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In a massively univariate analysis of brain image data, statistical

inference is typically based on intensity or spatial extent of signals.

Voxel intensity-based tests provide great sensitivity for high intensity

signals, whereas cluster extent-based tests are sensitive to spatially

extended signals. To benefit from the strength of both, the intensity and

extent information needs to be combined. Various ways of combining

voxel intensity and cluster extent are possible, and a few such

combining methods have been proposed. Poline et al.’s [NeuroImage

16 (1997) 83] minimum P value approach is sensitive to signals whose

either intensity or extent is significant. Bullmore et al.’s [IEEE Trans.

Med. Imag. 18 (1999) 32] cluster mass method can detect signals whose

intensity and extent are sufficiently large, even when they are not

significant by intensity or extent alone. In this work, we study such

combined inference methods using combining functions (Pesarin, F.,

2001. Multivariate Permutation Tests. Wiley, New York) and permu-

tation framework [Holmes et al., J. Cereb. Blood Flow Metab. 16

(1996) 7], which allow us to examine different ways of combining voxel

intensity and cluster extent information without knowing their

distribution. We also attempt to calibrate combined inference by using

weighted combining functions, which adjust the test according to

signals of interest. Furthermore, we propose meta-combining, a

combining function of combining functions, which integrates strengths

of multiple combining functions into a single statistic. We found that

combined tests are able to detect signals that are not detected by voxel

or cluster size test alone. We also found that the weighted combining

functions can calibrate the combined test according to the signals of

interest, emphasizing either intensity or extent as appropriate. Though

not necessarily more sensitive than individual combining functions, the

meta-combining function is sensitive to all types of signals and thus can

be used as a single test summarizing all the combining functions.
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Introduction

In a massively univariate method in brain image analysis, a

linear regression model is fitted at each voxel, then a statistic image

for a contrast of interest is calculated, and finally the significance

of the effect of interest is assessed using various inference methods.

Voxel intensity tests and cluster size tests are widely used (Peters-

son et al., 1999). In a voxel test, statistical significance is based on

intensity of a signal at each voxel, whereas in a cluster size test, the

significance is based on the spatial extent or size of signals. A

voxel test can be powerful for localized high intensity signals,

while a cluster size test can be sensitive to spatially extended

signals (Friston et al., 1996; Poline et al., 1997). Either test is

sensitive to a specific type of signals, but if these two tests are

combined, then the resulting test can be sensitive to both localized

high intensity signals and spatially extended signals.

Tests which combine voxel intensity and cluster size informa-

tion have been proposed. Poline et al. (1997) developed a com-

bined test based on Gaussian random field theory (RFT). In their

approach, the critical region is sought using the minimum P value

of an RFT peak intensity test (Adler, 1980; Worsley et al., 1992)

and an RFT cluster size test (Friston et al., 1994) and the joint

distribution of the peak intensity and the cluster size according to

RFT. Their use of the minimum P value results in a test that is

sensitive to signals with either high intensity or large spatial extent.

However, stringent assumptions in this approach makes this test

less practical. In addition to usual RFT assumptions of smooth

images and high threshold, this approach assumes that the spatial

autocorrelation function is Gaussian to derive the joint intensity–

cluster size distribution. Furthermore, this method is only applica-

ble to Gaussian images; thus for a t image, a t-to-Z transformation

is required. A less stringent approach in combining intensity and

cluster size was developed by Bullmore et al. (1999). In their

approach, for each cluster, cluster mass is calculated as the

integration of voxel intensities above the cluster defining threshold,

and the maximum cluster mass is used as a test statistic in a

permutation test in place of the maximum intensity or cluster size.

Because this method uses permutations rather than a theory-based

approach, it requires less assumptions.

In the above methods of combing voxel intensity and cluster size

information, they both have their own strengths and weaknesses.

Poline et al.’s (1997) minimum P value approach is sensitive to
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signals with either high intensity or large extent, not necessarily

both: The method only uses information from the test producing a

smaller P value. For example, if the cluster size test produces a

smaller P value, say P= 0.002, then the peak intensity P value has no

influence whatsoever on the outcome of the combined test, whether

it is 0.005 or 0.5. Furthermore, this test needs to correct for two tests,

an intensity test and a cluster size test, thus reducing its sensitivity.

While Poline et al.’s (1997) test works only when the intensity or the

cluster size is significantly large, Bullmore et al.’s (1999) cluster

mass statistic can produce significant results when both intensity and

extent are marginally significant, but not necessarily significant on

their own. However, this cluster mass method is not consistent as

defined by Pesarin (2001). That is, even if either voxel or cluster size

test produces arbitrarily significant results, the rejection is not

guaranteed and depends on the significance of the other test. This

implies that the test is sensitive to signals with high intensity and

large cluster extent at the same time, not just one of them.

Of course, depending on signals of interest, either of the

combining methods above can be useful. Moreover, there are other

possible ways to combine voxel intensity and cluster extent. In this

paper, we examine permutation tests (Holmes et al., 1996; Nichols

and Holmes, 2002) based on combining functions (Lazar et al.,

2002; Pesarin, 2001) that incorporate both voxel intensity and

cluster size information. The permutation framework does not

require knowledge of the exact distribution of these combining

functions. We examine three combining functions: the Tippet or

minimum P combining function, which is analogous to Poline et

al.’s (1997) minimum P value approach, the cluster mass combin-

ing function of Bullmore et al. (1999), and the Fisher combining

function (Lazar et al., 2002; Pesarin, 2001). Furthermore, we

attempt to calibrate combined inference according to signals of

interest, either localized high intensity signals or extended low

intensity signals, by using a weight in the Tippet and Fisher

combining functions. As an extension of combined inference, we

also propose a meta-combining function, a combining function of

combining functions, to benefit from the strengths of different

combining functions at once rather than performing multiple

combined tests. In this meta-combining approach, rather than

selecting a combining function which produces the most signifi-

cant results, an investigator can obtain a single P value summa-

rizing outcomes from all the combining functions.

In the following Methods section, we explain the combining

functions in detail, as well as a simulation-based validation and an

application of these functions to second-level fMRI analysis data

sets. In the Results section, findings from the simulation and the

data analyses are presented. In the Discussion section, we examine

the findings.
Methods

Statistic image

We assume that voxel intensities of a brain image data set have

the form

YðvÞ ¼ XbðvÞ þ rðvÞeðvÞ ð1Þ

where v = (x,y,z) a R3 is an index for voxels, Y(v) = {Y1(v), Y2(v),

. . ., Yn(v)}Vis an n� 1 vector of observed voxel intensities at v from

n scans, X is a known n� p design matrix, b(v) is a p� 1 vector of
unknown parameters, r(v) is a scalar of unknown standard devia-

tion at v, and e(v) = {e1(v), e2(v), . . ., en(v)}Vis an n � 1 vector of

unknown random errors with unit variance. Images are denoted by

omitting the index v, so that, for example, ei denotes the error image

from the ith scan. Since we use permutation framework in this

study, we assume that error images e are uncorrelated across

subjects or scans, as in PET and multisubject fMRI data.

Let b̂(v) be an unbiased estimate of b(v), then the residuals can

be obtained as

eðvÞ ¼ YðvÞ � Xb̂ðvÞ

and an estimate of the residual variance is

r̂2ðvÞ ¼ 1

g
eðvÞVeðvÞ

where g is the degrees of freedom for errors. If we assume ei (v) to
be independent and identically normally distributed across subjects

or scans, then the statistic image T can be calculated as

TðvÞ ¼ cb̂ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðXVXÞ�1cV

q
r̂ðvÞ

where c is a 1 � p vector expressing the contrast of interest. Based

on the T image, clusters are formed as a set of contiguous voxels

whose T(v) exceeding a fixed cluster defining threshold uc. In this

cluster forming scheme, voxels sharing at least one common edge

are considered as neighbors (the 18 connectivity scheme for a 3-D

image). For example, for a 3 � 3 � 3 voxel cube in a 3-D space, all

the voxels except eight corner voxels are considered to be

connected to the voxel at the center.

Inference

Once the statistic image T is calculated, the next step is to

perform a statistical inference on T to identify any signals. We

perform such inference using permutation test framework (Holmes

et al., 1996; Nichols and Holmes, 2002), with the Tippet, Fisher,

and cluster mass combining functions. A combining function is a

tool for implementing multivariate testing (Pesarin, 2001), in our

case voxel and cluster size tests. In a combining function, infor-

mation from the individual tests, referred as partial tests, are used

as variables, and inference is made based on the value of the

resulting combining function. While the cluster mass combining

function can be calculated directly from the T image, the Tippet

and Fisher combining functions require P values from the partial

tests.

Partial tests: voxel intensity and cluster size inferences

P values for voxel intensity and cluster size can be obtained

using separate permutation tests. Each permutation test is carried

out in a similar manner based on the idea of exchangeability

(Nichols and Holmes, 2002). Under the null hypothesis, data labels

can be permuted, or randomly reassigned, without altering the

distribution of the test statistic of interest. For each such permuta-

tion, a statistic image is created based on the permuted labeling,

then the test statistic is recorded. This step is repeated for a

sufficient number of times (typically 1000–10,000) to generate

an empirical distribution of the test statistic. P values can be

calculated by comparing peak intensities or cluster sizes to this

empirical distribution. In particular, test statistics from all the

permutations are ordered from the largest to the smallest, then the
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P value is determined by the location where the peak intensity or

cluster size falls among these ordered test statistics. For example, if

the size of a particular cluster falls between the 19th and the 20th

largest among the 1000 test statistics from all the permutations, then

the P value is obtained as P = (20) / (1000) = 0.02.

As a test statistic in a partial test, the highest peak intensity

(for voxel test) Tmax or the largest cluster size (for cluster size

test) Smax is used. The use of the largest value for the intensity

or the cluster size is to correct for multiple comparisons among

clusters. The rationale behind using Tmax (or Smax) is that the

probability of observing Tmax (or Smax) larger than t (or s) is the

same as the probability of at least one or more peak intensity (or

cluster size) exceeding t (or s). Thus, the use of the largest value

as the test statistic controls the event of a family-wise error

(FWE), or false positives occurring in all the voxels or clusters

collectively. P values with this correction are known as corrected

P values adjusted for multiple comparisons. In practice, cor-

rected P values of partial tests are obtained by comparing peak

intensities and cluster sizes to the empirical distribution of Tmax

and Smax. More on FWE control can be found in Nichols and

Hayasaka (2003), with additional permutation details in Nichols

and Holmes (2002).

For each cluster, the resulting corrected P values from the peak

intensity and the cluster size are used in the Tippet and Fisher

combing functions discussed below. There is a practical reason for

this use of corrected instead of uncorrected P values from the

partial tests. It is more efficient to record thousands of Tmax or Smax

to calculate corrected P values rather than to record hundreds of

thousands of peak intensities or cluster sizes to calculate uncor-

rected P values. Use of uncorrected P values is explored in the

Discussion section.

Combining functions

Let Pi
t be the corrected P value for the peak intensity of cluster

i, and Pi
s be the corrected P value for the cluster size of the same

cluster. Then the Tippet combining function Wi
T and the Fisher

combining function Wi
F are defined as

WT
i ¼ 1�minðlogPt

i ; logP
s
i Þ ð2Þ

WF
i ¼ �2ðlogPt

i þ logPs
i Þ: ð3Þ

The Tippet combining function Wi
T is analogous to Poline et

al.’s (1997) minimum P value approach. In both cases, the critical

region can be defined by a single P value for both partial tests.2 If

the smallest P value of the two partial tests falls below this P

threshold, the null hypothesis is rejected. In Poline et al.’s (1997)

approach, the joint distribution of the intensity and cluster size is

approximated by RFT, and the P threshold is found by this

approximated joint distribution. For our combined test with Wi
T,

once the critical value of Wi
T is found, then a P value which

produces that critical value is sought. Such a P value can be

mapped as the critical P value threshold for both Pi
t and Pi

s. Then

this critical P value threshold can be further mapped as the

intensity and cluster size thresholds.
2 Alternatively, it is possible to use max function instead of min

function used in Eq. (2). In such case, the critical region is also defined by a

single P value, but both partial tests’ P values have to be below this critical

p value to be rejected. Unlike Wi
T, this test is not consistent.
The cluster mass combining function Wi
M is defined as

WM
i ¼

X
vaCi

ðTðvÞ � ucÞ ð4Þ

where Ci is a set of voxel indices for cluster i. In other

words, Wi
M is the mass of cluster i above the cluster defining

threshold uc. It is calculated by summing voxel intensity

above uc for all the voxels in that cluster.

Based on the values of the above combining functions, another

permutation test is performed. From the distributions of the largest

peak intensity and cluster size, corrected P values from partial tests

are assessed at each cluster in each permutation. Then a combining

function Wi is calculated at each cluster in each permutation. The

largest value of Wi is recorded for each permutation. Finally,

together from all the permutations, the null distribution of the

largest Wi is obtained. Based on this distribution, corrected P

values are calculated and the null hypothesis is rejected at clusters

if their corrected P values are smaller than the desired level of

significance. A more detailed outline of the combined test is found

in the Implementation section.

Each combining function is specialized for a certain type of

signals. An example of critical regions for the above combining

functions is shown in Fig. 1 to demonstrate where the strengths of

these combining functions lie. The critical regions for the three

combining functions considered in this study represent three

possible scenarios in combined inference. The Tippet combining

function Wi
T, analogous to that of Poline et al.’s (1997) method, is

sensitive when either peak intensity or cluster size is significant but

does not have extra sensitivity when both intensity and extent are

marginally significant. On the other hand, the cluster mass function

Wi
M, Bullmore et al.’s (1999) approach, has great sensitivity for a

combination of marginally significant intensity and extent but may

not be able to detect signals when either intensity or extent is

highly significant and the other is not. Therefore, strictly speaking,

this test is not consistent (Pesarin, 2001), as mentioned in Intro-

duction. In practice, however, the test could behave consistently,

meaning that the test is able to reject the null hypothesis even if

only one of the partial tests produces an unusually small P value.

This is because all the clusters have mass even if their intensity or

size is very small. For example, if the peak intensity of a cluster is

arbitrarily large, say T(v) = 3000, then the cluster mass is large

even if the cluster consists of a single voxel, resulting in rejection

of the null hypothesis at that cluster. The Fisher combining

function Wi
F is somewhere in between the Tippet and cluster mass

combining functions. It can detect clusters if one of the partial tests

is significant and also has some extra sensitivity to marginally

significant intensity and extent combination.

Calibration

In practice, an investigator might have a prior belief on the shape

of signals; he or she might expect localized high intensity signals or

widespread low intensity signals. When there is such a prior belief, it

may be beneficial to calibrate combining functions to the signal of

interest. For example, when localized signals are expected, the

combining function should emphasize information from the voxel

test since the voxel test is more sensitive to localized signals. On the

other hand, if signals are believed to be widespread, then the

emphasis should be on the cluster size test in the combining function

since it is sensitive to spatially extended signals. The strength of such



Fig. 1. An example of critical regions for the three combined tests, as well as that of the voxel and cluster size tests, based on a multisubject fMRI data on

working memory (Marshuetz et al., 2000). The left panel shows the critical regions in terms of partial P values, whereas the right panel shows in terms of

intensity and cluster size. For cluster mass, clusters are assumed to have a spherical shape with its intensity having a concave parabolic shape.
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calibrated combining test is that, though it emphasizes either

intensity or extent, it still utilizes information from the other.

Such calibration can be easily implemented by modifying the

Tippet and Fisher combining functions since the contributions from

the partial tests are standardized in terms of P values between 0 and

1. Using a weight h a (0,1), Eqs. (2) and (3) can be modified as

WT
i ðhÞ ¼ 1�minð2hlogPt

i ; 2ð1� hÞlogPs
i Þ ð5Þ

WF
i ðhÞ ¼ �2ð2hlogPt

i þ 2ð1� hÞlogPs
i Þ: ð6Þ

In Wi
T (h) and Wi

F (h), h = 0.5 corresponds to the unweighted

statistics, as in Eqs. (2) and (3). For h > 0.5, the Pi
t term dominates

and a combining function becomes more sensitive to high intensity

peaks; whereas for h < 0.5, the Pi
s term dominates and the function

becomes more sensitive to large clusters. For h = 0, the test

becomes a cluster size test and for h = 1, the test becomes a peak

intensity test.

Meta-combining

Once P values are calculated from the combining functions Eqs.

(2)–(4), denoted by Pi
T, Pi

F, and Pi
M, respectively, then the meta-

combining function is defined as

WA
i ¼ 1�minðlogPT

i ; logP
F
i ; logP

M
i Þ: ð7Þ

Based on the value of Wi
A, another permutation test is performed.

In this meta-combining step, the largest value of Wi
A for each

permutation is used as the test statistic, controlling the FWE rate.

Note that Eq. (7) has the form of the Tippet combining function. It

is also possible to use the Fisher combining function as a meta-

combining function.

Implementation

An actual combined test is carried out in four steps: partial tests,

calculation of the combining function, estimation of combining

function distribution, and calculation of P values for the combined

test. First, a permutation voxel intensity test and a permutation

cluster size test are carried out, using the same permutations for

both tests. During this permutation test, peak intensity and cluster
size information from all the clusters in all the permutations are

recorded. The same permutations are used to reduce computation

time. At this step, corrected P values for the peak intensity and

cluster size, Pi
t and Pi

S, respectively, are recorded for all the clusters

in all the permutations. In the cluster mass combining function,

cluster mass is calculated for all the clusters from all the permu-

tations at this step. Once corrected partial P values are obtained,

then for each cluster in each permutation, the combining function

Wi is calculated and recorded. After Wi is obtained from all the

clusters, then for each permutation, the largest value of Wi is

sought. Together from all the permutations, an empirical distribu-

tion of the largest Wi is obtained. Notice that, to calculate the

empirical distribution of Wi, the same permutations as the partial

tests are used so that no further permutations are necessary. Finally,

based on this empirical distribution, FWE-corrected P values can

be found for the clusters from the original labeling.

More steps are necessary to perform a meta-combined test,

which are very similar to that of a combined test. First, P values

from all three combined tests need to be calculated for all the

clusters in all the permutations. This can be done by comparing each

Wi
T, Wi

F, or Wi
M to the empirical distribution of its largest values

obtained above. By doing so, corrected P values Pi
T, Pi

F, and Pi
M are

calculated. From these P values, the meta-combining functionWi
A is

calculated for all the clusters in all the permutations as in Eq. (7).

The empirical distribution of the meta-combining test statisticWi
A is

obtained by recording the largestWi
A from each permutation. Based

on this empirical distribution of Wi
A, FWE-corrected P values are

found for all the clusters from the original labeling.

Simulation

To validate and to examine the performance of our combined and

meta-combined tests, a simulation was carried out. For each reali-

zation in the simulation, a set of fifteen 76� 76� 60 voxel Gaussian

random noise images was generated by convolving a Gaussian white

noise image with a 3-DGaussian kernel of FWHM (full width at half

maximum) 4.5 voxels. The outer 16 voxels were truncated to avoid

nonstationarity at the edge, resulting in the image size of 48� 48�
32 voxels. A sphere-shaped signal having a uniform intensity was

then added to the center of the simulated noise images. Fig. 2 shows

the signals used in the simulation. To the generated images, partial



Fig. 2. The diameter and the intensity of signals used in the simulation.
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permutation tests (peak intensity and cluster size), combined tests

(Tippet, Fisher, and cluster mass), and the meta-combined test, all

with 500 permutations, were then applied. The cluster defining

threshold ucwas set to the uncorrected P= 0.01 threshold of t14 (uc =

2.6245), and the significance level of the tests was set to 0.05. This

was repeated for 2000 realizations, and rejection rates were recorded

for all the tests in all the settings. The Monte Carlo standard

deviation of rejection rates was 0.0049.

Applications

Combined voxel–cluster size tests using the above combining

functions, as well as the meta-combining test, were applied to two

multisubject fMRI data sets, the emotional response data and the

working memory data. The performance of the combined tests is

compared to that of the voxel test and the cluster size test.

Furthermore, calibration of the Tippet and Fisher combining

functions is examined for different values of calibration weight h.

Emotional response data

Taylor et al. (2003) studied emotional response among schizo-

phrenia patients. The fMRI images were acquired from eight

controls (Ct), and six schizophrenia patients (Pt) participated in this

study, while they were presented with aversive (AV) and non-

aversive (NA) International Affective Picture System (IAPS) images

and five blank (BL) gray images with a centered fixation cross. For

each subject, a contrast image of AV–NAwas calculated. Then the

resulting contrast images of size 44,552 voxels in a 53 � 63 � 45

space with 3 � 3 � 3 mm voxels were compared in a two-sample t

test (Ct–Pt) to assess the difference in emotional responses between

controls and schizophrenics. The permutation test with 1000 per-

mutations was employed in the analysis; and for each permutation,

the statistic image was thresholded at uc = 3.0 to define clusters.
Table 1

Results from the simulation

Tests Signal (diameter/intensity)

(0/0) (6/1.5) (12/0.5) (24/0.25)

Partial

Cluster 0.039 0.069 0.543 0.585

Voxel 0.048 0.881 0.148 0.117

Combined

Tippet Wi
T 0.036 0.800 0.478 0.502

Fisher Wi
F 0.045 0.825 0.479 0.477

Mass Wi
M 0.040 0.992 0.495 0.489

Meta-combined

Wi
A 0.041 0.986 0.480 0.486

Rejection rates of the partial, combined, and meta-combined tests for

different signals.
Working memory data

This data set is from Marshuetz et al. (2000) used as an example

in Nichols and Holmes (2002). Order effects in working memory

were examined using fMRI.

Each of 12 subjects participated in eight fMRI acquisitions.

Images were acquired from 12 subjects under three different con-

ditions presented as blocks in one of two randomized orders. For

each of three conditions used, 528 images were acquired at TR = 2 s.

Two of the three conditions, item recognition and control, were

considered in this example. For the item recognition condition, each

subject was shown five letters, then a probe letter after a 2-s interval.

The subject was asked to respond ‘‘yes’’ or ‘‘no’’ if the probe letter

was among the five letters presented. For the control condition, the

subject was shown five X’s, then 2 s later either ‘‘y’’ or ‘‘n.’’ They

were asked to respond ‘‘yes’’ for ‘‘y’’ and ‘‘no’’ for ‘‘n.’’

The data set was analyzed using a random effect model (Holmes

and Friston, 1999). For each subject, a contrast image of difference

between item recognition and control was calculated. The resulting

contrast images of size 122,659 voxels in a 79� 95� 68 space with

2 � 2 � 2 mm voxels were analyzed in a one-sample t test to assess

effects associated with the item recognition task among the subjects.

The permutation test with 1000 permutations was used, and for each

permutation, the statistic image was thresholded at the 0.001 critical

value of a t11 random variable (uc = 4.02) to define clusters.
Fig. 3. Results from the emotional response data analysis. A cluster was

found in the medial prefrontal cortex (MPFC) by the combined tests with

Wi
F and Wi

M.



Table 2

P values from the various tests in the emotional response data analysis

Cluster i Size (voxels) P values t score Location (x, y, z mm)

Cluster Wi
T Wi

F Wi
M Wi

A Peak

1 342 0.050 0.082 0.036 0.028 0.039 0.060 7.11 (3, 36, 15)
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Furthermore, critical regions for the weighted combining functions

Wi
T(h) and Wi

F(h) were examined at h = 0.45, 0.5, and 0.55.

Computing environment

For both analyses, a DELL PC with dual 2.4 GHz Xeon

processors and 2 GB of RAM with MATLAB 6.5 (MathWorks

Inc., Natick, MA) running on a Linux platform was used. The

calculation time was 14 min for the emotional response data and 21

min for the working memory data, with one of the two processors.
Results

Simulation

The rejection rates of the partial, combined, and meta-combined

tests from the simulation are shown in Table 1. For the high intensity

signal (diameter/intensity = 6/1.5), the cluster mass combining

function Wi
M is found to be more powerful than the voxel test.
Fig. 4. The empirical null distribution of the test statis
Furthermore, because ofWi
M, the meta-combined testWi

A is found to

be as powerful as Wi
M. For signals with large extent (12/0.5 and 24/

0.25), none of the combined tests is quite as powerful as the cluster

size test, but all combined tests are much more powerful than the

voxel test. In any settings, the meta-combined test is just slightly less

powerful than the best combined test. Thus, when the form of signals

is unknown, the meta-combined test is an ideal choice.

Emotional response data

The results from the emotional response data analysis are

shown in Fig. 3 and Table 2. The corresponding empirical null

distributions of the test statistics are shown in Fig. 4. One

significant cluster is found by Wi
F and Wi

M in the medial prefrontal

cortex (MPFC), the area associated with processing of emotions

(Phan et al., 2002). This indicates that the controls have greater

magnitude bold response while viewing aversive images than the

schizophrenics. The combined tests with Wi
F and Wi

M are able to

detect this cluster, while both partial tests are only marginally
tics from the emotional response data analysis.



Fig. 5. Results from the working memory data analysis. Activations are

found in the bilateral posterior parietal (2 and 4), left thalamus (1), and

anterior cingulate (3) regions, which are typical of working memory studies

(Marshuetz et al., 2000), as well as in the left premotor region (5).
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significant for this cluster (peak P = 0.060 and cluster size P =

0.050). On the other hand, the combined test with Wi
T produces a

larger P value than each of the partial tests. This may be because

the Tippet combining function corrects for multiple testing for peak

intensity and cluster size. The meta-combining function Wi
A

produces a P value slightly larger than that of Wi
F and Wi

M but is

still able to detect this cluster.

Working memory data

The results from the working memory data analysis are shown

in Fig. 5 and Table 3. The corresponding empirical null distribu-

tions of the test statistics are shown in Fig. 6. All the combining

functions are able to detect five clusters, which are very similar to

the results in Nichols and Holmes (2002) on the same data set.

Activations are found in the bilateral posterior parietal (clusters 2

and 4), left thalamus (cluster 1), and anterior cingulate (cluster 3)

regions, which are typical of working memory studies (Marshuetz

et al., 2000), as well as in the left premotor region (cluster 5).

Though clusters 4 and 5 are significant by their size but not by

peak intensity, all the combined tests are able to detect these

clusters. For such clusters where only one of the partial tests is

significant, Wi
T produces the smallest P values of the three, as

expected by the strength of the Tippet combining function.
Table 3

P values from the various tests in the working memory data analysis

Cluster i Size (voxels) P values

Cluster Wi
T Wi

F W

1 345 0.010 0.001 0.001 0.

2 529 0.005 0.009 0.002 0.

3 520 0.005 0.009 0.002 0.

4 1138 0.001 0.001 0.004 0.

5 436 0.006 0.011 0.021 0.
However, compared to P values from individual partial tests, P

values from Wi
T can be larger than the minimum P value of the two

partial tests, as seen in clusters 2 and 3 as well as the emotional

response results above. The meta-combining function Wi
A is able to

cover this weakness very well. Though it produces a slightly large

P value than Wi
T in cluster 5, Wi

A produces P values as comparably

small as Wi
F and Wi

M in clusters 2 and 3.

Fig. 7 shows critical regions for the weighted combining

functions Wi
T(h) and Wi

F(h) with various weights (h = 0.45, 0.5,

and 0.55), along with the corresponding critical regions of the

partial tests. For h = 0.45, critical regions from both combining

functions include more areas from the cluster size test’s critical

region than that of the voxel test. On the other hand, for h = 0.55,

the combining functions’ critical regions include more areas from

the voxel test’s critical region. This indicates that both weighted

combining functions are able to calibrate the critical regions with

the value of h. A value of h < 0.5 emphasizes P values from the

cluster size test, making a combined test more sensitive to spatially

extended signals. Conversely, if h > 0.5, the test becomes more

sensitive to high intensity signals. For example, though clusters 5 is

in the critical regions of both combined tests at h = 0.45 and 0.5

due to its size, it is not in the critical region at h = 0.55 because its

peak intensity P value is not small enough.
Discussion

We have developed combined voxel–cluster size tests using

three combining functions. Our simulation demonstrated that our

combined tests and meta-combined test perform well for any

types of signals examined. In particular, the meta-combined test is

consistently powerful, thus ideal for situations where the shape of

expected signals is unknown. From the results of the multisubject

fMRI analyses, the Tippet combining function Wi
T is found to be

less sensitive than the partial tests. A P value from this test is

usually greater than the smaller one of the two partial tests.

However, this test is sensitive to clusters whose only one of the

partial tests is significant (localized high intensity signals or

spatially extended low intensity signals). The other combining

functions, Fisher Wi
F and cluster mass Wi

M, can produce more

significant results than individual partial tests when both partial

tests are significant. Even when both partial tests are marginally

significant, these tests can detect clusters because their critical

regions cover some outside portion of the partial tests’ critical

regions (see Fig. 1). Between Wi
F and Wi

M, Wi
F should be still

sensitive to clusters of which only one of the partial test is highly

significant while the other is nonsignificant.

The meta-combining functionWi
A is able to combine the strength

of the above combining functions into one. There are infinitely many
t score Location (x, y, z mm)

i
M Wi

A Peak

003 0.001 0.001 13.15 (�8, �18,2)

001 0.001 0.007 10.19 (36, �58,48)

002 0.003 0.012 9.37 (�10, 16, 44)

001 0.001 0.083 7.36 (�30, �46, 48)

012 0.016 0.208 6.31 (�48, 8, 40)



Fig. 6. The empirical null distribution of the test statistics from the working memory data analysis.
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combining functions for peak intensity and cluster size information,

but our meta-combining function can cover three typical scenarios

represented in the three combining functions. The Tippet test is

sensitive to a rejection in either one of the partial tests. The cluster

mass test is sensitive to moderately high intensity peaks and large

clusters occurring simultaneously. The Fisher test is a compromise
Fig. 7. Critical regions at 0.05 significance level for the tests with the

weighted Tippet (top, solid lines) and weighted Fisher (bottom, solid lines)

combining functions with h = 0.45, 0.5, and 0.55 (from left to right) from

the working memory data example. Also noted in the plots are the critical

regions of the voxel intensity test (dash-dot lines) and the cluster size test

(dashed lines). Clusters are indicated according to their partial test P values.
of the two. Hence by combining these three, the meta-combined test

is sensitive to signals significant in one of the partial tests and signals

marginally significant in both partial tests.

When used with the permutation framework, our combining

function strategy provides an easy way to implement voxel–cluster

combined inference. One of the strengths of combined approach is

its ability to make an inference ‘‘without regard to the underlying

dependence relations’’ (Pesarin, 2001, p. 134). Calculating a com-

bining function from partial P values at each cluster implicitly

incorporates the dependence structure among these P values.

The main reason for our use of corrected P values from the

partial tests, rather than uncorrected P values, is to reduce

computational burden. It is easy to find the uncorrected cluster

size distribution using permutations since at most a few hundreds

of clusters could occur for each permutation, but finding uncor-

rected voxel intensity distribution requires a large memory to

record all the voxel intensities above the cluster defining thresh-

old uc for all the permutations.

In some cases, uncorrected P values from the partial tests are

more desirable than corrected P values. When uncorrected P values

from the partial tests are used, then the distribution of the Fisher

combining function Wi
F can be approximated by a v2 random

variable with df = 4, and this test can be implemented parametrically.

In such case, uncorrected cluster size P values can be found from the

permutation test and uncorrected voxel P values can be found based

on t distribution with appropriate degrees of freedom. Since the

cluster size distribution based on RFT may be biased (Hayasaka and

Nichols, 2003), it is preferable to use of permutations to find an



S. Hayasaka, T.E. Nichols / NeuroImage 23 (2004) 54–6362
empirical cluster size distribution, which is known to be almost exact

(Holmes et al., 1996). For the intensity distribution, it is reasonable

to assume the distribution of each voxel intensity of T as a t random

variable due to the central limit theorem.

In any case, when P values are to be used in the combining

functions, partial test P values have to be both corrected or both

uncorrected. Otherwise, if P values from one test were corrected

and P values from the other test were uncorrected, then the

uncorrected P value could dominate in the combining function

since they are not corrected for multiple comparisons and could be

considerably smaller than the corrected counterpart.

We suspect that there is very little effect on the sensitivity and the

specificity of the test with our use of partial P values, compared to

using the actual peak intensity and cluster size information directly

in a combined function. Unless the permutation distribution is very

discrete, there usually is a one-to-one correspondence between the

peak intensity (or cluster size) and its P values based on permuta-

tions. Thus, our use of marginal P values simply maps the peak

intensity (or the cluster size) to an interval (0,1).

Our attempt to calibrate the combined test becomes possible

with use of weight h and permutation framework. In the

working memory data example, we are able to tune down

low intensity clusters (see Fig. 7). Except the weight, the

contributions from both partial tests in the weighted combining

functions are the same. Hence, in theory, these tests also should

be able to filter out high intensity localized signals with small h <

0.5. Furthermore, it is possible to modify the cluster mass combin-

ing function Wi
M so that it can also be calibrated using a weight h.

Details are found in Appendices A and B.

The optimal value of h could depend on various factors, such as

image smoothness, signal intensity, and widths. Since traditional

random field theory only models the noise and not the form of the

signal, we have left noise and signal modeling and estimation of h for
future work.

If there is a prior belief about the data, then h can be adjusted

accordingly a priori. For example, if strong localized activations are

expected, then h can be slightly augmented from 0.5. One could

analyze a data set multiple times with different h’s, but this adds an
additional dimension to the search volume (i.e., spatial dimensions x,

y, z and the parameter h). Such addition of an extra dimension to the

search space could lead to reduced sensitivity, as seen in scale space

search (Worsley et al., 1996). In any case, one should not choose

value of h based on P values of partial tests a posteriori after

examining partial P values of each cluster.

In summary, we developed and implemented combined voxel–

cluster size tests using combining functions and permutation

framework. We extended this combined inference into meta-

combining by combining strengths of different combining func-

tions. We also developed weighted combining functions, which

adjust the combined test according to signals of interest. As seen in

our simulation and data analyses, these methods provide a way of

detecting a wider variety of signals than existing intensity- or

extent-based inference methods.
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Appendix A. Weighted cluster mass

For cluster i consisting of set of voxels Ci, the cluster mass Wi
M

is defined as

WM
i ¼

X
vaCi

½TðvÞ � uc�: ð8Þ

Since T(v) > uc for any v in cluster i, Eq. (8) can be rewritten as

WM
i ¼

X
vaCi

ATðvÞ � ucA ð9Þ

which is a sum of L1 distance between uc and T(v) at each voxel.

From Eq. (9), let us consider squared mass using L2 distance, such

that

WM
i
V¼

X
vaCi

ATðvÞ � ucA2:

Since the distance between uc and T(v) is squared, this squared

mass favors peaked clusters. Also from Eq. (9), let us consider

square root mass using L
1
2 distance

WM
i
W ¼

X
vaCi

ATðvÞ � ucA
1
2

which favors a large cluster size. Thus, if the cluster mass is

calculated with Lm distance, m a (0,l), the sensitivity of the

cluster mass test can be adjusted according to signals of

interest by

WM
i ðmÞ ¼

X
vaCi

ATðvÞ � ucAm:

If peaked clusters are sought, then m H 1 should be used, and

for clusters with large extent, m b 1 should be used. To be

consistent with the two other weighted combining functions Wi
T

(h) and Wi
F (h), let m = h / (1 � h) with h a (0,1), so that

the weighted cluster mass function can be written as

WM
i ðhÞ ¼

X
vaCi

ATðvÞ � ucA
h

1�h :

For h = 0.5, Wi
M (h) becomes the cluster mass combining

function. As h!0, the cluster area dominates and the test

becomes a cluster size test. On the other hand, as h!1, the

largest voxel intensity in the cluster dominates and the test

becomes a peak intensity test.

Interestingly, cluster mass Wi
M is related to the Fisher combin-

ing function Wi
F. Let Ti be the mean of T(v) in cluster i. Then Eq.

(8) can be rewritten as

WM
i ¼ ðTi � ucÞSi ð10Þ

where Si is the size of cluster i. Then after taking the logarithm, Eq.

(10) becomes

logðWM
i Þ ¼ logðTi � ucÞ þ logðSiÞ: ð11Þ

This is similar to the Fisher combining function

WF
i ¼ �2ðlogPt

i þ logPs
i Þ
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since there is a close relationship between ðTi � ucÞ and Pi
t and also

between Si and Pi
s, though this is not a one-to-one transformation.

Notice, however, while both partial P values are in a range of (0,1),

ðTi � ucÞ and Si are in ranges of (0,l) and {1,2,3, . . .,l},

respectively. Since the magnitude of Si is considerably larger than

that of ðTi � ucÞ in practice, the contribution from the cluster size is

likely to dominate in Eq. (11).
Appendix B. Alternative functional forms for partial P values

Instead of log Pi, different functional forms of partial P values

can be used in calculation of the Tippet and Fisher combining

functions. One possibility is to use U (
), the cumulative distribu-

tion function of a standard normal random variable. The function

U�1 (1 � Pi) can be used to transform a P value into a number in

(�l,l) (Stouffer et al., 1949, cited in Lazar et al., 2002). Another

possibility is to use the log odds �log[(Pi) / (1�Pi)], which

transforms a partial P value into a number in (�l,l) (Mudholkar

and George, 1979, cited in Lazar et al., 2002).
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