is both informative and constructable in a biologically
meaningful way?

The second challenge for current decoding methods is the problem
of meaningful inference. Classification algorithms per se yield predic-
tions, in the sense of establishing a statistical relationship between
(multivariate) neural activity and a (univariate) variable of interest.
The ability to make predictions is indeed the primary goal in fields
concernedwith the design of brain–machine interfaces (Sitaram et al.,
2007), novel tools for phenomenological clinical diagnosis (e.g., Ford
et al., 2003), or algorithms for lie detection (Davatzikos et al., 2005;
Kozel et al., 2005; Bles and Haynes, 2008; Krajbich et al., 2009). A
researcher interested in prediction puts all effort into the design of
algorithms thatmaximize classification accuracy. The goal of cognitive
neuroscience, by contrast, is a different one. Here, instead of merely
maximizing prediction accuracy, the aim is to make inferences on
structure–function mappings in the brain. High prediction accuracy is
not a goal in itself but is used as a measure of the amount of
information that can be extracted from neural activity (cf. Friston
et al., 2008). Yet, there are limits on what conclusions can be drawn
from this approach. To what extent, for instance, can we claim to have
deciphered the neural code whenwe have designed an algorithm that
can tell apart two discrete types of brain state? How much have we
learned about how the brain encodes information if the algorithm
tells us, for example, that two cognitive states are distinguished by
complicated spatial patterns of voxels? This is what we refer to as the
challenge of meaningful inference: how can we design a decoding
algorithm that allows us to interpret its results with reference to the
mechanisms of the underlying biological system?

In order to address the first challenge, the problem of feature
selection, the vast majority of decoding methods resort to heuristics.
Popular strategies include: selecting voxels based on an anatomical
mask (e.g., Haynes and Rees, 2005; Kamitani and Tong, 2005) or a
functional localizer (e.g., Cox and Savoy, 2003; Serences and Boynton,
2007); combining voxels into supervoxels (e.g., Davatzikos et al.,
2005); finding individually-informative voxels in each cross-
validation fold using a general linear model (e.g., Krajbich et al., 2009)
or a searchlight analysis (e.g., Kriegeskorte et al., 2006; Haynes
et al., 2007); or reducing the dimensionality of the feature space in an
unsupervised fashion (e.g., by applying a Principal Component
Analysis, see Mourao-Miranda et al., 2005). Other recently proposed
strategies include automatic relevance determination (Yamashita
et al., 2008) and classification with a built-in sparsity constraint (e.g.,
Grosenick et al., 2008; van Gerven et al., 2009). However, most of
these methods are only loosely constrained by rules of biological
plausibility. Notable exceptions are approaches that attempt to
account for the inherent spatial structure of the feature space
(Kriegeskorte et al., 2006; Soon et al., 2009; Grosenick et al., 2009)
or that use a model to identify a particular stimulus identity (e.g., Kay
et al., 2008; Mitchell et al., 2008; Formisano et al., 2009). However,
conventional methods for feature selection may easily lead to rather
arbitrary subsets of selected voxels—deemed informative by the
classifier, yet not trivial to interpret physiologically.

Facing the second challenge, the problem of meaningful inference,
most decoding studies to date draw conclusions from classification
accuracies themselves. Such approaches can be grouped into:
(i) pattern discrimination: can two types of trial be distinguished?
(e.g., Mitchell et al., 2003; Ford et al., 2003); (ii) spatial pattern
localization: where in the brain is discriminative information
encoded? (e.g., Kamitani and Tong, 2005, 2006; Haynes and Rees,
2005; Hampton and O'Doherty, 2007; Kriegeskorte et al., 2007;
Grosenick et al., 2008; Hassabis et al., 2009; Howard et al., 2009); and
(iii) temporal pattern localization: when does specific information
become available to a brain region? (e.g., Polyn et al., 2005; Grosenick
et al., 2008; Bode and Haynes, 2009; Harrison and Tong, 2009; Soon et
al., 2009). Yet, mechanistic conclusions that relate to biologically
meaningful entities such as brain connectivity or synaptic plasticity
are hard to draw. Conventional classifiers allow for the construction of
information maps, but these are usually difficult to relate to concrete
neurophysiological or biophysical mechanisms.

Decoding with model-based feature construction

In order to address the limitations outlined above, we propose a
new scheme which we refer to as decoding with model-based feature
construction (see Fig. 1). The approach comprises three steps. First, a
biologically informed model is constructed that describes the
dynamics of neural activity underlying the observed measurements.
This model explicitly incorporates prior knowledge about biophysical
and biological mechanisms but does not contain any representation of
the class labels or cognitive states that are to be classified. Next, units
of classification are formed, and the model is fitted to the measured
data for each unit separately. Typically, a unit of classification
corresponds either to an individual trial (leading to trial-by-trial
decoding) or to an individual subject (leading to subject-by-subject
classification). Crucially, the model is designed to accommodate
observations gathered from all classes, and therefore, when being
inverted, it remains oblivious to the class a given unit of data stems
from.2 In the second step of our approach, a classification algorithm is
trained and tested on the data. Crucially, the only features submitted
to the algorithm are parameter estimates provided by model
inversion, e.g., posterior means.3 Third, the weights are reconstructed
that the classifier has assigned to individual features. This approach
yields both an overall classification accuracy and a set of feature
weights. They can be interpreted, respectively, as the degree to which
the biologically informed model has captured differences between
classes, and the degree to which biophysical model parameters have
proven informative (in the context of all features considered) in
distinguishing between these classes. A full description of all three
steps will be provided in Methods.

When interpreting feature weights one should keep in mind that
features with large weights are informative (with regard to
discriminating trial or subject labels) when considered as part of an
ensemble of features. Importantly, a non-zero feature weight does not
necessarily imply that this feature is informative by itself (i.e., if it was
used in isolation for classification). For example, a feature may be
useless by itself but become useful when considered jointly with
others (c.f. Fig. 2a). A nice example of how this situation may occur in
practice has been described in Blankertz et al. (2011) Hence, one



Fig. 1.Model-based feature construction. A decoding analysis starts off by forming units of classification (e.g., individual trials) and splitting up the data into a training set and a test
set. Each example, represented by a vector, carries a class label (e.g., A or B). Feature construction (or feature selection) is the process of mapping a high-dimensional input space onto
a lower-dimensional feature space so that examples can be represented bymore compact descriptions. The same feature construction that was used on the training data is applied to
the test data. The actual classification algorithm then makes use of the information from the training set to predict the unknown labels of the test examples. Comparing predicted
labels with true labels yields a measure of classification accuracy. Conventional feature construction (left trapezium) often relies on generic methods for dimensionality reduction
(see Introduction). Model-based feature construction, by contrast (right trapezium), rests on a mechanistically interpretable model of how the observed data were generated by
underlying neuronal processes. This model is inverted separately for each example, and the resulting parameter estimates constitute the feature space. Thus, the resulting feature
weights can be interpreted in relation to the underlying model, and accuracies can be used for model comparison.
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should not interpret model-based feature weights in isolation but in
the context of the set of model parameters considered.

The idea of analysing the role of parameters may seem very similar
to standard model-based inference, for instance, when fitting a
dynamic causal model to all data from either trial types, and then
testing hypotheses about significant parameter differences across
trials. However, reconstructing a vector of feature weights in which
each feature corresponds to a model parameter provides two
Fig. 2. Class separability in feature space. (a) Two features may jointly encode class informat
data in a two-dimensional feature space (points) along with their class-conditional density f
both dimensions, a classifier can easily separate the classes using a diagonal hyperplane.
illustrates a situation where the distribution of one class is bimodal. The two class-conditio
nonlinear classifier can easily tell the two classes apart.
additional benefits. First, as described above, feature weights may
be sensitive to parameters that do not encode discriminative
information on their own but prove valuable for class separation
when considered as an ensemble (see Fig. 2a). Second, when using a
nonlinear kernel, feature weights are sensitive to parameters that
allow for class separation even when classes are not linearly
separable. This effect can be observed, for example, when classes
are non-contiguous: trials of one type might be characterized by a
ion when they hardly allow for class separation on their own. The plot shows synthetic
unctions (areas). Even though the class-conditional distributions overlap heavily along
(b) Averaging examples within classes may eliminate both noise and signal. The plot
nal means would coincide in the centre and would be hard to distinguish, whereas a
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parameter value that is either low or high while the same parameter
lies in a medium range for trials of the other type (see Fig. 2b).

Decoding with model-based feature construction has three
potential advantages over previous methods. First, it rests upon a
principled and biologically informed way of generating a feature
space. Second, decoding results can be interpreted in the context of a
mechanistic model. Third, our approach may supplement evidence-
based approaches, such as Bayesian model selection (BMS) for DCM,
in two ways: (i) it enables model-based decoding when discrimina-
bility of trials or subjects is not afforded by differences in model
structure, but only by patterns of parameter estimates under the same
model structure, and (ii) it enables structural model selection in cases
where BMS for current implementations of DCM is not applicable. We
deal with these points in more depth in the Discussion.

Proof of concept

Model-based feature spaces can be constructed for various acqui-
sition modalities, including fMRI, electroencephalography (EEG),
magnetoencephalography (MEG), and electrophysiology. Here, as a
proof of principle, we illustrate the applicability of our approach in
two independent datasets consisting of electrophysiological record-
ings from rat cortex. The first dataset is based on a simple whisker
stimulation experiment; the second dataset is an auditory mismatch
negativity (MMN) paradigm. In both cases, the aim of decoding is to
predict, based on single-trial neural activity, which type of stimulus
was administered on each trial.

In both datasets, we construct a feature space on the basis of
dynamic causal modelling (DCM), noting that, in principle, any other
modelling approach providing trial-by-trial estimates could have
been used instead. DCM was originally introduced for fMRI data
(Friston et al., 2003) but has subsequently been implemented for a
variety of measurement types, such as event-related potentials or
spectral densities obtained from electrophysiological measurements
(David et al., 2006; Kiebel et al., 2009; Moran et al., 2009). It views the
brain as a nonlinear dynamical system that is subject to external
inputs (such as experimental perturbations). Specifically, DCM
describes how the dynamics within interconnected populations of
neurons evolve over time and how their interactions change as a
function of external inputs. Here we apply DCM to electrophysiolog-
ical recordings, which are highly resolved in time (here: 1 kHz). This
makes it possible to fit a neurobiologically inspired network model to
individual experimental trials and hence construct a model-based
feature space for classification. In order to facilitate the comparison of
our scheme with future approaches, our data will be made available
online.4

Methods

Model-based feature construction can be thought of in terms of
three conceptual steps: Trial-by-trial estimation of a model, Classifi-
cation in parameter space, and Reconstruction of feature weights. The
approach could be used with various biological modelling techniques
or experimental modalities. Here, we propose one concrete imple-
mentation. It is based on trial-by-trial dynamic causal modelling in
conjunction with electrophysiology.

Trial-by-trial dynamic causal modelling

Introduction to DCM
Dynamic causal modelling (DCM) is a modelling approach

designed to estimate activity and effective connectivity in a network
of interconnected populations of neurons (Friston et al., 2003). DCM
4 See http://people.inf.ethz.ch/bkay/downloads.
regards the brain as a nonlinear dynamic system of interconnected
nodes, and an experiment as a designed perturbation of the system's
dynamics. Regardless of data modality, dynamic causal models are
generally hierarchical, comprising two model layers (Stephan et al.,
2007a,b): first, a model of neuronal population dynamics that includes
neurobiologically meaningful parameters such as synaptic weights
and their context-specific modulation, spike-frequency adaptation, or
conduction delays; and second, a modality-specific forward model
that translates source activity into measurable observations. It is the
neuronal model that is typically of primary interest.

For a given set of recorded data, estimating the parameters of a
dynamic causal model means inferring what neural causes will most
likely have given rise to the observed responses, conditional on the
model. Such models can be applied to a single population of neurons,
e.g., a cortical column, to make inferences about neurophysiological
processes such as amplitudes of postsynaptic responses or spike-
frequency adaptation (Moran et al., 2008). More frequently, however,
it is used to investigate the effective connectivity among remote
regions and how it changes with experimental context (e.g., Garrido
et al., 2008; Stephan et al., 2008). In this paper,wewill useDCM in both
ways, applying it to two separate datasets, one single-site recording
from the somatosensory barrel cortex and a two-electrode recording
from the auditory cortex.

There are two reasons why dynamic causal modelling is a
particularly promising basis for model-based feature construction.
First, all model constituents mimic neurobiological mechanisms and
hence have an explicit neuronal interpretation. In particular, the neural-
mass model embodied by DCM is largely based on the mechanistic
model of cortical columns originally proposed by Jansen and Rit (1995)
and further refined in subsequent papers (David and Friston, 2003;
David et al., 2006;Moran et al., 2009). Bayesian priors on its biophysical
parameters can be updated in light of new experimental evidence
(cf. Stephan et al., 2007b). In this regard, DCM fundamentally departs
from those previous approaches that either characterized experimental
effects in a purely phenomenological fashion or were only loosely
coupled with biophysical mechanisms. As will be discussed in more
detail inReconstruction of featureweights, a neuronallyplausiblemodel
is a key requirement for meaningful model-based decoding results.

The second reason why we chose DCM to illustrate model-based
feature construction is that its implementation for electrophysiolog-
ical data, for example local field potentials (LFP), makes it possible to
construct models of measured brain responses without specifying
which particular experimental condition was perturbing the system
on a given trial.5 While DCM is usually employed to explain
experimental effects in terms of context-specific modulation of
coupling among regions, it is perfectly possible to construct a DCM
for LFPs that is oblivious to the type of experimental input which
perturbed the system on a given trial. This is an important prerequisite
for the applicability of themodel to stimulus decoding: whenwewish
to predict, for a given trial, which stimulus was presented to the brain,
based on amodel-induced feature space, themodelmust not have any
knowledge of the stimulus identity in the first place.
DCM for LFPs
We illustrate model-based feature construction applying a

dynamic causal model for evoked responses to data from electro-
physiological recordings in rats. A detailed description of this model
can be found in other publications (David and Friston, 2003; Kiebel
et al., 2009; Moran et al., 2008, 2009). However, in order to keep the
present paper self-contained, a brief summary of the main modelling
principles is presented in the following section.
5 Note that this is presently not possible for DCM for fMRI since this model has to be
fitted to the entire experimental time series, including trials from all conditions.
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Table 1
Trial-by-trial model parameters for N regions.

Parameter Biophysical function Dimensionality

(a) Intrinsic parameters (describing the dynamics within a region)
Synaptic parameters

T Synaptic time constants (of intrinsic excitatory and
inhibitory connections)

N×2

H Postsynaptic amplitudes at excitatory connections N
S Sigmoidal activation function parameters (dispersion

and threshold)
N×2

Connectivity parameters
C Input strength of sensory inputs to the cortical

population
N

Stimulus parameters
R Stimulus parameters (onset and dispersion) N×2
G Intrinsic rates N×5

(b) Extrinsic parameters (describing the dynamics between regions)
Connectivity parameters

AF Extrinsic coupling matrix specifying forward
connections

N×N

AB Extrinsic coupling matrix specifying backward
connections

N×N

AL Extrinsic coupling matrix specifying lateral
connections

N×N

D Extrinsic propagation delays N×N
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The neural-mass model
The neural-massmodel in DCM represents the bottom layer within

the hierarchy. It describes a set of n neuronal populations (charac-
terized by m states each) as a system of interacting elements, and it
models their dynamics in the context of experimental perturbations.
At each time point t, the state of the system is expressed by a vector
x(t)∈Rn×m. The evolution of the system over time is described by a
set of delay differential equations that evolves the state vector and
accounts for conduction delays among spatially separate populations.
The equations specify the rate of change of activity in each region (i.e.,
of each element in x(t)) as a function of three variables: the current
state x(t) itself, the strength of experimental inputs u(t) (e.g., sensory
stimulation), and a set of time-invariant parameters θ. Thus, in general
terms, the dynamics of the model are given by an n-valued function
F xð Þ = dx

dt :

Within the framework of DCM, each of the n regions is modelled as
a microcircuit whose properties are derived from the biophysical
model of cortical columns proposed by Jansen and Rit (1995).
Specifically, each region is assumed to comprise three subpopulations
of neurons whose voltages and currents constitute the state vector
x(k)∈R9 of a region k. These populations comprise pyramidal cells
(in supragranular and infragranular layers), excitatory interneurons
(granular or spiny stellate cells in the granular layer), and inhibitory
interneurons (in supragranular and infragranular layers). The con-
nectivity within a column or region is modelled by intrinsic connec-
tions that, depending on the source, can be inhibitory or excitatory.
Connections between remote neuronal populations are excitatory
(glutamatergic) and target specific neuronal populations, depending
on their relative hierarchical position, resulting in lateral, forward
and backward connections as defined by standard neuroanatomical
classifications (Felleman and Van Essen, 1991). Experimentally con-
trolled sensory inputs affect the granular layer (e.g., thalamic input
arriving in layer IV) and are modelled as a mixture of one fast event-
related and various slow, temporally dispersed components of
activity. Critically, this input is the same for all trial types.

DCM describes the dynamics of each region by a set of region-
specific constants and parameters. These comprise (i) time constants
G of the intrinsic connections, (ii) time constants and maximum
amplitudes of excitatory/inhibitory postsynaptic responses (Te/Ti, He/
Hi), and (iii) input parameters which specify the delay and dispersion
of inputs arriving in the granular layer. Depending on how the model
is implemented, the first two sets of these parameters can be fixed or
remain free. In all our analyses, we used priors with means as
described by Moran et al. (2009). For the analysis of the first dataset,
priors on G and Ti were given infinite precision in order to keep the
model as simple as possible. For the second dataset, representing a
more subtle process and acquired under less standardized conditions
than the first (i.e., awake behaving vs. anaesthetized animals),

we chose prior variances on the scaling of
1
16

and
1
8
, respectively

(cf. Moran et al., 2009).
Two additional sets of parameters control connections between

regions: (iv) extrinsic connection parameters,which specify the specific
coupling strengthsbetweenany tworegions; and (v) conductiondelays,
which characterize the temporal properties of these connections.

Forward model
The forward model within DCM describes how (hidden) neuronal

activity in individual regions generates (observed) measurements. In
the context of model-based feature construction we are not primarily
interested in the parameter space of the forwardmodel. Thus, DCM for
LFPs is a natural choice. Compared to relatively complex forward
models such as those used for fMRI or EEG, its forward model is
simpler, requiring only a single (gain) parameter for approximating
the spatial propagation of electrical fields in cortex (Moran et al.,
2009). For each region, the model represents field potentials as a
mixture of activity in three local neuronal populations: excitatory
pyramidal cells (60%); inhibitory interneurons (20%); and spiny
stellate (or granular) cells (20%).

Trial-by-trial model estimation
In most applications of dynamic causal modelling, one or several

candidate models are fitted to all data from each experimental
condition (e.g., by concatenating the averages of all trials from all
conditions and providing modulatory inputs that allow for changes in
connection strength across conditions). When constructing a model-
based feature space, by contrast, we are fitting the model in a true
trial-by-trial fashion. It is therefore critical that themodel is not aware
of the category a given trial was taken from. Instead, its inherent
biophysical parameters need to be able to reflect different classes of
trials by themselves.

The idea of trial-by-trial model inversion is to estimate, for each
trial, the posterior distribution of the parameters given the data.
Biologically informed constraints on these parameters (Friston et al.,
2003) can be expressed in terms of a prior density p(θ). This prior is
combined with the likelihood p(y|θ, λ) to form the posterior density
p(θ|y, λ)∝p(y|θ, λ)p(θ). This inversion can be carried out efficiently
by maximizing a variational approximation to ln p(y|m), the log model
evidence for a given model m (Friston et al., 2007). Using a Laplace
approximation, this variational Bayes scheme yields a posterior
distribution of the parameters in parametric form. Given d parameters,
we obtain, for each trial, a vector of posterior means θ̂∈Rd and a full
covariance matrix Ĉ∈Rd×d.

Designing the feature space
Trial-by-trial inversion of the model leads to two sets of condi-

tional posterior densities, (i) for intrinsic parameters describing the
neural dynamics within a region, and (ii) for extrinsic parameters
specifying the connectivity between regions. When the model
comprises a single region only, the parameter space reduces to the
first set of parameters (see Table 1a). By contrast, when the model
specifies several regions, the second set of parameters comes into play
as well (see Table 1b). The two datasets presented in Results will
cover both cases.

In the case of a single-region DCM, one possible feature space can
be constructed by including the estimated posterior means of all
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intrinsic parameters θ. Hence, any given trial k can be turned into an
example xk that is described by a feature vector

xk = μT ; μH; μ
1
S ; μ

2
S ; μC ; μ

1
R; μ

2
R

� �
∈ℝ7 ð2:1Þ

where, for example, μT denotes the estimated mean of the posterior
p (T|yk, m) conditioned on the trial-specific data yk and the model m
(see Table 1a for a description of all parameters). (To keep the
notation simple, the trial index k has been omitted in the parameters.)
Alternatively, the feature space could be extended to additionally
include the posterior variances or even the full posterior covariance
matrix, leading to feature vectors xk∈R14 or xk∈R35, respectively.

In the case of a DCMwithmultiple regions, the feature space can be
augmented by the extrinsic parameters governing the dynamics
among regions. Indeed, these variables are usually of primary interest
whenever there are several regions with potential causal influences
over one another. Again, a trial k could be represented by the posterior
means alone,

x ′
k = intrinsic parameters of all N regions½ �; AF ;AB;AL;Dð Þ ð2:2Þ

whereAF,AB, andAL arematrices representing inter-regional connection
strengths, and D parameterizes the delay of these connections (see
Table 1b). Additionally, one could include the posterior variances and
covariances. The specific feature spaces proposed in this study will be
described in Results.

Classification in parameter space

Decoding a perceptual stimulus or a cognitive state from brain
activity is typically formalized as a classification problem. In the case
of binary classification, we are given a training set (xi,yi) of n
examples xi∈Rd along with their corresponding labels yi∈{−1, +1}.
A learning algorithm attempts to find a discriminant function f∈F
from a hypothesis space F such that the classifier h(x)=sgnf(x)
minimizes the overall loss 1

n∑n
i = 1ℓ yi; f xið Þð Þ, which is usually

designed to approximate the unknown risk R[f]=E[ℓ(Y, f(X)]=∫ℓ(Y,
f (X))dP(X, Y), where X and Y denote the random variables of which the
given examples (xi,yi) are realizations.

The classification algorithmwe use here is an L2-norm soft-margin
support vectormachine (SVM) as given in Eq. (2.4). In a leave-one-out
cross-validation scheme, the classifier is trained and tested on
different partitions of the data, resulting in a cross-validated estimate
of its generalization performance. Within each fold, we tune the
classifier by means of nested cross-validation on the training set. In
the case of a linear kernel, we choose the complexity penalty C using a
simple linear search in log2 space; in the case of nonlinear kernels, we
run a grid search over all parameters to find those that minimize the
cross-validated empirical misclassification rate on the training set.

There are many ways of measuring the performance of a classifier.
In what follows, we are interested in the balanced accuracy b, that is,
the mean accuracy obtained on either class,

b =
1
2

TP
TP + FN

+
TN

TN + FP

� �
ð2:3Þ

where TP, FP, TN, and FN are the number of true positives, false
positives, true negatives, and false negatives, respectively, in the test
set. If the classifier performs equally well on either class, then this
term reduces to an ordinary accuracy (number of correct predictions
divided by number of predictions); if, however, the ordinary accuracy
is high only because the classifier takes advantage of an imbalanced
test set, then the balanced accuracy, as desired, will drop to chance.
We calculate confidence intervals of the true balanced generalization
ability by considering the convolution of two Beta-distributed random
variables that correspond to the true accuracies on positive and
negative examples, respectively (Brodersen et al., 2010).

Reconstruction of feature weights

Some classification algorithms cannot only be used to make
predictions and obtain an estimate of the generalization error that
may be expected on new data. Once trained, some algorithms also
indicate which features contribute most to the overall performance
attained. In cognitive neuroscience, these feature weights can be of
much greater interest than the classification accuracy itself. In
contemporary decoding approaches applied to fMRI, for example,
features usually represent individual voxels. Consequently, a map of
feature weights projected back onto the brain (or, in the case of
searchlight procedures, accuracies obtained from local neighbour-
hoods)may, in principle, reveal which voxels in the brain the classifier
found informative (cf. Kriegeskorte et al., 2006). However, this
approach is often limited to the degree to which one can overcome
the two challenges outlined at the beginning: the problem of feature
selection and the problem of meaningful interpretation. Not only is it
very difficult to design a classifier that actually manages to learn the
feature weights of a whole-brain feature space with a dimensionality
of 100,000 voxels; it is also not always clear how the frequently
occurring salt-and-pepper information maps should be interpreted.

By contrast, using a feature space of biophysically motivated
parameters provides a new perspective on feature weights. Since each
parameter is associated with a specific biological role, their weights
can be naturally interpreted in the context of the underlying model.

In the case of a soft-margin SVM, reconstruction of the feature
weights w is straightforward, especially when features are non-
overlapping. Here, we briefly summarize the main principles to
highlight issues that are important for model-based feature construc-
tion (for further pointers, see Ben-Hur et al., 2008). We begin by
considering the optimization problem that the algorithm solves
during training:

minw;b〈w;w〉 + C∑n
i = 1ξi

s:t: ξi≥1−yi w; xi + bð Þ ∀i = 1;…;n

ξi≥0;

ð2:4Þ

where w and b specify the separating hyperplane, ξi are the slack
variables that relax the inequality constraints to tolerate misclassified
examples, and C is the misclassification penalty. The soft-margin
minimization problem can be solved by maximizing the
corresponding Lagrangian

maxw;b;λ;αL w; b;λ;αð Þ = 1
2
〈w;w〉 + C∑n

i = 1ξi

+ ∑n
i = 1αi 1−yi 〈w; xi〉 + bð Þ−ξið Þ + λT −ξð Þ:

ð2:5Þ

In order to solve the Lagrangian for stationary points, we require
its partial derivatives to vanish:

∂L
∂w = w−∑n

i = 1yiαixi = 0 ð2:6Þ

∂L
∂b = −∑n

i = 1yiαi = 0: ð2:7Þ

Rearranging the first constraint Eq. (2.6) shows that the vector of
feature weights w can be obtained by summing the products yiαixi,

w = ∑n
i = 1yiαixi ð2:8Þ

where xi∈Rd is the ith example of the training set, yi∈ {−1, +1} is its
true class label, and αi∈R is its support vector coefficient. More
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generally, when using a kernel K(x, y)= 〈ϕ(x)·ϕ(y)〉 with an explicit
feature map ϕ(x) that translates the original feature space into a new
space, the feature weights are given by the d-dimensional vector

w = ∑n
i = 1yiαiϕ xið Þ: ð2:9Þ

For example, in the case of a polynomial kernel of degree p, the
kernel function

K x; yð Þ = a〈x; y〉 + bð Þp ð2:10Þ

with real coefficients a and b transforms a d-dimensional variable
space into a feature space with

d′ = d + p
p

� �
−1 ð2:11Þ

non-constantdimensions (cf. Shawe-Taylor andCristianini, 2004). In the
case of two-dimensional examples x=(x1,x2)T and a polynomial kernel
of degree p=2, for instance, the resulting explicit feature mapping

would be given by ϕ2 xð Þ = a;
ffiffiffiffiffiffiffiffi
2ab

p
x1;

ffiffiffiffiffiffiffiffi
2ab

p
x2; bx

2
1;

ffiffiffi
2

p
bx1x2; bx

2
2

� �T
.

Features constructed in this way do not always provide an intuitive
understanding. Even harder to interpret are features resulting from
kernels such as radial basis functions (RBF). With these kernels, the
transformation from a coordinate-like representation into a similarity
relation presents a particular obstacle for assessing the relative
contributions of the original features to the classification
(cf. Schölkopf and Smola, 2002). In the context of model-based
feature construction, we will therefore employ learning machines
with linear kernels only. We can then report the importance of a
hyperplane component wq in terms of its normalized value

fq : =
wq

∑d0
j = 1jwjj∈ −1; 1½ �; q = 1…d′;

such that larger magnitudes correspond to higher discriminative
power, and all magnitudes sum to unity.

Results

As an initial proof of concept, we illustrate the utility of model-
based feature construction for multivariate decoding in the context of
two independent electrophysiological datasets obtained in rats. The
first dataset is based on a somatosensory stimulation paradigm. Using
a single-shank electrode with 16 recording sites, we acquired local
field potentials from barrel cortex in anaesthetized rats while on each
trial one of two whiskers was stimulated by means of a brief
deflection. The goal was to decode from neuronal activity which
particular whisker had been stimulated on each trial (Dataset 1—
whisker stimulation). The second dataset was obtained during an
auditory oddball paradigm. In this paradigm, two tones with different
frequencies were repeatedly played to an awake behaving rat: a
frequent standard tone; and an occasional deviant tone. The goal was
to decode from neuronal activity obtained from two locations in
auditory cortex whether a standard tone or a deviant had been
presented on a given trial (Dataset 2—auditory mismatch negativity
potentials).6
6 It should be noted that the second dataset was acquired using epidural silverball
electrodes whose recording characteristics differ from those of the intracortical probes
used in the first dataset. For the sake of simplicity, we will refer to both types of data as
local field potentials (LFPs) and model both datasets using the forward model
described in Methods.
Dataset 1—whisker stimulation

The most commonly investigated question in multivariate decoding
is to predict from neuronal activity what type of sensory stimulus was
administered on a given experimental trial. In order to investigate the
applicability of model-based feature construction to this class of
experiments, we analysed LFPs acquired from rats in the context of a
simple sensory stimulation paradigm.

Experimental paradigm and data acquisition
Two adjacent whiskers were chosen for stimulation that produced

reliable responses at the site of recording (dataset A1: whiskers E1 and
D3; dataset A2: whiskers C1 and C3; datasets A3–A4: whiskers D3 and
β). On each trial, one of these whiskers was stimulated by a brief
deflection of a piezo actuator. The experiment comprised 600 trials
(see Fig. 3).

Data were acquired from 3 adult male rats. In one of these, an
additional experimental session was carried out after the standard
experiment described above. In this additional session, the actuatorwas
very close to the whiskers but did not touch it, serving as a control
condition to preclude experimental artifacts from driving decoding
performance. After the induction of anaesthesia and surgical prepara-
tion, animals were fixated in a stereotactic frame. A multielectrode
silicon probewith 16 channelswas introduced into the barrel cortex. On
each trial, voltage traces were recorded from all 16 sites, approximately
spanning all cortical layers (sweep duration 2 s). Local field potentials
were extracted by band-pass filtering the data (1–200 Hz). All
experimental procedures were approved by the local veterinary
authorities (see Supplement S1 for a full description of the methods).

Conventional decoding
Before constructing a model-based feature space for decoding, we

carried out two conventional decoding analyses. The purpose of the
first analysis was to characterize the temporal specificity with which
information could be extracted from raw recordings, whereas the
second served as a baseline for subsequent model-based decoding.

We characterized the temporal evolution of information in the
signal by training and testing a conventional decoding algorithm on
individual time bins. Specifically, we used a nonlinear L2-norm soft-
margin support vector machine (SVM) with a radial basis kernel to
obtain a cross-validated estimate of generalization performance at
each peristimulus time point (Chang and Lin, 2001). Since it is
multivariate, the algorithm can pool information across all 16
channels and may therefore yield above-chance performance even
at time points when no channel shows a significant difference
between signal and baseline. This phenomenon was found in two out
of three datasets (see arrows in Fig. 4). Particularly strong decoding
performance was found in dataset A2, in which, at the end of the
recording window, 800 ms after the application of the stimulus, the
trial type could still be revealed from individual time bins with an
accuracy of approximately 70%.

In order to obtain a baseline level for overall classification accuracies,
we examined how accurately a conventional decoding approach could
tell apart the two trial types (see Fig. 5). The algorithmwas based on the
same linear SVM that we would subsequently train and test on model-
based features. Furthermore, both conventional and model-based
classification were supplied with the same single-channel time series
(channel 3), sampled at 1000 Hz over a [−10, 290] ms peristimulus
time interval. Thus using300data features,we found ahighly significant
average above-chance accuracy of 95.4% (pb0.001) across the exper-
imental data (A1–A3), while no significance was attained in the case of
the control (A4).

Model-based decoding
In order to examine the utility of model-based feature construction

in this dataset, we designed a simple dynamic causal model (see



Fig. 3. Experimental design (dataset 1). The first experiment is based on a simple whisker stimulation paradigm. (a) On each trial, after a brief prestimulus period, a brief cosine-wave
tactile stimulus is administered to one of two whiskers both of which have been confirmed to produce reliable responses at the site of recording. Each trial lasts 2 s, followed by a
jittered inter-trial interval. (b) Stimuli are administered using a piezo actuator for each whisker. Local field potentials are recorded from barrel cortex using a 16-channel silicon
probe. (c) A conventional decoding analysis, applied to signals from each channel in turn, reveals a smooth profile of discriminative information across the cortical sheet. For each
electrode, the diagram shows the prediction accuracy obtained when using a pattern-recognition algorithm to decode the type of whisker that was stimulated on a given trial (see
Dataset 1—whisker stimulation).
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Supplement S3 for the full model specification) and used its parameter
space to train and test a support vector machine. Since the data were
recorded from a single cortical region, the model comprised just one
region. For trial-by-trial model inversion we used the recorded signal
from electrode channel 3, representing activity in the supragranular
layer. Using the trial-by-trial estimates of the posterior means of the
Fig. 4. Temporal information mapping (dataset 1). The evolution of discriminative informatio
separately on the datawithin each peristimulus time bin. Here, time binswere formed by sam
curve represents the balanced accuracy (see Classification in parameter space) obtained on e
Chance levels alongwith an uncorrected 95% significancemargin are shown aswhite horizon
represents, for one particular channel, the difference between the averaged signals from all tr
around themean difference, in µV. Separately for each dataset, raw recordingswere rescaled t
points above the midline imply a higher voltage under stimulus A than under stimulus B. M
expected, since the significancemargins around the chance bar are not corrected formultiple
well as below-chance accuracies). Crucially, the diagram shows that the classifier systematic
accuracies can be achieved even when no individual channel mean on its own shows a part
neuronal model parameters, we generated a 7-dimensional feature
space.We then trained and tested a linear SVM to predict, based on this
model-based feature space, the typeof stimulus for each trial (see Fig. 5).
We found high accuracies in all three experimental datasets (average
accuracy 83.6%, pb0.001), whereas prediction performance on the
control dataset was not significantly different from chance.
n over time can be visualized by training and testing a conventional decoding algorithm
pling the data at 200 Hz, and all 16 channelswere included in the feature space. The black
ach time bin (left y-axis). Inset percentages (e.g., 82% in A1) represent peak accuracies.
tal lines. Raw recordings have been added as a coloured overlay (right y-axis). Each curve
ials of one class vs. the other. Thewidth of a curve indicates the range of 2 standard errors
omatch the range of classification accuracies, andwere plotted on an inverse y-scale, i.e.,
inimum and maximum voltage differences are given as inset numbers on the left. As

comparisons, even the control dataset occasionally achieves above-chance accuracies (as
ally performs well whenever there is a sufficient signal-to-noise ratio. In addition, high
icularly notable difference from its baseline (arrows).



Fig. 5. Conventional vs. model-based decoding performance (dataset 1). The diagram
shows overall classification accuracies obtained on each dataset, contrasting conven-
tional decoding (blue) with model-based decoding (green). Bars represent balanced
accuracies along with 95% confidence intervals of the generalization performance (see
Classification in parameter space). Consistent in both conventional (mean 95.4%) and
model-based decoding (mean 83.6%), all accuracies are significantly above chance
(pb0.001) on the experimental datasets (A1–A3). By contrast, neither method attains
significance at the 0.05 level on the control dataset in which no physical stimuli were
administered (A4). Despite a massively reduced feature space, model-based decoding
does not perform much worse than the conventional approach and retains highly
significant predictive power in all cases.

609K.H. Brodersen et al. / NeuroImage 56 (2011) 601–615
These results showed that although the feature space was reduced
by two orders of magnitude (from 300 to 7 features), model-based
decoding still achieved convincing classification accuracies, all of
which were significantly above chance. We then tested whether the
model-based approach would yield feature weights that were
neurobiologically interpretable and plausible. In order to estimate
these feature weights, we trained our linear SVM on the entire dataset
and reconstructed the resulting hyperplane (see Eq. (2.9)). Thus, we
obtained an estimate of the relative importance of each DCM
parameter in distinguishing the two trial types. These estimates
revealed a similar pattern across all three experiments (see Fig. 6).
Specifically, the parameter encoding the onset of sensory inputs to the
cortical population recorded from (R1) was attributed the strongest
discriminative power in all datasets.

Dataset 2—auditory mismatch negativity potentials

In order to explore the utility of model-based decoding in a second
domain, wemade an attempt to decode auditory stimuli from neuronal
activity in behaving animals, using an oddball protocol that underlies a
phenomenon known as auditory mismatch negativity.
Fig. 6. Reconstructed feature weights (dataset 1). In order to make predictions, a discriminat
components of this hyperplane indicate the joint relative importance of individual features i
the normalized value of the hyperplane component (x-axis) for the posterior expectation o
values indicate higher discriminative power (see main text). Consistent across all three exp
discriminative power.
Experimental paradigm and data acquisition
In the experiment, a series of tones was played to an awake,

behaving animal. The sequence consisted of frequent standard tones
and occasional deviant tones of a different frequency (see Fig. 7a).
Tone frequencies and deviant probabilities were varied across
experiments (see Supplement S1). A tone was produced by band-
pass-filtered noise of carrier frequencies between 5 and 18 kHz and a
length of 50 ms (see Fig. 7b). Standard and deviant stimuli were
presented pseudo-randomly with deviant probabilities of 0.1 (data-
sets B1 and B3) and 0.2 (dataset B2). The three datasets comprised of
900, 500, and 900 trials, respectively.

For the present analyses we used data that was acquired from 3
animals in a sound-attenuated chamber (cf. Jung et al., 2009). In order
to record event-related responses in the awake, unrestrained animal,
a telemetric recording system was set up using chronically implanted
epidural silverball electrodes above the left auditory cortex. The
electrodes were connected to an EEG telemetry transmitter that
allowed for wireless data transfer. During the period of data
acquisition, rats were awake and placed in a cage that ensured a
reasonably constrained variance in the distance between the animal
and the speakers (see Fig. 7c). All experimental procedures were
approved by the local governmental and veterinary authorities (see
Supplement S1 for a full description of the methods).

A robust finding in analyses of event-related potentials during the
auditory oddball paradigm in humans is that deviant tones, compared
to standard ones, lead to a significantly more negative peak between
150 and 200 ms post-stimulus, the so-called ‘mismatch negativity’ or
MMN (Näätänen, Tervaniemi, Sussman, Paavilainen, and Winkler,
2001; Garrido, Kilner, Stephan, and Friston, 2009). Although the
MMN-literature in rodents is much more heterogeneous and almost
exclusively concerned with animals under anaesthesia, the observed
difference signals in our data are highly consistent with similar
studies in rats (e.g., von der Behrens et al., 2009), showing a negative
deflection at approximately 30 ms and a later positive deflection at
100 ms (shaded overlay in Fig. 8).

Conventional decoding
By analogy with Dataset 1—whisker stimulation, we first ran two

conventional decoding analyses. For temporal classification, we used a
nonlinear support vector machine with a radial basis function kernel
(Chang and Lin, 2001) and characterized the temporal evolution of
information in the signal by training and testing the same algorithm
on individual time bins. In this initial temporal analysis, above-chance
classification reliably coincided with the average difference between
signal and baseline (see Fig. 8).

In order to obtain baseline performance levels for subsequent
model-based decoding, we ran a conventional trial-wise classification
ive classifier finds a hyperplane that separates examples from the two types of trial. The
n the algorithm's success (for parameter descriptions see Table 1a). The diagram shows
f each model parameter (y-axis). Feature-weight magnitudes sum to unity, and larger
eriments, the parameter encoding the stimulus onset (R1) was attributed the strongest



Fig. 7. Experimental design (dataset 2). The second experiment was based on an auditory oddball paradigm. (a) On each trial, the animal was presented either with a standard tone
or, less frequently, with a deviant of a different frequency. Tone frequencies and deviant probabilities were varied across experiments (see main text). (b) Each trial lasted 600 ms,
with a stimulus onset 90 ms after the beginning of a sweep. Recordings comprised 390 ms in total and were followed by an inter-trial interval of 210 ms. (c) In order to allow for data
acquisition in an awake behaving animal, signals were transmitted wirelessly to a high-frequency (HF) receiver. A control unit passed these data on to a storage system where they
were time-locked to stimulus triggers. This made it possible for the animal to move freely within a cage in a sound-proof chamber.

610 K.H. Brodersen et al. / NeuroImage 56 (2011) 601–615
analysis based on a powerful polynomial kernel over all time points
(see Fig. 9). In order to ensure a fair comparison, we supplied the
algorithm with precisely the same data as used in the subsequent
analysis based on a model-induced feature space (see below).
Specifically, each trial was represented by the time series of auditory
evoked potentials from both electrodes, sampled at 1000 Hz, over a
[−10, 310] ms peristimulus time interval (resulting in 320 features).
Across the three datasets we obtained an above-chance average
prediction accuracy of 81.2% (pb0.001).
Fig. 8. Temporal information mapping (dataset 2). By analogy with Fig. 4, the diagram sho
formed by sampling the data from both channels at 1000 Hz. The black curve represents the b
both channels, the mean signal from all deviant trials minus the mean signal from all standar
decoded with above-chance accuracy is when at least one channel significantly deviates fr
sufficient to explain multivariate classification accuracies.
Model-based decoding
In this experiment, data from two electrodes and regions were

available, enabling the construction of a two-region DCM. As the exact
locations of the electrodes in auditory cortex were not known, we
initially evaluated three alternative connectivity layouts between the
two regions: (i) a model with forward connections from region 1 to
region 2, backward connections from region 2 to region 1, and stimulus
input arriving in region 1; (ii) a model with forward connections from
region 2 to region 1, backward connections from region 1 to region 2,
ws the temporal evolution of discriminative information in dataset 2. Time bins were
alanced accuracy obtained on each time bin. The coloured overlay shows, separately for
d trials. The diagram shows that the most typical situation in which the trial type can be
om its baseline (e.g., grey arrow in B1), though such deviations alone are not always



Fig. 9. Conventional vs. model-based decoding performance (dataset 2). The diagram
contrasts conventional decoding (blue) with model-based decoding (green) in terms of
overall classification accuracies obtained on each auditory mismatch dataset. Model-
based accuracies tend to be lower than conventional accuracies, but they remain
significantly above chance in 2 out of 3 cases (59.7% and 54.1%, pb0.05 each). All results
are given in terms of balanced accuracies (see Classification in parameter space) along
with 95% confidence intervals of the generalization performance.
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and stimulus input arriving in region 2; and (iii) a model with lateral
connections between the two regions and stimulus input arriving in
both regions. For each model, we created a 13-dimensional feature
space based on the posterior expectations of all neuronal and
connectivity parameters.We dealt with the problem of testingmultiple
hypotheses by splitting the data from all animals into two halves, using
the first half of trials for model selection and the second half for
reportingdecoding results. (Cross-validation across animals, as opposed
to within animals, would not provide a sensible alternative here since
variability in the location of the electrodes precludes the assumption
that all data stem from the same distribution.) Based on the first half of
the datawithin eachanimal,we found that the best discriminabilitywas
afforded by themodel that assumes forward connections from region 2
to region 1 and backward connections from region 1 to 2 (see
Supplement S3). We then applied this model to the second half of the
data, inwhich the auditory stimulus administered on each trial could be
Fig. 10. Reconstructed feature weights (dataset 2). By analogy with Fig. 6, the diagram show
(y-axis). Larger values indicate higher discriminative power when considering the correspon
this analysis since its classification accuracy was not significantly above chance (see Fig. 9). T
and backward connections (parameters AF and AB) was highest in both remaining datasets
decodedwithmoderate but highly significant accuracies (pb0.001) in 2
out of 3 datasets (B1 and B2; see Fig. 9).

Feature weights are only meaningful to compute when the
classifier performs above chance. Thus, separately for datasets B1
and B2, we trained the same SVM as before on the entire dataset and
reconstructed the resulting hyperplane (see Eq. (2.9)). A similar
pattern of weights was again found across the datasets (see Fig. 10). In
particular, the two model parameters with the highest joint
discriminative power for both datasets were the parameters repre-
senting the strength of the forward and backward connections,
respectively (AF and AB). Noticeable weights were also assigned to the
extrinsic propagation delay (D1,2) and to the dispersion of the
sigmoidal activation function (S1) (see Fig. 10).

Discussion

Recent years have seen a substantial increase in research that
investigates the neurophysiological encoding problem from an inverse
perspective, asking how well we can decode a discrete state of mind
from neuronal activity. However, there are two key challenges that all
contemporary methods have to face. First, the problem of feature
selection: how do we design a classification algorithm that performs
well whenmost input features are uninformative? Second, the problem
of meaningful inference: how should the feature space be designed to
allow for a neurobiologically informative interpretation of classification
results? In this paper,we have proposed a newapproachwhichwe refer
to as decoding with model-based feature construction. This approach
involves (i) trial-by-trial inversion of a biophysically interpretable
model of neural responses, (ii) classification in parameter space, and
(iii) interpretation of the ensuing feature weights.

Model-based feature construction addresses the two challenges of
feature selection and meaningful interpretation from a new angle.
First, the feature space built from conditional estimates of biophysical
model parameters has a much lower dimensionality than the raw
data, making any heuristics for initial feature-space dimensionality
reduction obsolete (see Fig. 1). Concerning the second challenge,
model-based feature construction offers a new perspective on the
interpretation of decoding results. In particular, reconstructing
feature weights allows us to deduce which set of biophysical
s the normalized hyperplane component magnitudes (x-axis) for all model parameters
ding feature as part of an ensemble of features. One experiment (B3) was excluded from
he sum of the feature weights of the two parameters coding for the strength of forward
(B1 and B2).
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parameters is driving prediction performance. Depending on the
formulation of the model, this insight has the potential to enable a
mechanistic interpretation of classification results. This advantage
may become particularly important in clinical studies where such a
model-based classification would have substantial advantages over
‘blind’ classification in that it could convey a pathophysiological
interpretation of phenotypic differences between patient groups.

Summary of our findings

In order to demonstrate the utility of the proposed method, we
analysed two independent datasets, a multichannel-electrode record-
ing from rat barrel cortex during whisker stimulation under
anaesthesia, and a two-electrode recording from two locations in
auditory cortex of awake behaving rats during an auditory oddball
paradigm. In both datasets, we used a state-of-the-art SVM algorithm
in a conventional manner (applying it to approximately 300 ‘raw’ data
features, i.e., measured time points) and compared it to a model-
based alternative (which reduced the feature space by up to two
orders of magnitude). Specifically, we designed amodel-based feature
space using trial-by-trial DCM; of course, other modelling approaches
could be employed instead. Although decoding based onmodel-based
feature construction did not quite achieve the same accuracy as
conventional methods, the results were significant in all but one
instance. Importantly, it became possible to interpret the resulting
feature weights from a neurobiological perspective.

In the analysis of the first dataset, the feature weights revealed a
strikingly similar pattern across all three experiments (see Fig. 6). In
particular, the model parameter representing the onset of sensory
inputs to the cortical population recorded from (R1) made the
strongest contribution to the classifier's discriminative power in all
datasets (cf. Table 1). This finding makes sense because in our
experiment stimulation of the two whiskers induced differential
stimulus input to the single electrode used. For whisker stimulation
directly exciting the barrel recorded from, a shorter latency can be
expected between sensory stimulus and neuronal response as input is
directly received from thalamus. In contrast, for stimulation of the
other whisker, afferent activity is expected to be relayed via cortico-
cortical connections. Similarly, a stimulus directly exciting the barrel
recorded from, should be stronger and less dispersed in time than a
stimulus coming from a neighbouring whisker. This is reflected by the
finding that the parameters representing stimulus strength (C) and
stimulus dispersion (R2), respectively, were also assigned noticeable
classification weights, although not for all three datasets. The pattern
of informative features was confirmed in a 2D scatter plot, in which R1
and R2 play key roles in delineating the two stimulus classes (see
Fig. 12 in the Supplement).

In the analysis of the second dataset, the auditory MMN data, a
similar pattern of feature weights was again found across the two
datasets in which significant classification results had been obtained
(Fig. 10). This is not a trivial prediction, given that all results are based
on entirely independent experiments with inevitable deviations in
electrode positions. Nevertheless, several model parameters were
found with consistent, non-negligible discriminatory power. These
included the strength of the forward and backward connections
between the two areas (AF and AB) and the dispersion of the sigmoidal
activation function (S1). Other noticeable parameters included the
synaptic time constants (T1 and T2) and the extrinsic propagation
delays (D). These findings are in good agreement with previous
studies on themechanisms of theMMN (e.g., Baldeweg, 2006; Garrido
et al., 2008; Kiebel, Garrido, and Friston, 2007). In brief, these earlier
studies imply that two separate mechanisms, i.e., predictive coding
and adaptation, are likely to contribute to the generation of the MMN.
While the latter mechanism relies on changes in postsynaptic
responsiveness (which can be modelled through changes in the
sigmoidal activation function and/or synaptic time constants), the
former highlights the importance of inter-regional connections for
conveying information about prediction errors. The results of our
model-based classification are consistent with this dual-mechanism
view of the MMN.

Optimal decoding

The model-based decoding approach described in this paper
employs a biophysically and neurobiologically meaningful model of
neuronal interactions to enable a mechanistic interpretation of
classification results. This approach departs fundamentally from more
generic decoding algorithms that operate on raw data, which may be
considered one end of a spectrum of approaches (see Introduction). At
the other end lies what is often referred to as optimal decoding.

In optimal decoding, given an encoding model that describes how a
cognitive state of interest is represented by a particular neuronal state,
the cognitive state can be reconstructed from measured activity by
inverting the model. Alternatively, if the correct model is unknown,
decoding can be used to compare the validity of different encoding
models. Recent examples of this sort include thework by Naselaris et al.
(2009) and Miyawaki et al. (2008), who demonstrated the reconstruc-
tion of a visual image from brain activity in visual cortex. Other
examples include Paninski et al. (2007) and Pillow et al. (2008), who
inverted a generalized linear model for spike trains. The power of this
approach derives from the fact that it is model-based—if the presumed
encoding model is correct, the approach is optimal (cf. Paninski et al.,
2007; Pillow et al., 2008; Naselaris et al., 2009; Miyawaki et al., 2008).
However, there are two reasons why it does not provide a feasible
option in most practical questions of interest.

The first obstacle in optimal decoding is that it requires an
encoding model to begin with. In other words, an optimal encoding
model requires one to specify exactly and a priori how different
cognitive states translate into differential neuronal activity. Putting
down such a specification may be conceivable in simple sensory
discrimination tasks; but it is not at all clear how one would achieve
this in a principled way in the context of more complex paradigms. In
contrast, a modelling approach such as DCM for LFPs is agnostic about
a prespecified mapping between cognitive states and neuronal states.
Instead, it allows one to construct competing models of neuronal
responses to external perturbations (e.g., sensory stimuli, or task
demands), compare these different hypotheses, select the one with
the highest evidence, and use it for the construction of a feature space.

The second problem in optimal decoding is that even when the
encoding model is known, its inversion may be computationally
intractable. This limitation may sometimes be overcome by restricting
the approach tomodels such as generalized linearmodels, which have
been proposed for spike trains (e.g., Paninski et al., 2007; Pillow et al.,
2008); however, such restrictions will only be possible in special
cases. It is in these situations where decoding using a model-based
feature space could provide a useful alternative.

Choice of classifiers and unit of classification

Decoding with model-based feature construction is compatible
with any type of classifier, as long as its design makes it possible to
reconstruct feature weights, that is, to estimate the contribution of
individual features to the classifier's success. For example, an SVM
with a linear or a polynomial kernel function is compatible with this
approach, whereas in other cases (e.g., when using a radial basis
function kernel; see Reconstruction of feature weights), one might
have to resort to computationally more expensive alternatives (such
as a leave-one-feature-out comparison of overall accuracies).

It should also be noted that feature weights are not independent of
the algorithm that was used to learn them. In this study, for example,
we illustrated model-based decoding using an SVM. Other classifiers
(e.g., a linear discriminant analysis) might differ in determining the
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separating hyperplane and could thus yield different feature weights.
Also, when the analysis goal is not prediction but inference on
underlying mechanisms, alternative methods could replace the use of
a classifier (e.g., feature-wise statistical testing).

Model-based feature construction may be subject to practical
restrictions with regard to the temporal unit of classification. The
temporal unit represents the experimental entity that forms an
individual example and is associated with an individual label. In most
contemporary decoding studies, this is either an experimental trial
(trial-by-trial classification) or a subject (subject-by-subject classifi-
cation; e.g., Ford et al., 2003; Brodersen et al., 2008). Given the high
sampling rates and low degrees of serial correlation typically
associated with EEG, MEG, or LFP data, DCM can be fitted to individual
trials. By contrast, fMRI data have low sampling rates, resulting in only
a few data points per trial, and pronounced serial correlations; this
makes a piecewise DCM analysis of a trial-wise time series
problematic. Thus, decoding with model-based feature construction
in the context of fMRI can presently only be used for subject-by-
subject classification.
7 It is important to emphasize that any given model is fitted to all trials (or subjects).
The common currency for model comparison is the generalization ability afforded by
different models that differ in structure but are applied to the same trials (or subjects).
Dynamic and structural model selection

An important aspect in model-based decoding is the choice of a
model. For the second dataset described in this paper, for example,
there was a natural choice between three different connectivity
layouts. The better the model of the neuronal dynamics, the more
meaningful the interpretation of the ensuing feature weights should
be. But what constitutes a ‘better model’?

Competing models can be evaluated by Bayesian model selection
(BMS; Friston et al., 2007; Penny, Stephan, Mechelli, and Friston,
2004; Stephan et al., 2009a,b). In this framework, the best model is the
one with the highest (log) model evidence, that is, the highest
probability of the data given themodel (MacKay, 1992). BMS has been
very successful in model-based analyses of neuroimaging and electro-
physiological data. It also represents a generic and powerful approach to
model-based decoding whenever the trial- or subject-specific class
labels can be represented by differences in model structure. However,
there are two scenarios in which BMS is problematic and where the
approach suggested by this paper may represent a useful alternative.

The first problem is that BMS requires the explananda (i.e., the data
features to be explained) to be identical for all competing models. This
requirement is fulfilled, for example, for DCMs of EEG or MEG data,
where the distribution of potentials or fields at the scalp level does not
change with model structure. In this case, BMS enables both dynamic
model selection (i.e., concerning the parameterization and mathemat-
ical form of the model equations) and structural model selection (i.e.,
concerning which regions or nodes should be included in the model).
However, when dealingwith fMRI or invasive recordings, BMS can only
be applied if the competing models refer to the same sets of brain
regions or neuronal populations; this restriction arises since changing
the regions changes the data (Friston, in press). At present, BMS thus
supports dynamic, but not structural, model selection for DCMs of fMRI
and invasive recordings. This restriction, however, would disappear
once future variants of DCM also optimize spatial parameters of brain
activity.

Secondly, with regard to model-based decoding, BMS is limited
when the class labels to be discriminated cannot be represented by
models of different structures, for example when the differences in
neuronal mechanisms operate at a finer conceptual scale than can be
represented within the chosen modelling framework. In this case,
discriminability of trials (or subjects, respectively) is not afforded by
differences in model structure, but may be provided by different
patterns of parameter estimates under the same model structure (an
empirical example of this case was described recently by Allen et al.
(2010)). In other words, differences between trials (or subjects,
respectively) can be disclosed by using the parameter estimates of a
biologically informed model as summary statistics.

In both above scenarios, the approachproposed in this paper allows
for model comparison. This is because model-based feature construc-
tion can be viewed as a method for biologically informed dimension-
ality reduction, and the performance of the classifier is related to how
much class information was preserved by the estimates of the model
parameters. In otherwords, training and testing a classifier in amodel-
induced feature space means that classification accuracies can now be
interpreted as the degree to which the underlying model has
preserved discriminative information about the features of interest.
This view enables a classification-based form of model comparison
even when the underlying data (e.g., the chosen regional fMRI time
series or electrophysiological recordings) are different, or when the
difference between two models lies exclusively in the pattern of
parameter estimates.7

If discriminability canbeaffordedbypatternsof parameter estimates
under the same model structure, one might ask why not simply
compare models in which the parameters are allowed to show trial-
specific (or subject-specific) differences using conventional model
comparison? One can certainly do this, however the nature of the
inference is different in a subtle but important way: the differences in
evidence between trials (or subjects) afforded by BMS are not the same
as the evidence for differences between trials (or subjects). In other
words, a difference in evidence is not the same as evidence of difference.
This follows from the fact that the evidence is a nonlinear function of the
data. This fundamental distinction means that it may be possible to
establish significant differences in parameter estimates between trials
(or subjects) in the absence of evidence for amodel of differences at the
within-trial (or within-subject) level. This distinction is related
intimately to the difference between random- and fixed-effects
analyses. Under this view, the approach proposed in this paper treats
model parameters as random effects that are allowed to vary across
trials (or subjects); it can thus be regarded as a simple random-effects
approach to inference on dynamic causal models.

In summary, our approach is not meant to replace or outperform
BMS in situationswhen it can be applied. In fact, given that BMS rests on
computing marginal-likelihood ratios and thus accords with the
Neyman–Pearson lemma, one may predict that BMS should be
optimally sensitive in situations where it is applicable (for an anecdotal
comparison of BMS and model-based decoding, see Supplement S4.)
Instead, the purpose of the present paper is to introduce an alternative
solution for model comparison in those situations where BMS is not
applicable, by invoking a different criterion of comparison: in model-
based decoding, the optimal model is the one that generalizes best (in a
cross-validation sense) with regard to discriminating trial- or subject-
related class labels of interest.
Dimensionality of the feature space

Since it is model-based, our approach involves a substantial
reduction of the dimensionality of the original feature space. Ironically,
depending on the specific scientific question, this reduction may
render decoding and cross-validation redundant, since reducing the
feature space to a smaller dimensionality may result in having fewer
features than observations. In this situation, if one is interested in
demonstrating a statistical relationship between the pattern of
parameter estimates and class labels, one could use conventional
encoding models and eschew the assumptions implicit in cross-
validation schemes. In the case of the first dataset, for example, having
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summarized the trial-specific responses in terms of seven parameter
estimates, we could perform multiple linear regression or ANCOVA
using the parameter estimates as explanatory variables and the class
label as a response variable. In this instance, the ANCOVA parameter
estimates reflect the contribution of each model parameter to the
discrimination and play the same role as theweights in a classification
scheme. In the samevein,we could replace the p-value obtained froma
cross-validated accuracy estimate by a p-value based onHotelling's T2-
test, the multivariate generalization of Student's t-test. In principle,
according to the Neyman–Pearson lemma, this approach should be
more sensitive than the cross-validation approachwhenever there is a
linear relationship between features and class labels. However, in
addition to assuming linearity, it depends upon parametric assump-
tions and a sufficient dimensionality reduction of feature space, which
implies that the classification approach has a greater domain of
application (for details, see Supplement S5).

An open question is howwell our approach scales with an increasing
numberofmodel parameters. For example,meaningful interpretationof
feature weights might benefit from using a classifier with sparseness
properties: while the L2-norm support vector machine used here, by
design, typically leads to many features with small feature weights,
other approaches such as sparse nonparametric regression (Caron and
Doucet, 2008), sparse linear discriminant analysis (Grosenick et al.,
2009), groupwise regularization (van Gerven et al., 2009), or sparse
logistic regression (Ryali et al., 2010) might yield results that enable
even better interpretation. One could also attempt to directly estimate
the mutual information between the joint distribution of combinations
ofmodel parameters and the variable of interest. Thesequestionswill be
addressed in future studies.

Future applications

In this paper, we have provided a proof-of-concept demonstration
for the practical applicability of model-based feature construction. The
application domainwe have chosen here is the trial-by-trial decoding of
distinct sensory stimuli, using evoked potentials recorded from rat
cortex. This method may be useful for guiding the formulation of
mechanistic hypotheses that can be tested by neurophysiological
experiments. For example, if a particular combination of parameters is
found to be particularly important for distinguishing between two
cognitive or perceptual states, then future experiments could test the
prediction that selective impairment of the associated mechanisms
should maximally impact on the behavioural expression of those
cognitive or perceptual states.

A more important step, from our perspective, however, will be to
employ the same approach to subject-by-subject classification on the
basis of human fMRI data. This particular domain may hold great
potential for clinical applications. In particular, it has been argued that
the construction of biologically plausible and mechanistically inter-
pretable models are critical for establishing diagnostic classification
schemes that distinguish between pathophysiologically distinct
subtypes of spectrum diseases, such as schizophrenia (e.g., Stephan,
Friston and Frith, 2009a). The model-based decoding approach as
suggested in the present paper could be an important component of
this endeavour, particularly in cases where conventional BMS cannot
be applied for discrimination of clinical (sub)groups.
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