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The suppression of neuronal responses to a repeated event is a ubiquitous phenomenon in neuroscience.
However, the underlying mechanisms remain largely unexplored. The aim of this study was to examine the
temporal evolution of experience-dependent changes in connectivity induced by repeated stimuli. We recorded
event-related potentials (ERPs) during frequency changes of a repeating tone. Bayesian inversion of dynamic
causal models (DCM) of ERPs revealed systematic repetition-dependent changes in both intrinsic and extrinsic
connections, within a hierarchical cortical network. Critically, these changes occurred very quickly, over inter-
stimulus intervals that implicate short-term synaptic plasticity. Furthermore, intrinsic (within-source)
connections showed biphasic changes that were much faster than changes in extrinsic (between-source)
connections, which decreasedmonotonically with repetition. This study shows that auditory perceptual learning
is associated with repetition-dependent plasticity in the human brain. It is remarkable that distinct changes in
intrinsic and extrinsic connections could be quantified so reliably and non-invasively using EEG.
© 2009 Elsevier Inc. All rights reserved.
Introduction

We have previously used the roving paradigm and dynamic casual
modelling (DCM) to search for optimum functional architectures
underlyingmismatch responses elicited by deviant and standard tones
(Garrido et al., 2008). We were able to show that one can account for
these responses with changes in connectivity among distributed
cortical sources. In this paper, we adopt a parametric DCM to examine
the form of repetition-dependent connectivity changes that mediate
the emergence of these response differences. In brief, we attempt to
model plasticity or changes in connectivityas a function of repetition or
time.With this newapproachwewere able to quantify the time course
of repetition-dependent changes and show that connectivity reduces,
both within and between cortical areas. This causes decreases in
evoked responses; i.e., repetition suppression, which manifests as a
suppression of a mismatch responses, as an oddball becomes a
standard. A key practical advance, afforded by this parametric DCM,
is the ability to quantify the rate of experience-dependent plasticity
non-invasively, using simple and established paradigms. Furthermore,
because we use a physiologically informed model, one can assess
plasticity separately in intrinsic and extrinsic connections. This may be
useful in clinical and neuropharmacological studies.
hology, 1285 Franz Hall, Box
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Novel events, or oddballs, embedded in a stream of repeated
events, or standards, produce a distinct response that can be recorded
non-invasively with electroencephalography (EEG). For example, the
mismatch negativity (MMN) is the negative component of the
waveform obtained by subtracting the event-related response to a
standard from the response to an oddball, or deviant event. The MMN
is believed to index an automatic change detection by pre-attentive
sensory memory mechanisms (Tiitinen et al., 1994). Recently, we
provided evidence that the mechanisms underlying the MMN can be
considered within a hierarchical inference or predictive coding
framework (Garrido et al., 2007a,b). Within this account, the MMN
is interpreted as a failure to suppress prediction error, which can be
explained quantitatively in terms of coupling changes among and
within cortical regions. The predictive coding framework accommo-
dates two previous hypotheses; in the sense that it predicts the
adjustment of a perceptual model of the current stimulus [c.f., the
model-adjustment hypothesis (Winkler et al., 1996; Näätänen and
Winkler, 1999)] and entails adaptive changes in post-synaptic
sensitivity during learning [c.f., the adaptation hypothesis (May et al.,
1999; Jääskeläinen et al., 2004)]. The model-adjustment hypothesis
postulates that theMMN reflects on-linemodifications of a perceptual
model that is updated when the auditory input does not match model
predictions. In this context, the MMN is regarded as a marker for error
detection, caused by a deviation from a learned regularity. In other
words, the MMN is a response to an unexpected stimulus change and,
from the point of view of predictive coding, signals prediction error.
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Themechanismsunderlyingsuppressionofpredictionerrorare closely
related to repetition suppression, inwhich “repeated experiencewith the
same visual stimulus leads to both short and long-term suppression of
neuronal responses in subpopulations of visual neurons” (Desimone,
1996). This is closely related to stimulus-specific adaptation (Pérez-
González et al., 2005) in the auditory system,where “fast, highly stimulus-
specific adaptation and slower plastic mechanisms work together to
constantly adjust neuronal response properties to the statistics of the
auditory scene” (Nelken, 2004). Repetition suppression is a ubiquitous
phenomenon that speaks to both predictive coding (e.g., Friston, 2005)
and models of perceptual inference and learning (e.g., Desimone, 1998).
Predictivecodingmodelsofperceptual inferenceand learningsuggest that
all experience-dependent effects, and inparticular repetition effects (from
post-synaptic adaptation to semantic priming), are mediated by changes
in synaptic efficacy; either short or long-term. These changes aredrivenby
associative plasticity to optimise predictions of sensory input and
therefore explain away prediction errors more efficiently. This enhanced
‘explaining away’ may be a useful perspective on repetition suppression,
which rests on synaptic plasticity at the cellular level or changes in
ensemble coupling at the macroscopic level. Critically, hierarchical
inference, or predictive coding, also rests on optimising the relative
influence of bottom-up prediction error and top-down predictions. This
involves optimising the efficacy of intrinsic connections within an area or
source (Friston, 2008). Put simply,whenanunpredictable stimulusoccurs,
units encoding prediction error should adapt, reducing the strength of
unreliable prediction error signals. In short, hierarchical inference, using
prediction error, provides a principled framework in which the model
adjustment and adaptation heuristics become necessary for under-
standing sensory inference (see Garrido et al., 2009a).
Fig. 1. Design and responses elicited in a roving paradigm. (a) The stimulus design is characte
is a deviant D= t1 that becomes a standard, through repetition; t2,…,tend. In this paradigm
(averaged over subjects) ERP responses to the sixth tone presentation, the established “sta
electrodes. (c) ERP responses to tones sorted by number of repetitions at channel C21 (fron
oddball events. The MMN response peaks at about 180 ms from change onset. Trials 2 to 5
Few studies have explicitly explored the role of stimulus repetition
during auditorymemory-trace formation. Näätänen and Rinne (2002)
found that later negative responses (N100 ms), in contrast to earlier
responses, are elicited only by sound repetition. Others found that
increasing the number of repetitions enhances responses to standard
tones in both early (30–50 ms) and later components (60–75 ms)
(Dyson et al., 2005), localised in the primary and secondary auditory
areas respectively (Liegeois-Chauvel et al., 1994). Similarly, Baldeweg
et al. (2004) and Haenschel et al. (2005) found that the MMN
increases with the number of preceding standards and may be
mediated by a repetition-dependent enhancement of a slow positive
wave (50–250 ms) in the standard ERP (a repetition positivity — RP).
In other words, the emergence of repetition positivity in standards
underlies the mismatch negativity observed in a subsequent oddball.

Here we used a roving paradigm to test the hypothesis that
repetition-dependent changes in electrophysiological responses to
repeated stimuli are due to experience-dependent plasticity, or changes
in connectivity.We show that stimulus repetition reduces connectivity,
within and between cortical areas. This causes experience-dependent
decreases in evoked responses; i.e., repetition suppression, which
manifests as a suppressionofMMNcomponents, as anoddball becomes
sufficiently predictable to be considered as a standard.

Materials and methods

Subjects and stimuli

We studied ten healthy volunteers aged 24 to 34 (four females). Each
subjectgave signed informedconsent before thestudy,whichproceeded
rised by a sporadically changing standard stimulus. The first presentation of a novel tone
, deviants and standard have exactly the same physical properties. (b) Grand-mean
ndard” (t6 — black) and deviant tone (t1 — gray) overlaid on a scalp-map of 128 EEG
to-central). Trial 1 corresponds to responses elicited by the first tone presentation, or
correspond to the second to fifth repetitions of the same tone.
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under local ethical committee guidelines. Subjects sat in front of a desk
in a dimly illuminated room. Electroencephalographic activity was
measuredduring anauditory roving ‘oddball’paradigm (see Fig.1a). The
stimuli comprised a structured sequence of pure sinusoidal tones,with a
roving, or sporadically changing tone. This paradigm entailed a few
modifications to that used in Haenschel et al. (2005), originally from
Cowan et al. (1993). Within each stimulus train, all tones were of one
frequency andwere followed by a train of a different frequency. The first
tone of a train (i.e., a tonewith a different frequency from the preceding
tone)was defined as a deviant. This deviant becamea standard after few
repetitions, as shown in Figs.1 and 6 (see below). The ERP traces (Fig.1)
and the reconstructed sources (Fig. 6), reveal that by the third time a
tone is presented, the evoked responses are very similar to those
produced by subsequent tones, with no discernable difference between
the fifth and further repetitions. In what follows, we will consider a
standard to be the fifth (or subsequent) presentation of a tone.

This designmeans thatdeviants and standardshave exactly the same
physical properties; differing only in the number of times they have
been presented. The number of times the same tone was presented
varied randomlybetweenoneand eleven. The reasonwepresented runs
of six or more tones was to ensure the subjects did not learn high-order
regularities (e.g., start to anticipate a change). Each subject was
presentedwith ∼245 deviant trials, ∼235 first repetitions, ∼230 second
repetitions, ∼220 third repetitions and ∼210 fourth repetitions. The
frequency of the tones varied from 500 to 800 Hz in 50 Hz intervals (i.e.,
new tones were selected randomly from 500, 550, 600, 650, 700, 750,
and 800 Hz). Stimuli were presented binaurally via headphones for
15 min. The duration of each tone was 70 ms, with 5 ms rise and fall
times. The inter-stimulus interval was 500 ms: We chose this inter-
stimulus interval to ensure that simple presynaptic facilitation could not
explain any short-term plasticity observed. Short-term facilitation is a
widely observed form of synaptic enhancement with a time course of
about 200 ms. Multiunit recordings in cats suggest that “auditory
cortical cells apparently have much faster recovery mechanisms than
visual cortical cells”. For example, findings based on models of
presynaptic facilitation and depression suggest that auditory units
have substantially shorterdepression timeconstants (20ms) thanvisual
units (300ms) and that facilitationdecayswitha time-constant of 60ms
(Eggermont, 1999). Presynaptic (calcium) mechanisms have been
implicated in this process (Atluri and Regehr, 1996) and we wanted to
ensure that any experience-dependant short-term plasticity observed
was, at least in part, mediated by associative post-synaptic changes.

Each subject adjusted the loudness of the tones to a comfortable
level, which was maintained throughout the experiment. The subjects
performed an incidental visual task andwere told to ignore the sounds.
The task required a button-press whenever a fixation cross changed its
luminance. This occurred randomly every 2 to 5 s (and did not coincide
with auditory changes). We used an incidental visual task to suppress
attention to the auditory stimuli and maintain attentional set. As
anticipated, the P3a component of responses to oddballs was reduced
in this paradigm (relative to attending the auditory stimulus; Garrido
et al., 2007a), although not eliminated completely (data not shown).

Data acquisition and pre-processing

EEG was recorded with a Biosemi system (manufacturer) from 128
scalp electrodes at a sampling rate of 512 Hz. Vertical and horizontal eye
movements were monitored using EOG (electro-oculograms) electro-
des. Pre-processing and data analysis were performed within SPM5
(http://www.fil.ion.ucl.ac.uk/spm). Thedatawere epochedoffline,with
a peristimulus window of −100 to 400 ms, down-sampled to 200 Hz,
band-pass filtered between 0.5 and 40 Hz and re-referenced to the nose.
Artefact removal was implemented with robust averaging. Robust
averaging is a standard iterative scheme that produces the best estimate
of the average by weighting data points as a function of their distance
from the samplemean (c.f.Wager et al., 2005). Robust averagingwillfind
the best average of each condition at every time point. Thismethod gives
a larger weight to points closer to the samplemean. Therefore, it has the
advantage of taking into account all trials, while down-weighting
outliers. Trials were sorted in terms of tone repetition. In other words,
trials one to eleven correspond to the responses elicited after one to
eleven presentations of the same tone, collapsed across the whole range
of frequencies. Trial one is the oddball, or deviant trial.

For computational expediency, DCMs (see below) were computed
on a reduced form of data. Instead of using the data from 128 channels,
we performed a spatial reduction of these data and used its eight
principal components, or spatial modes, as input for the DCM. These
were the eight principal components of the covariance induced by
varying the spatial parameters of the model. Two subjects were
excluded from the DCM analysis due to an undetectable MMN (on
visual inspection of the scalp data). Omitting these subjects may not
seem good practice from the point of view of conventional ERP
research. However, it can be motivated here by noting we were not
trying to establish consistent mismatch responses over subjects; we
were trying to characterise their time course, conditional on these
responses being expressed.

Dynamic causal modelling

Dynamic causal model (DCM) was originally developed for
connectivity analysis of fMRI (Friston et al., 2003) and subsequently
EEG data (David et al., 2006a). DCMs for ERPs are spatiotemporal
dipole models (Scherg and Van Cramon, 1985), which use a
conventional formulation of source activity (c.f. equivalent current
dipole or ECDmodels; Kiebel et al., 2006) but place constraints on the
way signals are generated. These constraints require plausible
neuronal interactions and rest on neural mass models (David et al.,
2006b). Most approaches to connectivity analysis of M/EEG data use
functional connectivity measures such as coherence or temporal
correlations, which establish statistical dependencies between two
time-series. However, there are many cases where causal interactions
are of interest. In these situations, DCM has proven to be particularly
useful, because it estimates effective connectivity (the influence one
neuronal system has over another). DCM therefore provides an
account of the interactions among cortical regions and allows one to
make inferences about the connectivity parameters of a network; and
how these parameters are influenced by experimental factors. DCM
represents an important advance over conventional analyses of
evoked responses because it places temporal constraints on the
inversion; namely, activity in one source has to be caused by activity in
another. DCMs for M/EEG use neural mass models (David and Friston,
2003) to explain source activity in terms of the ensemble dynamics of
interacting inhibitory and excitatory subpopulations of neurons, based
on the model of Jansen and Rit (1995). These subpopulations are
interconnected according to the connectivity rules described in
Felleman and Van Essen (1991) and furnish a hierarchical model of
distributed electromagnetic sources in the brain.

A DCM for ERPs is specified in terms of its state equations and an
observation model or output equation. The state equations for event-
related potentials summarise average synaptic dynamics in terms of
spike-rate-dependent current and voltage changes, for each subpo-
pulation in the model

x ̇ = f x;u; θð Þ ð1Þ

This means that the evolution of the neuronal states, x, is a
function (parameterised by θ) of the states and experimental input u.
The output equation couples specific states (the average depolarisa-
tion of pyramidal cells in each source— x0) to the EEG signals y using a
conventional linear electromagnetic forward model.

y = L θð Þx0 + e ð2Þ

http://www.fil.ion.ucl.ac.uk/spm
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The lead field matrix, L(θ), (i.e., the electromagnetic forward
model) is parameterised in terms of the location and orientation of
each source as described in Kiebel et al. (2006) and encodes the
contribution of each source to the signal measured by scalp electrodes.

Eq. (1) summarises the state equations, specifying the rate of
change of potentials and currents in one subpopulation as a function
of currents and potentials in others (see Jansen and Rit, 1995; David
et al., 2005, 2006a,b; and David and Friston, 2003 for further details).
The state equations embody the model of connectivity and synaptic
kinetics; where θ⊃{C,y,H,τ} includes extrinsic coupling parameters
(forward, backward and lateral connections: Ci:i=F,B,L), intrinsic
coupling parameters (γi:i=1,…,4), synaptic parameters (H and τ),
parameters of the experimental input function and conduction delays.
We model each source with three subpopulations using the following
state-equations

x ̇7 = x8

x ̇8 =
He

τe
CB + CL + γ3Ið ÞS x0ð Þð Þ− 2x8

τe
− x7

τ2e

x ̇1 = x4

x ̇4 =
He

τe
CF + CL + γ1Ið ÞS x0ð Þ + CUu

� �
− 2x4

τe
− x1

τ2e

x ̇0 = x5 − x6

x ̇2 = x5

x ̇5 =
He

τe
CB + CLð ÞS x0ð Þ + γ2S x1ð Þð Þ− 2x5

τe
− x2

τ2e

x ̇3 = x6

x ̇6 =
Hi

τi
γ4S x7ð Þ− 2x6

τi
− x3

τ2i

ð3Þ

Here xi:i=1,…,8 are the mean transmembrane potentials and
currents of three subpopulations. The synaptic parameters He and Hi

control maximum post-synaptic potentials for excitatory and inhibi-
tory synapses respectively; while τe and τi represent the correspond-
ing rate constants.

These state equations are first-order differential equations and are
based on a neural mass model of population dynamics, where each
subpopulation responds to experimental u(t) and extrinsic input S(xi)
with damped oscillations. Here, S(xi) corresponds to a sigmoid firing-
function of a column-vector of depolarisations over sources. Integra-
tion of these equations is used to create predicted responses as a
function of the unknown parameters. This allows the parameters to be
optimised in relation to observed responses. This sort of DCMhas been
validated extensively in previous studies in terms of the source model
(David and Friston, 2003; David et al., 2004, 2006a, 2006b; Kiebel et
al., 2006; Moran et al., 2007, 2008), in the context of deep brain
stimulation and epilepsy (David, 2007; David et al., 2008), and in the
specific context used here (Garrido et al., 2007a,b, 2008, 2009b).

Model specification

Our network architectures were motivated by previous studies of
MMN generators (Rinne et al., 2000; Opitz et al., 2002; Doeller et al.,
2003; Grau et al., 2007; Garrido et al., 2007a,b, 2008, 2009b). These
studies suggest bilateral sources located in the auditory cortex (A1),
superior temporal gyrus (STG), and inferior frontal gyrus, which are
usually stronger and foundmore consistently in the right hemisphere.
In this study, we ignored putative frontal sources to focus on plasticity
in symmetrically deployed auditory and temporal sources. Strictly
speaking, we should have included a right frontal source in the DCM,
given our previous model comparisons (Garrido et al., 2008, 2009b).
However, we wanted to impose symmetry constraints on changes in
coupling (to ensure precise estimates) and therefore used the best
symmetrical architecture. In principle, it would be possible to use
asymmetric models and Bayesian model comparison to justify this
constraint but this is beyond the focus of the current paper.

DCM tries to explain differences among ERPs in terms of changes in
specific coupling parameters. We chose to model the first five
presentations because there was no discernable difference between
the fourth and fifth (see Figs. 1 and 5) and there were fewer instances
(i.e., trials) of five or more repetitions. For the spatial model we used a
three concentric sphere head model with homogeneous and isotropic
conductivity as an approximation to the brain, cerebrospinal fluid,
skull and scalp. The lead-field mapping cortical dipoles to channels
was computed using the electromagnetic forward model solutions in
the fieldtrip software (http://www2.ru.nl/fcdonders/fieldtrip). The
coordinates reported by Opitz et al. (2002) for STG, and by
Rademacher et al. (2001) for A1, were chosen as prior source location
means. We converted these coordinates, given in the literature in
Talairach space, to MNI space (http://imaging.mrc-cbu.cam.ac.uk/
imaging/MniTalairach) (see Fig. 3). In all our models extrinsic
connections were reciprocal and the experimental (subcortical
auditory) input entered bilaterally through primary auditory sources.

Model inversion and inference

Statistical analyses in this paper were based on model comparison
at the within and between-subject level. For within-subject DCM
analyses, model m is inverted or fitted by optimising the parameters
with respect to a variational free-energy bound on the model-
evidence. This provides the conditional density of the model
parameters, p(θ|y,m), and the models evidence, p(y|m), for model
comparison. Specifically, inversion of a DCM corresponds to approx-
imating the posterior probability of the parameters using variational
Bayes as described in Friston (2002). The aim is to minimise a free-
energy bound on the log-evidence, with respect to a variational
density, q(θ). After convergence the variational density is used as an
approximation to the desired conditional density and the free-energy
as an approximation to the log-evidence. The best model, given the
data, is the one with highest log-evidence ln p(y|m) (assuming a
uniform prior over models). Given two models m1 and m2 one can
compare them through their Bayes factor (Penny et al., 2004) or,
equivalently, the relative log-evidence; ln p(y|m1)− ln p(y|m2). A
difference in log-evidence of about three is considered strong
evidence in favour of the more likely model. This is because a
difference in log-evidence of three means the evidence for the more
likely model is about twenty times the evidence for the other (http://
en.wikipedia.org/wiki/Bayes_factors). At the between-subject level,
we used classical inference (one-sample t-tests) on key parameters
(encoding the parametric changes in connections with repetition).
These parameters were summarised with their conditional expecta-
tion for each subject (i.e., the mode or most likely value from the
conditional density of each subject-specific DCM). This is known as
the summary-statistic approach to random effects models.

Results

Our analysis comprised two parts: (i) confirmation that there is a
significant response difference between the first and subsequent
presentations of a tone and (ii) analysis of the plasticity in terms of
coupling parameters that are a function of tone repetition.

http://www2.ru.nl/fcdonders/fieldtrip
http://imaging.mrc
http://imaging.mrc
http://en.wikipedia.org/wiki/Bayes_factors
http://en.wikipedia.org/wiki/Bayes_factors


Fig. 2. 3D-spatiotemporal SPM analysis of the grand-mean difference at the between-
subject level. The measurement space corresponds to a 2D-scalp topography
(interpolated from the 128 channels) and peristimulus time (−100 to 400 ms). (a)
Differential response with a negative peak at about 180 ms. (b) SPM showing regions
where there is a significant negativity in the difference (pb0.001 uncorrected).
Significant effects were found over temporal and frontal areas in the range of 110 to
200 ms peaking at 180 ms (see marker).

Fig. 3. Model specification: (Right) Sources comprising the networks: A1: primary
auditory cortex, and STG: superior temporal gyrus are connected with forward (red),
backward (black) and intrinsic (red) connections. (Left) Source locations: Their prior
mean locations: left A1 [−42, −22, 7], right A1 [46, −14, 8], left STG [−61, −32, 8],
right STG [59, −25, 8], in mm are superimposed in an MRI of a standard brain in
Montreal Neurological Institute space. The DCM receives (parameterised) subcortical
input at the A1 sources, which elicit transient perturbations in the remaining sources.
Plasticity is modelled by changes in intrinsic and forward connections (red) that are a
mixture of monotonic (upper left) and phasic (upper right) repetition-specific effects.
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Repetition effects

An initial sensor-space analysis was performed to confirm the
presence of a repetition-dependent response in our roving paradigm.
For these analyses, the channel data were transformed into scalp-map
images (see Fig. 2a). These were obtained after linear interpolation
and smoothing (at FWHM 6 mm×6 mm×20 ms) of the difference
wave between the first presentation and the sixth presentation (i.e.,
fifth repetition). Fig. 1b (gray) shows the grand-mean responses (over
subjects) to the first tone at a fronto-central electrode (C21). This
corresponds to theoddball response. The responses to thefifth repetition
(black) correspond to the learned or “standard” response. The responses
to the fifth repetition are very similar to those elicited by standards in
conventional oddball paradigms (see also Garrido et al., 2007a). A
mismatch response was found over the frontal and central electrodes,
peaking at about 180 ms from change onset, which is consistent with
previous studies (Baldeweg et al., 2004; Cowan et al., 1993). Critically,
these response differences cannot be explained by differences in stimuli
per se, because thefirst and sixth stimuli were physically identical; this is
one of the powerful aspects of the roving paradigm. Fig. 1c shows
responses to tones sorted by number of repetitions at channel C21
(fronto-central). Trial 1 corresponds to responses elicited by the first
tone presentation, or oddball events and trials 2 to 5 correspond to the
first to fourth repetitions of the same tone. It can be seen that theMMN is
diminished substantially after the second presentation.

Fig. 2 shows a 3D-spatiotemporal characterisation of the grand-
mean responses, using statistical parametric mapping to compare the
first and the sixth presentations; the “deviant” and the “standard”,
respectively. This analysis searched for differences over 2D sensor-
space and all peristimulus times [−100, 400 ms]. The scalp
topography at each time-bin was interpolated from 128 channels
and smoothed. Fig. 2a shows the intensity of the differential response
and that its negative peak occurs at about 180 ms, over the frontal and
central areas. Fig. 2b shows the corresponding statistical parametric
map (SPM; displayed at pb0.001 uncorrected) showing where there
is a significant negative difference over subjects. This SPM showed a
significant MMN over temporal and frontal areas between 110 and
200 ms, with maximum at 180 ms.

Repetition-dependent plasticity — a parametric DCM

Theaimof this studywas to investigate theplasticity thatexplains the
repetition effect above. A dynamic causal model (DCM; see Fig. 3) was
used to explain differences among ERPs in terms of parametric changes
in coupling. Given the nature of repetition suppression in unit electrode
recordings and experience with the roving paradigm, we expected that
the connectivitywould decrease as a function of repetition. However, we
did not want to constrain the rate or form of this decrease and therefore
modelled these effects with two temporal basis functions: a monotonic
exponential decay, modelling slow cumulative effects and a phasic
function peaking after the second tone. The choice of the particular
basis functions is not particularly important, provided their linear
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combinations can cover all plausible time-courses one might expect to
see. The first modelled the evolution of connection strength as an
exponential function of tone repetition, r=0,…4.

E rð Þ = exp −rð Þ ð4Þ

The second was a phasic (gamma-density) function, which peaked
after the first tone:

G rð Þ = 4r exp −2rð Þ
C 2ð Þ ð5Þ

Using these parametric forms, we inverted two DCMs, corre-
sponding to two competing hypotheses: (i) that tone repetition
causes a monotonic decrease in connection strengths (E — using just
the exponential basis function), and (ii) that tone repetition causes
‘one-shot’ or changes in coupling (EG — using both basis functions).
This more flexible model used a mixture of both parametric effects
(see Fig. 3; upper panels). The two DCMs were tested against a naïve
or null model that precluded connectivity changes. The network used
Fig. 4.Model comparisons and conditional expectations for repetition-dependent connectivit
E in seven out of eight subjects; data from the first subject were best explained by the expo
relation to the null model. (b) Corresponding results for model accuracy expressed in
determination). (c) Connectivity changes with repetition. This shows the temporal evolution
A1, expressed as the average conditional expectation over subjects (bars) and for each sub
strength is a percentage of average strength over trials. There is a very consistent and marked
presentations. (d) The same results for the extrinsic connections. Here the changes are expres
over time.
for these analyses is shown in Fig. 3 and comprised two low-level
(auditory) sources, one in each hemisphere, and two high-level
(temporal) sources. We modelled repetition-dependent changes in
forward connections (from the auditory sources) and intrinsic
connections (within the auditory sources), allowing for separate
repetition-dependent (symmetrical) modulation of extrinsic and
intrinsic connections. The adaptation hypothesis (Jääskeläinen et al.,
2004) postulates that the MMN arises predominantly from synaptic
adaptation (c.f. May et al., 1999). Here, we model these effects
through changes in intrinsic connectivity, modelled by source-
specific post-synaptic density parameters (see Kiebel et al., 2007
for details). These effects could be mediated by adaptation [e.g., due
to increase in calcium-dependent potassium conductances, leading
to after-hyperpolarizing currents (Powers et al., 1999) or subsequent
calcium-dependent intracellular mechanisms that underlie phenom-
ena like paired-pulse depression (e.g. Davies et al., 1990). From a
functional perspective, putative short-term changes in the synaptic
efficacy of intrinsic afferents modify lateral interactions within
primary auditory cortex. In the predictive coding framework, these
encode the precision of prediction errors. Similar changes in extrinsic
y changes. (a) Bayesian model comparison shows that model EG supervenes over model
nential (monotonic) model but this effect was trivial in relation to the log-evidence in
terms of the proportion of variance explained by the model (i.e., the coefficient of
of connectivity as a function of time, or repetition for the intrinsic connections within

ject separately (circles). These repetition effects are normalised so that the connection
decrease in coupling after the first presentation that appears to rebound on subsequent
sedmore slowly as a function of repetition, exhibiting, on average, amonotonic decrease
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(forward connections) correspond to perceptual learning or model
adjustment (see Winkler et al., 1996; Näätänen and Winkler, 1999;
Friston, 2005).

Bayesian model comparison revealed that the EG model super-
vened over the simple monotonic model E, in all but one subject; and
Fig. 5. Predicted and observed responses in channel space. Responses were averaged over al
over peristimulus time and channels for each of the five repetitions. Profound mismatch neg
the standard response by the fifth presentation. (right column). The predicted (red) and o
agreement is self-evident. Responses to repeating tones show a decrease in the N1 componen
in all subjects both parametric models were substantially better than
the null model that precluded plasticity. This means that there is
consistent and strong evidence for changes in connectivity, above and
beyond a simple exponential decay, in one or more connections (see
Fig. 4a). Fig. 4b shows the equivalent results for model accuracy
l subjects (Hanning window from −100 ms to 400 ms): (left) image format responses
ativity is seen in the upper panels (first presentation) that disappear quickly to produce
bserved (black) responses for channel 72 are shown on the right for illustration. The
t (peaking at about 100ms) and later in the MMN, which vanishes after two repetitions.
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expressed as the proportion of variance explained over channels and
trials by each of the three models assessed. (The EG model explained
80% of variance on average and at least 68% in each subject.)

Fig. 4 also shows the changes in coupling strengths of the intrinsic
(Fig. 4c) and extrinsic (Fig. 4d) connections. Here, the evolution of
connectivity is shown as a function of repetition in terms of
conditional expectations from the DCM analyses. These results
suggest that auditory learning involves a rapid decrease and
subsequent rebound in intrinsic connections and a slow monotonic
decrease in extrinsic connections. These parameter estimates encode
repetition-dependent changes in effective connectivity. In this
(biophysical) DCM, effective connectivity parameterises synaptic
connectivity; therefore, these changes can be regarded as an estimate
of plasticity.

The bars represent the average (across subjects) of the estimated
intrinsic coupling parameters within A1 (Fig. 4c) and the extrinsic
forward connections linking A1 with the ipsilateral STG (Fig. 4d). Both
are normalised to the average coupling strength. Intrinsic connections
show a massive (∼30%) decrease after the first presentation; this is
seen in all but two subjects. Critically, in all but two subjects, there is a
rebound in intrinsic connectivity on the third presentation. This
biphasic plasticity was modelled by a large positive exponential
component and a large negative gamma component. These two
parametric effects were significant over subjects (t=3.49, df=7;
Fig. 6. Reconstructed responses in bilateral primary auditory cortex (upper panels) and bilate
over subjects. The five trials correspond to repetitions of the same event. Right and left A1 an
after the first presentation; indeed it is suppressed so much that it recovers slightly on subse
greatest amplitude on the first presentation.
p=0.0051 and t=2.08, df=7; p=0.0379 respectively). On the other
hand, forward connections showed a slower decay with stimulus
repetition that was monotonic. In this instance, only the exponential
component was significant over subjects ( t=2.01, df=7;
p=0.0422), whereas the biphasic gamma component showed no
consistent contribution (t=0.04, df=7; p=0.4832).

Fig. 5 shows the observed and predicted responses elicited by the
first five tones (the oddball trial and subsequent repetitions). These
are shown over channels and peristimulus time in image format (left
and middle columns) and for a representative electrode (right
columns). These data are the summed responses over all subjects
(after applying a Hanning window that suppresses variations early
and late in peristimulus time). The response to the first presentation
or oddball shows a peak after 100 ms (that subtends the N1
component) and an enhanced response with its maximum at about
180ms. Visual inspection of the scalp data (not shown) suggested that
the later peak conforms to the spatial deployment of the MMN. The
second and subsequent presentations elicit a response with a similar
temporal profile, but the MMN component is greatly attenuated. This
suggests that, after one presentation of a new tone, the brain has re-
learned the auditory context; in other words, the “standard” is largely
learned (c.f. Baldeweg et al., 2004; Dyson et al., 2005; Haenschel et al.,
2005). Fig. 6 shows the reconstructed responses (summed over
subjects) at the source level for bilateral primary auditory cortex (A1)
ral superior temporal gyrus (lower panels). These are the source reconstructed averages
d show peak activities at about 80 ms that are suppressed to about half their amplitude
quent presentations. In bilateral STG, peak activity is observed at about 140 ms, with the
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and bilateral superior temporal gyrus (STG). The generators for the
N1 component lie in A1 but not at the level of STG. Activity peaking
between 100 and 200 ms is seen in STG that might underlie the
MMN. This spatiotemporal dissociation of N1 and MMN generators is
very reminiscent of the findings in Jääskeläinen et al. (2004). These
source-level responses show the complicated hierarchical changes in
the ERP with repetition; in low-level auditory sources the first
repetition evokes a greater response during the N1, which is
suppressed profoundly on the first repetition. It then recovers to the
level of the oddball response with subsequent repetitions. Conversely,
in higher (superior temporal) sources, the first repetition produces a
later response (that shapes later A1 activity through backward
connections — see Fig. 6, upper panels). This again is suppressed on
repetition, but with no rebound. All these effects are explained by a
rapid biphasic change in intrinsic connectivity and more persistent
monotonic changes in extrinsic connectivity.

Discussion

In summary, this study presents the first attempt to quantify
plasticity underlying sensory memory formation, caused by stimulus
repetition with a network of interacting cortical sources using EEG.
We investigated the effect of stimulus repetition on scalp electro-
encephalographic responses and studied the underlying dynamics of
the cortical network that generates these responses. Subjects were
presented with a roving paradigm, a modified auditory oddball
paradigm with tones that change sporadically to another frequency.
Deviant tones elicited anMMN response peaking at about 180ms over
fronto-central channels (see Figs. 1 and 2). The difference wave
between responses to deviants and responses to standards (here
assumed to be established after the fifth repetition) revealed a
statistically significant negativity between 110 and 200 ms (Fig. 2b).
This result is consistent with previous findings (Sams et al., 1985;
Näätänen and Rinne, 2002; Baldeweg et al., 2004). Note that
standards and deviants, as defined here, are physically identical;
therefore, the MMN cannot be due to different responses in
frequency-specific auditory neurons but to experience-dependent
changes in the same neuronal subpopulations. The MMN was
explained by changes in the strength of the connectivity within and
between the cortical sources of the underlying network (see Figs. 3
and 4).

This is the first analysis of ERPs, within the DCM framework, that
uses parametric effects; all responses from the first to the fifth
presentation were modelled simultaneously, using parameterised
connectivity changes. Bayesianmodel comparison revealed that as the
plasticity of the underlying cortical network unfolds, connection
strengths show a progressive decrease with some connections
exhibiting fast or biphasic changes (Fig. 4). Specifically, intrinsic
connections within bilateral A1 show a fast depression, followed by a
rebound, whereas forward connections show a slower decay. These
results suggest that perceptual learning, caused by stimulus repeti-
tion, can be explained by plasticity in intrinsic (adaptation) and
extrinsic (model learning) brain connections. An interesting finding is
that the MMN vanishes after one or two repetitions (Fig. 5),
suggesting that the brain learns the context established by auditory
trains within a second or so. These findings accord with Liegeois-
Chauvel et al. (1994) who found that the generators of early
components are distributed along A1 and support the propagation
hypothesis postulated by Baldeweg (2006): that a sensory memory
trace can be detected earlier and earlier, at the level of A1, with an
increasing number of repetitions. This is also consistent with the idea
that stimulus-specific adaptation in A1 contributes to the emergence
of theMMN (Ulanovsky et al., 2003); although ourmodelling suggests
that stimulus-specific adaptation is expressed vicariously through
later responses in secondary or higher temporal sources. The decrease
in inter-regional connection strengths over repetitions is also
consistent with predictive coding theories (Rao and Ballard, 1999;
Friston, 2005; Baldeweg, 2006). From this perspective, within-trial
changes correspond to perceptual inference, whereas between-trial
changes correspond to perceptual learning.

Implications

We wanted to test the hypothesis that the MMN could be
explained in terms of repetition suppression; a phenomenon
originally studied in the visual system using unit electrode recordings
(Desimone, 1998). In addition, we wanted to assess the relative
contribution of plasticity in intrinsic (i.e., adaptation) and extrinsic
(i.e., hierarchical learning) connectivity. We found, as anticipated,
both exhibited repetition-dependent changes; however, the time-
courses of these changes were distinct. The biphasic changes in
intrinsic connections are especially interesting from a mechanistic
perspective: One might assume that intrinsic connections should
reflect stimulus-specific adaptation and should therefore show a
monotonic decrease with repetition. However, an alternative per-
spective (Friston, 2008) suggests that intrinsic connectivity may
reflect the estimated precision of prediction error, which should fall
after the oddball and then recover with learning. This is what we
found and suggests that changes in the synaptic efficacy of extrinsic
and intrinsic connections may mediate stimulus-specific adaptation
by encoding prediction errors and their precision respectively.

This finding speaks to distinct synaptic mechanisms. This is
important, both from the perspective of computational theories of
sensory learning and how these computations are implemented
physiologically. The connection with paired-pulse paradigms used to
study synaptic facilitation and depression (Davies et al., 1990) is self-
evident (paired-pulse paradigms, by design, harness repetition
suppression) and suggests that the relative time-scales of intrinsic
and extrinsic plasticity could be characterised by varying the inter-
stimulus interval in roving paradigms. Furthermore, combining this
with pharmacological interventions is motivated easily by existing
psychopharmacological studies of the MMN; see Baldeweg et al.
(2004) for a discussion of these studies, in relation to schizophrenia
research.

Modelling issues

This is the first time that we have used parametric DCM for ERPs to
address plasticity: to maximise the probability of getting a significant
result we focused on a simple question using a simple architecture;
namely, could we find evidence for a difference in plasticity between
intrinsic and extrinsic connections in a minimal symmetric model. We
were pleased with the results and especially their consistency over
subjects. However, this is a rather crude characterisation of the
plasticity underlying stimulus-specific adaptation and repetition
effects in the MMN paradigm. For example, we did not examine
differences between forward and backward extrinsic connections or,
critically, extrinsic connections at different hierarchical levels. We
hope to examine these issues in future work using full hierarchical
architectures (e.g., including the inferior frontal source implicated by
our previous model comparison work; Garrido et al., 2008, 2009b or
possibly subcortical sources; Pérez-González et al., 2008).

The reasonwhy we used a simple model is because adding regions
(or plastic connections) increases the number of free parameters. This
induces conditional correlations among the parameter estimates and
an increase in their conditional variance. Practically, this increases
inter-subject variability and makes it more difficult to establish
consistent changes in coupling strength. The present model is as
simple as we could make it: notice that both the intrinsic and extrinsic
connections (that can change) are the same (i.e. intrinsic to A1 and
forward from A1), enabling us to impose symmetry constraints and
reduce the number of free parameters. This next stagewill entail more
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ambitious models that may speak to the hierarchical mechanisms that
underpin ERP changes in the MMN paradigm.

We have already established, using this paradigm, that a
hierarchical model with two pairs of bilateral sources is a much
better model of the data than one pair of auditory sources (Garrido et
al., 2008, 2009b). Conventional analyses localise sources associated
with a specific peak and latency. In contrast, DCM explains a whole
time-window, in this paper the −100 to 400 ms. Therefore, the
models considered here attempt to explain the dynamics during that
time interval, including the MMN and any other component peaking
under these time limits, such as RP, N1 or P3a.

In DCM, the parameters (and models) are optimised in relation to
their evidence; this is the probability of the data under a particular
model. This means the parameter estimates (and model selection)
depends on the data that are explained. In ERP research, this means
that the choice of peristimulus time-window is critical. We have used
this dependency previously to show that models with backward
connections are needed to explain data that include later components
(especially after 220 ms), relative to data that do not (Garrido et al.,
2007b). In our previous study of the roving paradigm (Garrido et al.,
2008) ERPsweremodelled from0 to 250ms, whereas in this paper we
used a time-window of −100 to 400 ms. Modelling a longer time
interval is computationally demanding but obliges the model to
explain more of the ERPs and their differences. We chose a relatively
long time-window because the mechanisms we hypothesized for
explaining stimulus-specific adaptation or repetition effects have time
constants in the hundreds of milliseconds to seconds (i.e., short-term
changes in synaptic plasticity). This is because these changes have to
persist over the inter-stimulus interval to mediate repetition suppres-
sion. The use of a longwindow precludes any interpretation in relation
to the MMN per se because this is embedded in the ERP differences
modelled. However, it does sensitize the analysis to the sorts of
mechanisms that might underlie stimulus-specific adaptation in the
MMN paradigm.

Note that our parametric DCM analysis attempted to explain the
data caused by five successive tone presentations. Hence, the evidence
pertains to the ERPs evoked over multiple stimulus conditions and
their differences. Finally, it is important to note that DCM is a useful
tool only if the model assumptions are satisfied and model specifica-
tion is biologically well motivated; see David et al. (2006a) and
Garrido et al. (2007a) for a thorough discussion of the limitations of
DCM and the consequences of violating its assumptions.

The MMN, a marker for perceptual learning

The MMN is thought to reflect error detection and is caused by an
unexpected or unlearnt event. This fits comfortably with theoretical
suggestions that the MMN can be framed within hierarchical models
of inference and learning that appeal to predictive coding (Friston,
2003, 2005; Baldeweg, 2006; Garrido et al., 2007a,b, 2008 2009b). In
this paper, we show that learning through repetition leads to
reduction of evoked responses and that these are associated with
changes in connectivity within and between cortical sources.
Suppression of evoked responses due to repeated events has been
encountered in other domains; such as visual memory (Desimone,
1996), face perception and recognition (Henson et al., 2003) and in
motor-learning (Friston et al., 1992). Our results suggest that learning
regularities in the auditory environment involves changes of con-
nectivity. This plasticity in extrinsic connections shows a slow
exponential decay as a function of event repetition, probably
reflecting reduction of surprise, as a novel event becomes predictable.
In contrast, plasticity in intrinsic connections exhibits a fast decay
followed by a slow rebound. This might reflect an initial decrease in
the estimated precision of predictions, induced by the oddball, and
then a gradual recovery with learning. In short, we have shown that
the brain needs only a few repetitions to predict the next stimulus, and
that this prediction may involve plastic changes within and between
cortical regions (see also Ulanovsky et al., 2004; Pérez-González et al.,
2008).

Conclusion

The key contribution of this work is to show that the plasticity
underlying stimulus-specific adaptation and perceptual learning can
occur very quickly and is effectively complete after a few presenta-
tions of a stimulus. Furthermore, the putative experience-dependent
plasticity that underlies this learning (as observed electrophysiologi-
cally) involves distinct changes in intrinsic and extrinsic connections
and, implicitly, distributed interactions among multiple sources. This
study provides proof of principle that one can estimate changes in
connectivity in the human brain using non-invasive, widely available
techniques, in a matter of minutes and using a standard paradigm.
This may be a useful way to quantify experience-dependent plasticity
in distributed brain systems; not only in systems neuroscience but
neuropsychiatric disorders that involve disconnection or abnormal
plasticity.
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