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Finding objective and effective thresholds for voxel-
wise statistics derived from neuroimaging data has
been a long-standing problem. With at least one test
performed for every voxel in an image, some correc-
tion of the thresholds is needed to control the error
rates, but standard procedures for multiple hypothe-
sis testing (e.g., Bonferroni) tend to not be sensitive
enough to be useful in this context. This paper intro-
duces to the neuroscience literature statistical proce-
dures for controlling the false discovery rate (FDR).
Recent theoretical work in statistics suggests that
FDR-controlling procedures will be effective for the
analysis of neuroimaging data. These procedures op-
erate simultaneously on all voxelwise test statistics to
determine which tests should be considered statisti-
cally significant. The innovation of the procedures is
that they control the expected proportion of the re-
jected hypotheses that are falsely rejected. We demon-
strate this approach using both simulations and func-
tional magnetic resonance imaging data from two
simple experiments. © 2002 Elsevier Science (USA)
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INTRODUCTION

A common approach to identifying active voxels in a
neuroimaging data set is to perform voxelwise hypoth-
esis tests (after suitable preprocessing of the data) and
to threshold the resulting image of test statistics. At
each voxel, a test statistic is computed from the data,
usually related to the null hypothesis of no difference
between specified experimental conditions. The voxels
for which the test statistics exceed the threshold are
then classified as active, relative to the particular com-
parison being made. While this approach has proved
reasonably effective for a wide variety of testing meth-
ods, a basic problem remains: choosing the threshold.

1

1053-8119/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.
When one uses theoretically motivated thresholds
for the individual tests, ignoring the fact that many
tests are being performed, the probability that there
will be false positives (voxels declared active when they
are really inactive) among all the tests becomes very
high. For example, for a one-sided t test with a 0.05
significance level, the threshold would be 1.645, which
would lead to approximately 1433 voxels declared ac-
tive on average of the 28672 voxels in a 64 � 64 � 7
image when there is no real activity. The 5% error rate
thus leads to a very large number of false positives in
absolute terms, especially relative to the typical num-
ber of true positives.

The traditional way to deal with multiple testing is
to adjust thresholds such that Type I error is controlled
for all voxels in the brain, simultaneously. There are
two types of error control, weak and strong. Weak
control requires that, when the null hypothesis is true
everywhere, the chance of rejecting one or more tests is
less than or equal to a specified level �. Strong control
requires that, for any subset of voxels where the null
hypothesis is true, the chance of rejecting one or more
of the subset’s tests is less than or equal to �. As
concisely stated by Holmes et al. (1996), “A test with
strong control declares nonactivated voxels as acti-
vated with probability at most � . . .” A significant
result from a test procedure with weak control only
implies there is an activation somewhere; a procedure
with strong control allows individual voxels to be de-
clared active—it has localizing power.

There is a variety of methods available for control-
ling the false-positive rate when performing multiple
tests. Among the methods, perhaps the most commonly
used is the Bonferroni correction (see, for example,
Miller, 1981). If there are k tests being performed, the
Bonferroni correction replaces the nominal significance
level � (e.g., 0.05) with the level �/k for each test. It can
be shown that the Bonferroni correction has strong
control of Type I error. This is a conservative condition,
and in practice with neuroimaging data, the Bonfer-
roni correction has a tendency to wipe out both false
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and true positives when applied to the entire data set.
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To get useful results, it is necessary to use a more
complicated method or to reduce the number of tests
considered simultaneously. For instance, one could
identify regions of interest (ROI) and apply the correc-
tion separately within each region. More involved
methods include random field approaches (such as
Worsley et al., 1996) or permutation based methods
(such as Holmes et al., 1996). The random field meth-
ods are suitable only for smoothed data and may re-
quire assumptions that are very difficult to check; the
permutation method makes few assumptions, but has
an additional computational burden and does not ac-
count for temporal autocorrelation easily. ROIs are
labor intensive to create, and further, they must be
created prior to data analysis and left unchanged
throughout, a rigid condition of which researchers are
understandably wary.

Variation across subjects has a critical impact on
threshold selection in practice. It has frequently been
observed that, even with the same scanner and exper-
imental paradigm, subjects vary in the degree of acti-
vation they exhibit, in the sense of contrast-to-noise.
Subjective selection of thresholds (set low enough that
meaningful structure is observed, but high enough so
that appreciable random structure is not evident) sug-
gests that different thresholds are appropriate for dif-
ferent subjects. Without an objective method for select-
ing these thresholds, however, the meaning of the
statistical tests can be subverted by the researcher by
adjusting the thresholds, implicitly or explicitly, to give
desirable results. Many researchers using neuroimag-
ing therefore tend to choose a single threshold consis-
tently for all data analyzed in an individual experi-
ment. This choice is usually based on what has “worked
well” in the past. For example, a t threshold of 6 and a
P value of less than 0.001 are commonly used, though
completely arbitrary, values for thresholding maps.
This practice avoids biases from ad hoc threshold ad-
justments, but its forced consistency can significantly
reduce sensitivity (and waste data).

There have been a number of efforts to find an ob-
jective and effective method for threshold determina-
tion (Genovese et al., 1997; Worsley et al., 1996;
Holmes et al., 1996). While these methods are promis-
ing, they all involve either extra computational effort
or extra data collection that may deter researchers
from using them. In this paper, we describe a recent
development in statistics that can be adapted to auto-
matic and implicit threshold selection in neuroimag-
ing: procedures that control the false discovery rate
(FDR) (Benjamini and Hochberg, 1995; Benjamini and
Liu, 1999; Benjamini and Yekutieli, 2001).

Whenever one performs multiple tests, the FDR is
the proportion of false positives (incorrect rejections of
the null hypothesis) among those tests for which the
null hypothesis is rejected. We believe that this quan-
tity gets at the essence of what one wants to control, in
contrast to the Bonferroni correction, for instance,

which controls the rate of false positives among all
tests whether or not the null is actually rejected. A
procedure that controls the FDR bounds the expected
rate of false positives among those tests that show a
significant result. The procedures we describe operate
simultaneously on all voxels in a specified part of the
data (e.g., the entire data set) and identify in which of
those voxels the test is rejected. This implicitly corre-
sponds to a threshold selection method that adapts to
the properties of the given data set. These methods
work for any statistical testing procedure for which one
can generate a P value. FDR methods also offer an
objective way to select thresholds that is automatically
adaptive across subjects.

An outline of the paper is as follows. In Section 2, we
describe the FDR in more detail and present a family of
FDR-controlling procedures that have been studied in
the statistics literature. In Section 3, we present sim-
ple simulations that illustrate the performance of the
FDR-controlling procedures. In Section 4, we apply the
methods to two data sets, one describing a simple mo-
tor task (Kinahan and Noll, 1999) and the other from a
study of auditory stimulation. Finally, in Section 5, we
discuss some of the practical issues in the use of FDR.

THE FALSE DISCOVERY RATE

In a typical functional magnetic resonance imaging
(fMRI) data analysis, one computes, for each voxel of
interest, a test statistic that relates to the magnitude of
a particular contrast among experimental conditions.
A voxel is declared active if the corresponding test
statistic is sufficiently extreme with respect to the sta-
tistic’s distribution under the null hypothesis.

Let V denote the total number of voxels being tested
in such an analysis. Each voxel can be classified into
one of four types, depending on whether or not the
voxel is truly active and whether or not it is declared
active, as shown in Table 1.

For example, Via denotes the number of false posi-
tives and Da � Vaa � Via denotes the number of voxels
declared active. In any data analysis, we only observe
Da, Di, and V; the remaining counts are unknown.

The FDR is given by the ratio

FDR �
Via

Via � Vaa
�

Via

Da
; (1)

TABLE 1

Classifications of Voxels in V Simultaneous Tests

Declared active
(discovered)

Declared inactive
(not discovered)

Truly active Vaa Vai Ta

Truly inactive Via Vii Ti

Da Di V
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that is, the proportion of declared-active voxels which
are false positives. If none of the tests is rejected, the
FDR is defined to be 0.

A procedure controlling the FDR specifies a rate q
between 0 and 1 and ensures that on average the FDR
is no bigger than q. This works even though Via, the
number of false positives, is unknown. The phrase “on
average” here is important to the interpretation of the
procedure. The guarantee is that if one were to repli-
cate the experiment many times, then the average
FDR over those replications would be no bigger than q.
For any particular data analysis, the actual FDR might
be larger than q.

In contrast to FDR, the Bonferroni procedure con-
trols the probability of having any false positives: one
specifies an error rate �, and the procedure ensures
that P {Via � 0} � �. While this does a good job of
reducing false positives, it is conservative, meaning
that P {Via � 0} is much less than �, and in general the
method has low power.

The FDR-controlling techniques introduced by Ben-
jamini and Hochberg (1995) are easily implemented,
even for very large data sets. These procedures guar-
antee control of the FDR in the sense that

E(FDR) �
Ti

V
q � q, (2)

where E denotes expected value and where the first
inequality is an equality when the P values are ob-
tained from a continuous distribution. The unknown
factor Ti/V, the proportion of truly inactive voxels,
shows that the procedure somewhat overcontrols the
expected FDR. In analyses of the entire data set, this
factor will in practice be very close to 1 and can rea-
sonably be ignored. For analyses of smaller ROIs, how-
ever, it might be useful to estimate Ti/V and choose q
accordingly.

For the V voxels being tested, the general procedure
is as follows:

1. Select a desired FDR bound q between 0 and 1.
This is the maximum FDR that the researcher is will-
ing to tolerate on average.

2. Order the P values from smallest to largest:

P�1� � P�2� � · · · � P�V�.

Let v(i) be the voxel corresponding to P value P(i).
3. Let r be the largest i for which

P�i� �
i

V

q

c�V�
,

where c(V) is a predetermined constant described be-
low.

4. Declare the voxels v(1), . . . ,v(r) active, or in other
words, threshold the image of test statistics at the
value corresponding to the P value P(r).

The choice of the constant c(V) depends on assump-
tions about the joint distribution of the P values across
voxels. The following choices control FDR under differ-
ent conditions: (i) c(V) � 1 and (ii) c�V� � �i�1

V 1/i. The
size of the constant in (ii) is larger than that in (i).
(Note that � i�1

V 1/i � ln�V� � � � r�V�, where � 	
0.5772 is Euler’s constant and r(V) � 1/V. Hence, for
large V, one can approximate the harmonic sum with
ln(V) � �.) Therefore, all else being equal, the corre-
sponding cutoff for significance and number of voxels
declared active is smaller. The second choice of c(V)
applies for any joint distribution of the P values
across voxels. The first choice of c(V) applies under
slightly more restrictive assumptions. It holds when
the P values at the different voxels are independent
and under a technical condition, called positive de-
pendence, that holds when the noise in the data is
Gaussian with nonnegative correlation across voxels
(Benjamini and Yekutieli, 2001). The latter may be a
reasonable assumption for many fMRI data sets.

A graphical perspective can be helpful to under-
standing the procedure. One plots the ordered P values
P(i) and the line through the origin with slope q/c(V)
and finds the largest P value that is below the line. All
voxels with P values less than or equal to this are
declared active (see Fig. 1).

To implement the procedure, one must choose a
value for the parameter q, but one strength of the
method is that this is not an arbitrary choice. From Eq.
(2), q has a meaningful and rigorous interpretation
that can be relied on in selecting its value and that
makes it comparable across studies. While it is com-
mon to set q to conventional levels for significance
testing (e.g., 0.01–0.05), this is by no means required.
For instance, values of q in the range of 0.10–0.20 are
reasonable in many problems (Benjamini, personal
communication).

Another advantage of this method is that it is adap-
tive, in the sense that the chosen thresholds are auto-
matically adjusted to the strength of the signal. The
researcher chooses a tolerable rate of false discoveries,
and the specific thresholds are determined from the
data. This solves the threshold selection problem auto-
matically, even for multiple subjects: there is no need
to find an arbitrary and ad hoc threshold that works for
all subjects simultaneously or to use a complicated
method of targeting the threshold to each subject.

SIMULATION STUDIES

To show how the FDR-controlling procedures per-
form, we give in this section the results of simulations
in which some of the basic parameters (V, Ta, etc.) are
systematically varied.
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There are two important points about FDR to keep in
mind. First, the procedures guarantee that the FDR
will be below the specified bound on average over many
replications of an experiment. For any given data set,
the FDR need not be below the bound. Second, the FDR
by itself does not tell us what proportion of the truly
active voxels were detected. To find this we would need
also the dual quantity, the false nondiscovery rate
(FNR), which is the proportion of voxels declared inac-
tive that are truly active. That is,

FNR �
Vai

Vai � Vii
�

Vai

Di
, (3)

with FNR � 0 if all voxels are declared active. The
simulations enable us to find the underlying distribu-
tion of the FDR and to compute the FNR to assess
power.

In our simulations, we generate random two-sample
t statistics (one-sided) that correspond to those com-
puted from a time series of 98 images. We consider two
image sizes, 64 � 64 and 128 � 128, which determines
the number of tests performed. Within each image, we
include four square blocks of active voxels. The effect
size as measured by the shift in the t distribution of the
statistic is 0.5, 1, 2, and 3 across the blocks, providing
a range of magnitudes for the task-related signal
changes from barely detectable to easily detectable. We
vary the block size (0, 10, 20, 30) across simulation
runs, thus changing the proportion of truly active vox-
els. Within each run, we obtain 2500 samples using q �

0.05. Throughout we apply the FDR procedure with
c(V) � 1. Table 2 shows the simulation results. Figure
2 shows voxel-by-voxel proportions of rejections across
one simulation run, with the truly active voxels delin-
eated for comparison.

The expected FDRs follow the pattern predicted by
Eq. (2) quite closely, in that they are all quite close to
Tiq/V � 0.05. As the proportion of active voxels in-
creases, the distribution of the FDR becomes more
concentrated, less skewed, and seems to approach a
Gaussian. For the 32 block size of the 64 � 64 simula-
tions, there are virtually no false discoveries

FIG. 1. A graphical display of the FDR-controlling procedures. Sorted P values are plotted in order (with index i at i/V for i � 1, . . ., V).
The largest P value below the line through the origin with slope q is the corresponding threshold, 0 if all P values are above the line. One
rejects the null hypotheses for tests whose P values are at or below this threshold. Using the false discovery rate, the threshold for
significance is approximately 0.0049, with five rejections; using the Bonferroni correction, the threshold is approximately 0.00280, with four
rejections.

TABLE 2

Summaries of FDR and FNR over Replications
of Simulated Data, with q � 0.05

Image size Block size E(FDR)
Ti

V
q

P{FDR � q} E(FNR)

64 � 64 0 0.046 0.050 0.046 0.000
10 0.047 0.045 0.430 0.057
20 0.038 0.030 0.187 0.211
32 0.000 0.006 0.000 1.000

128 � 128 0 0.054 0.050 0.054 0.000
10 0.049 0.049 0.432 0.023
20 0.048 0.045 0.441 0.057
30 0.038 0.039 0.036 0.211

Note. Each row in the table represents a different simulation run.
In each run, the data set generated at each iteration consists of four
blocks of the stated size with different degrees of activation and
surrounding nonactivating voxels.
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(E(FDR) 	 0), because very few voxels are declared
active when the null is true (E(FNR) 	 1); this suggests
that FDR is most powerful with sparse signals. The
probability that the FDR is larger than the tolerance q
drops precipitously as the number of active voxels in-
creases. Figure 2 shows that the FNR decreases with
the effect size. A shift of 0.5 in the t statistics is barely
detectable over the background, but a shift of 3 is
almost completely recovered.

The FDR-controlling procedure indicates which vox-
els should be declared active. The largest P value
among these voxels corresponds to a threshold on the
original test statistics. Figure 3 shows the distribution
of these equivalent t thresholds across simulation runs
for the 128 � 128 image with 10 � 10 active blocks. The
distribution is centered on the value 4.16 with a stan-
dard deviation of approximately 0.21. This variation
from data set to data set shows the FDR-based method
adapting to local variations in the contrast-to-noise
ratio.

Additional insight on the comparison between FDR
and Bonferroni (FWER) methods can be gleaned from
Figs. 4 and 5. Each of these shows the results of ap-
plying one method (FDR or Bonferroni respectively) to
t statistics from 20 simulated data sets. Each data set
is generated with independent voxels and a circular
active region derived from a truncated Gaussian. The
figures display the truly active voxels (in gray), the
truly inactive voxels (in white), and those declared
active by the corresponding method (in black). The
same data were used in both figures. Bonferroni cor-
rectly classifies many fewer voxels, but only once of the
20 data sets are any false discoveries made. FDR, on
the other hand, correctly classifies a much larger por-

FIG. 2. Proportions of tests rejected, by voxel, in the simulation
runs with image size 128 and block size 20. See also Table 2. Boxes
delineate voxels that are truly active. The true shift of the t statistic
increases from 0.5, 1, 2, to 3, going counterclockwise from the bottom
left. False discoveries correspond to nonzero values outside the de-
lineated boxes; false nondiscoveries correspond to non-one values
inside the delineated boxes.

FIG. 3. Histogram of equivalent t thresholds generated by the FDR-controlling procedure across simulation runs with 128 � 128 image
size and 10 � 10 block. The vertical line on the histogram is the corresponding Bonferroni threshold. Note, however, that all FDR thresholds
above Bonferroni yield exactly the same rejections as would the Bonferroni threshold.
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tion of active voxels, but makes more false discoveries
as well.

DATA EXAMPLE

In this section, we consider the effectiveness of the
FDR approach on real data examples. We demonstrate
the methods on two datasets. One data set was de-
scribed by Kinahan and Noll (1999), where PET and
fMRI studies of finger opposition were compared; we
use the fMRI data from one subject. The other data set
is from a study of auditory stimulation; it is available
on the Web, at http://www.fil.ion.ucl.ac.uk/spm/data.
Both data sets are used here with the kind permission
of the respective authors.

For the finger opposition task, subjects sequentially
touched their thumb to the fingers of the right hand,
starting with the little finger. The movements were
synchronized to a numeric visual cue presented at 2-Hz
rate for 60 s. The control condition was the same visual
cue for 60 s, though no movement was made. Data from

12 pairs of task-control blocks were collected. A GE
1.5-T scanner was used, collecting T*2-weighted EPI
images. The acquired volumes had dimensions 128 �
64 � 20, with voxels of size 3.125 � 3.125 � 4.0 mm (no
skip); TR was 6 s, and TE, 45 ms. Images were trimmed
to 64 � 64 � 20. There were 10 images per block, 12
pairs of blocks, and hence a total of 240 images. A t test
statistic image was created by comparing the rest to
active blocks.

The auditory stimulation experiment consisted of
fourteen 42-s blocks, the blocks alternating between
silent rest and presentation of bisyllabic words. Words
were paced at 60 per minute. A modified 2-T Siemens
scanner was used to collect T*2-weighted EPI images.
The acquired volumes had dimensions 64 � 64 � 64,
with voxel size 3.0 � 3.0 � 3.0 mm (no skip); TR was
7 s. There were 6 images per block, 14 blocks, and
hence a total of 84 images. For these data we fit the
authors’ recommended model, a linear regression con-
sisting of a boxcar function convolved with a canonical
hemodynamic response, global image intensity, and a
seven-element discrete cosine basis effecting a high-

FIG. 5. Results of applying the Bonferroni method to t-statistics
to the same 20 data sets used in Fig. 4.

FIG. 4. Results of applying the Benjamini and Hochberg method
to t statistics from 20 data sets. The white voxels are truly inactive,
the gray voxels are truly active, and the black voxels are those
classified as active by the procedure. The data are generated with
128 � 128 independent voxels, and the effect sizes in the circular
region have a truncated Gaussian shape.
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pass filter with cutoff periodicity of 168 s. A t sta-
tistic image was created based on the experimental
covariate.

Four thresholding methods were applied—the arbi-
trary cutoff point of 4 in a t map, the Bonferroni cor-
rection, the basic FDR procedure (with c(V) � 1), and
the FDR procedure for arbitrary P value distributions
�c�V� � �i�1

V 1/i�. Both FDR procedures used q �
0.05. Prior to implementation of the FDR method,
images were cropped to exclude air outside the head,
where no activity should be observed.

As seen in Figs. 6 and 7, there is a noticeable differ-
ence between the two FDR results, with FDR using
c(V) � 1 leading to many more active voxels. The com-
parison with the t maps thresholded at 4 in both fig-
ures shows that the distribution-free version of FDR
highlights basically the same regions, although
slightly fewer voxels. The Bonferroni threshold shows
a similar pattern to that of the distribution-free FDR
procedure. These relations are consistent across all the
slices. The ad hoc threshold of 4 tends to resemble the
results under FDR with c(V) � 1.

DISCUSSION

We have examined methods to control the false dis-
covery rate as a solution to the threshold selection
problem in neuroimaging data. These provide an inter-
pretable and adaptive criterion with higher power than
other methods for multiple comparisons, such as the
Bonferroni correction. In contrast to purely subjective
threshold selection, the threshold varies automatically
across subjects with a consequent gain in sensitivity.
In contrast to complicated threshold-selection schemes,
the methods are simple to implement and computa-
tionally efficient even for large data sets.

Although the procedure for controlling the FDR was
not developed for the case of many thousands of tests
and has not often been used in that context, the method
gives sensible results with both simulated and real
data from two fMRI experiments. As seen in the re-
ported studies, controlling the FDR offers no guarantee
that the activation maps will reveal some new struc-
ture. What then is the advantage? We see three main
strengths of FDR-based methods, all of which derive

FIG. 6. Coronal slice of suprathreshold pixels overlayed on mean T*2 image. Colored pixels are 
log10 of the P value. Top left, t � 4
threshold. Top right, threshold-controlling FDR at 5% and c(V) � 1; the equivalent t threshold is 4.5339. Bottom left, Bonferroni-corrected
threshold; the equivalent t threshold is 4.7615. Bottom right, threshold-controlling FDR at 5% making no assumptions on P value
distribution; the equivalent t threshold is 5.3232.
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from the additional information provided about the
proportion of voxels falsely declared active.

First, any single choice of threshold across data sets
will give an error rate that is too high for some data
and too low for others. The FDR method adapts its
threshold to the features of the data, eliminating an
unnecessary excess of errors. Second, the parameter q
has a definite and clear meaning that is comparable
across studies. Researchers might obtain different
thresholds through their personal choice of q, but be-
cause the criterion is clear, we can understand the
differences that will result. Third, since the FDR-con-
trolling procedure works on the P values, and not on
the test statistics themselves, it can be applied with
any valid statistical test.

Choosing q is only one of the implementation issues
that the researcher needs to consider. We have pre-
sented two slight variations on the basic procedure
that differ in the assumptions they require about the
joint distribution of the P values across voxels. Which
of these should be used in a given situation will in
general be determined by the nature of the data and

the willingness of the researcher to make assumptions
about the P values. When it applies, the procedure with
c(V) � 1 will have the highest power. While strict
independence is hard to verify and will often fail with
neuroimaging data, it is often approximately true in
the sense that correlations are local and tend to be
positive. In this case choosing c(V) � 1 seems to be a
good default. Taking c�V� � �i�1

V 1/i protects the user
against unexpected deviations from assumptions,
but comes with a loss of power.

A second consideration relates to data smoothing.
The FDR method becomes more conservative as corre-
lations increase, and hence, it is most powerful for
unsmoothed data. This is in contrast to random field
methods which are typically more conservative for un-
smoothed data.

A third issue is that because FDR procedures operate
simultaneously on all voxels included in the analysis, it
is important to remove those voxels (e.g., air, CSF in
the ventricles) for which we already know the truth.
While it is common practice to remove voxels outside

FIG. 7. Axial slice of suprathreshold pixels overlayed on T1 structural image. Colored pixels are 
log10 of the P value. Top left, t � 4
threshold. Top right, threshold-controlling FDR at 5% and c(V) � 1; the equivalent t threshold is 3.8119. Bottom left, Bonferroni-corrected
threshold; the equivalent t threshold is 5.2485. Bottom right, threshold-controlling FDR at 5% making no assumptions on P value
distribution; the equivalent t threshold is 5.0747.
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the head, it is still a somewhat discretionary step when
thresholding voxelwise statistics. For FDR methods
this is a necessary step. However, it is not necessary to
be too exacting at boundaries; a few extra voxels here
or there will likely have little impact on the results.

We have presented the FDR-controlling procedures
here as part of the process of identifying active voxels.
More generally, the procedures apply to any multiple
testing situation. Many recent methods for the analy-
sis of fMRI data rely on fitting sophisticated statistical
models to the data (see, for example, Friston et al.,
1994; Genovese, 2000; Lange and Zeger, 1997). Part of
such analyses inevitably involves examining the val-
ues of fitted parameters at each voxel to test hypothe-
ses about the underlying value of those parameters.
FDR-based methods can also be used to perform these
voxelwise statistical tests.
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