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ects of forward models for distributed solutions to the MEG inverse problem: 1)
the nature of the cortical mesh constraining sources (derived from an individual's MRI, or inverse-
normalised from a template mesh); 2) the use of single-sphere, overlapping spheres, or Boundary Element
Model (BEM) head-models; 3) the density of the cortical mesh (3000 vs. 7000 vertices); and 4) whether
source orientations were constrained to be normal to that mesh. These were compared within the context of
two types of spatial prior on the sources: a single prior corresponding to a standard L2-minimum-norm
(MNM) inversion, or multiple sparse priors (MSP). The resulting generative models were compared using a
free-energy approximation to the Bayesian model-evidence after fitting multiple epochs of responses to faces
or scrambled faces. Statistical tests of the free-energy, across nine participants, showed clear superiority of
MSP over MNM models; with the former reconstructing deeper sources. Furthermore, there was 1) no
evidence that an individually-defined corticalmeshwas superior to an inverse-normalised canonicalmesh, but
2) clear evidence that a BEMwas superior to spherical head-models, provided individually-defined inner skull
and scalp meshes were used. Finally, for MSP models, there was evidence that the combination of 3) higher
density cortical meshes and 4) dipoles constrained to be normal to the mesh was superior to lower-density or
freely-oriented sources (in contrast to the MNMmodels, inwhich free-orientationwas optimal). These results
have practical implications for MEG source reconstruction, particularly in the context of group studies.

Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.
Introduction

There are various approaches to constructing a forwardmodel that
maps electrical activity at one or more sources within the brain to the
electrical or magnetic field recorded by sensors outside the brain.
Some models allow the sources to live anywhere within the three-
dimensional brain volume, while others constrain the sources to a 2D
manifold of the cortical surface, defined using MRI (Dale and Sereno,
1993). Another choice is whether the head-model, which uses
Maxwell's equations to predict the electromagnetic field produced
by the sources at a given sensor (the “leadfield”), is based on analytical
solutions for spherical surfaces, or on numerical solutions for a
Boundary Element Model (BEM) approximation to the head (Mosher
et al., 1999). (Note that there are further numerical methods such as
Finite Element and Finite Volumemodelling, Pruist et al., 1993, but we
do not consider these here.) Further choices concern the number of
possible dipoles within the source space, and in the case of sources
fixed on a 2D cortical surface, whether the orientation of those dipoles
is free or constrained to be normal to the surface. The latter constraint
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reflects the assumption that MEG/EEG signals recorded over the scalp
derive from synchronous activity in the pyramidal cells that are
largely perpendicular to the cortical surface (Nunez, 1981).

We explored these choices, within the context of distributed norm
inversions of different forward models, for MEG data recorded from
nine participants. Within a Bayesian framework, the various choices
for forward modelling constitute part of the generative model;
therefore the Bayesian concept of “model-evidence” can be used to
compare those choices (see Appendix). While there have been several
previous formal comparisons of some of the models considered here,
these have normally used simulated data (e.g. comparing the point-
spread or crosstalk functions for various spherical vs. BEM head-
models), for which at least onemodel is normally considered to be the
truth (e.g., a BEM; Huang et al., 1999). Our empirical model
comparisons provide an important complement to these simulations.
Moreover, we are not aware of prior studies that have simultaneously
explored the range of model attributes we now consider.

The choice of meshes

In the present work, we constrained the sources to lie within a
tessellated mesh of the cortical mantle. Obtaining an accurate
tessellation of the cortical surface via segmentation of an MRI is a
hts reserved.
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difficult problem, often requiring manual intervention (though see
Fischl et al., 1999). One alternative that we proposed recently is to take
a cortical mesh created carefully by hand from an MRI of a “template”
brain, which has been transformed into a standard stereotactic space
(Talairach and Tournoux, 1988). This template mesh can be warped to
match an individual's MRI, using the inverse transformation of the
spatial normalisation procedures that have been established in the
MRI literature (Ashburner and Friston, 2005). When using simulated
data, we previously found no evidence that this inverse-normalised,
template mesh—whichwe called a “canonical mesh” - performed any
worse than a mesh based on an individual's cortical surface; in terms
of either the model-evidence or the localization error (Mattout et al.,
2007). One key advantage of a canonical mesh is that it provides a
one-to-one mapping between the individual's source-space and the
template space, facilitating group analyses (Litvak and Friston, 2008)
and the incorporation of spatial priors that live in the template space,
such as group fMRI results (Flandin et al., 2009).

However, our previous results pertained only to the single
individual, so it is unknown whether a canonical mesh would
consistently be sufficient over a larger sample of individuals.
Furthermore, our previous simulations used only a single-sphere
head-model (aligned with the cortical mesh), whereas more complex
head-models, such as BEMs, may be more sensitive to the choice of
mesh (viz the use of canonical vs. individual inner skull or scalp
meshes; see below).

Here, we used three meshes for each individual — one for the
cortex, one for the inner skull and one for the outer scalp (see Fig. 1).
Each mesh served a different function. The cortical mesh constrained
the possible source locations (and their orientations in some
models). The inner skull mesh was used to fit the single-shell
Fig. 1. The four combinations of three meshes considered for cortex, inner skull and scalp. T
warped to the Montreal Neurological Institute (MNI) template in Talairach space; Can (Canon
by warping the individual's MRI to the template MRI; Ind (Individual) = created direct
individually-defined inner skull and scalp meshes.
head-model (i.e., a single sphere, overlapping spheres, or BEM; see
below); the scalp mesh was used to coregister the MEG sensors with
the meshes (that are defined in the individual's MRI space) via a set
of digitized points on the scalp. We explored four combinations of
meshes, depending on whether each corresponded to a template
mesh, a canonical mesh, or was derived manually from an individual's
MRI (see Fig. 1 and Results).

The choice of head-model

We considered three different head-models: a single-shell sphere
(Sarvas, 1987), a sphere fitted separately to the local curvature below
each sensor (“overlapping spheres”, Huang et al., 1999), or a single-
shell Boundary Element Model (BEM) (Mosher et al., 1999). All three
were aligned to the same inner skull surface; since this tends to be the
surface associated with the greatest change in conductivity. The single
and overlapping sphere models can be solved analytically, using
Sarvas's method (Sarvas, 1987), whereas the BEM requires numerical
calculation for each face within the inner skull mesh. Note that these
three head-models were considered for each of the four mesh-
combinations above, since either the inner skull or cortical mesh
differed within each set, creating a factorial model-space.

The choices of dipole density and orientation

We considered two cortical mesh densities: approximately 3000
or 7000 vertices. Both mesh-sizes were considered for fixed dipoles,
with an orientation normal to the local curvature of the mesh, and
free dipoles, where source magnitude was estimated for each of
three orthogonal directions, effectively tripling the number of free
em (Template) = created from a different (neurotypical) subject's MRI that had been
ical) = inverse-normalised Template, where normalisation parameters are determined
ly from an individual's MRI. CanInd = combination of canonical cortical mesh and
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parameters.1 The precise orientation of dipolar sources often has a
greater effect on leadfields than their precise localisation (e.g., Salayev
et al., 2006). Given the convoluted nature of the cortical surface, and
the ensuing errors in its segmentation and tessellation, one might
expect better performance when the orientation is free to vary. This is
particularly relevant when inverse-normalising a cortical mesh from a
template brain, since there is no exact correspondence of sulci across
brains. However, this must be considered in light of the massive
under-determinacy of the inverse problem (i.e., estimating several
thousand, or tens of thousands, parameters from only a few hundred,
correlated sensor values). A more constrained source-space may
actually produce more probable source estimates on average, even if it
is less accurate. The best model is that which balances accuracy and
complexity, as encapsulated in the “model evidence” (see Appendix).

The choice of source priors

The sources were estimated in two ways: either using Minimum
(L2) Norm (MNM) or Multiple Sparse Priors (MSP). Whereas the
above choices of mesh and head-model affect the form of the lead-
field, the choice of source prior affects the prior covariance of the
source parameters. These source priors also form part of the
generative model within a Bayesian framework. The MNM inversion
corresponds to a standard approach (Hauk, 2004) that can be
expressed in terms of a single variance component. This spatial prior
is an identity matrix over sources, reflecting the assumption that each
source is independent and identically-distributed (effectively
encouraging solutions with the minimal total energy). The hyper-
parameter associated with this single source prior controls the relative
weighting of the minimum-norm constraint relative to the fit to the
data (the “regularisation”), and is here estimated by maximising the
free-energy bound on the model log-evidence using an iterative
Expectation-Maximisation (EM) algorithm. In brief, this entails
optimizing the hyperparameters with respect to the free-energy,
using conventional gradient ascent. By construction, the free-energy is
always less than the log-evidence for a particular model (that is
defined in terms of its covariance components). This means that when
the free-energy is maximized, the hyperparameters are the most
likely, given the data, and the free-energy becomes a bound
approximation to the log-evidence that can then be used to compare
models (see Friston et al., 2007, for full treatment).

The MSP source model is a more recent approach (Friston et al.,
2008), in which the source-space is divided into a number of small
patches (i.e., subsets of dipoles, weighted by their surface proximity to
centre of each patch), typically resulting in several hundred spatial
priors on the sources. This reflects the assumption that neural activity
in the brain is sparse; i.e., typically occurs in a number of discrete
regions (but presumably connected by long-range fibres). Here we
used 768 patches: 256 for each hemisphere, and 256 bilateral
(homologous) patches. The associated hyperparameters are estimated
as above by optimising the free-energy. Simulations have shown that
theMSP approach not only results in highermodel-evidences than the
MNMapproach, but also producesmore accurate localisations (Friston
et al., 2008). It has also been shown to produce more plausible
solutions for an EEG dataset, and circumvent the well-known bias of
the MNM approach to produce widely-distributed, superficial solu-
tions. However, MSP has not been compared to MNM on MEG data
using a sample of individuals. We therefore thought it important to
1 Note that for the single-sphere head-model, there was some redundancy among
these parameters, because MEG cannot measure the purely radial component of the
source orientation (given that radial sources produce no detectable magnetic field over
the surface of a sphere). Note also that there are more sophisticated ways to
accommodate orientation errors, such as scaling the tangential components with
respect to the orthogonal one (Phillips et al, 2005), or using a “loose orientation
constraint” (Lin et al, 2006).
explore the effects of different MEG lead-fields on both a standard
inversion prior (MNM) and a more recent approach (MSP).

The above four factors affecting the lead-field matrix (mesh-type,
head-model, mesh-size and dipole-orientation), together with the
fifth factor of source priors, define each model— resulting in a model-
space of 4×3×2×2×2=96 different models. To make exploration of
this model-space more tractable we used a heuristic search by
splitting the space into two, three-way factorial partitions: the first
search considered the factors of mesh-type, head-model and source-
priors (using the larger mesh of 7004, normally-oriented dipoles),
whereas the second explored the factors of mesh-size, dipole-
orientation and source-priors, using the best mesh-type and head-
model from the first search (viz a canonical cortical mesh, individual
skull and scalp meshes and a BEM head-model).

Test data

The above models were evaluated on MEG data recorded from 151
axial gradiometers from nine participants, while theymade symmetry
judgments on randomly intermixed trials of faces and scrambled
faces. The 172 epochs in total (from−100 ms to +600 ms) were used
to calculate the data covariance over sensors for each participant.
These data were used to optimise the sensor and source covariance
components required for model inversion. This produces both the
free-energy approximation to the log-evidence and estimates of the
source activity (see Appendix). We used the source estimates to
illustrate the face validity of the models in terms of evoked responses.
We focussed on the M170, a component around 150–200 ms post-
stimulus that is greater for faces than non-face stimuli (such as
scrambled faces), and for which there is good evidence from prior EEG
andMEG experiments, in addition to fMRI and intracranial EEG, that it
is generated by sources in mid-fusiform, lateral occipital and possibly
lateral posterior temporal cortex (e.g., Allison et al., 1999; Henson
et al., 2003; Watanabe et al., 2005). Thus, the reason for choosing the
present dataset was not only that it has been used in the context of
other methodological developments (Henson et al., 2007; Chen et al.,
2009), but because the solution of each model could also be judged in
terms of its plausibility.

Methods

The MEG data

The dataset is identical to that described in Henson et al. (2007). In
brief, the data came from a single, eleven minute session in which
participants saw 86 intact and 86 scrambled faces, subtending visual
angles of approximately four degrees. Half of the faces were famous,
and half were novel; the scrambled faces were phase-shuffled,
Fourier-transformed versions of the faces. Participants made left–
right symmetry judgments about each stimulus by one of two finger-
presses (range of reaction times: 1031 ms–1798 ms). The MEG data
were sampled at 625 Hz on a 151-channel axial gradiometer CTF
Omega system at the Wellcome Trust Laboratory for MEG Studies,
Aston University, England. Nine participants were tested, four female,
ranging from young to middle-aged adults. Their involvement
complied with the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and the standards established by a local
review board.

MRI data, meshes and forward models

A T1-weighted MPRAGE-MRI scan was acquired for each partici-
pant with voxel-size of 1×1×1 mm. These scans were segmented
using SPM5 (http://www.fil.ion.ucl.ac.uk/spm), and the different
partitions used to create meshes of 2002 vertices (4000 faces) for 1)
the scalp and 2) the inner skull surface. These meshes were derived

http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Mean free-energy (arbitrary units) across the nine participants for: (A) the
conditions explored in Analysis 1, when using a standard minimum norm (MNM)
source-prior; (B) the conditions explored inAnalysis 1whenusingmultiple sparse priors
(MSP), and (C) the conditions explored in Analysis 2. Tem=template cortex, inner skull
and scalp meshes; Can = canonical cortex, inner skull and scalp meshes; CanInd =
canonical cortex mesh and individual skull and scalp meshes; Ind = individual cortex,
inner skull and scalp meshes (see Fig. 1). Sph = single-sphere head-model; OS =
overlapping-spheres head-model; BEM = Boundary Element (Head) Model; Nrm =
dipoles normal to cortical mesh; Fre = dipole-orientation free to be estimated.
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from automated growing and eroding of binarized versions of the MRI
(specifically, the sum of the gray, white and CSF partitions in the case
of the inner skull), onto which a spherical mesh was projected and
adjusted using an elastic correction. Each participant's scalp was also
digitised using a Polhemus device, and the digitised head-points
coregistered with the scalp mesh; so that the MEG sensor positions
and orientations could be transformed into the MRI space.

BrainVISA/Anatomist (http://brainvisa.info) was used to create
individual cortical meshes from each MRI of about 80,000 vertices,
which were subsequently subsampled to between 7204 and 7211
vertices across participants. These meshes comprised a continuous
triangular tessellation of the grey/white matter interface of the
neocortex (excluding cerebellum). The mean inter-vertex spacing
ranged from 4.3 mm to 5.3 mm across participants. The normal to the
surface at each vertex was calculated from an estimate of the local
curvature of the surrounding triangles (Dale and Sereno 1993).
BrainVISA/Anatomist was also used previously to create the template
cortical, inner skull and meshes (based on the MRI of a neurotypical
male, normalised to a MNI template in Talairach space; Mattout et al.,
2007). The template cortical meshes used here contained either 7204
vertices (14,400 faces) or 3004 vertices (6000 faces) (as available in
the SPM5 software package).

Brainstorm (http://neuroimage.usc.edu/brainstorm) was used to
fit a single-sphere, overlapping spheres or a BEM to the inner-skull
mesh and to calculate lead-fields for sources normal to the cortical
mesh or for three orthogonal directions. In the case of BEMs, a linear
Galerkin method was used inwhich the inner skull mesh was reduced
to 1000 vertices to reduce computational load.

Inversion

The MEG data were analysed using SPM5. The continuous data
were epoched from −100 to +600 ms, and the data covariance
calculated within a Hanning window across the epoch and a
frequency-band of 1–44 Hz. The data were reduced to 6–8 temporal
modes using singular-value decomposition (Friston et al., 2008),
which typically captured over 93% of the data variance. This data
covariance was then used to estimate the cortical sources using either
Minimum Norm (MNM) or Multiple Sparse Priors (MSP), by
maximising the free-energy approximation to the model-evidence
(using greedy-search in the case of MSP). The remaining options were
as default in SPM5, with the exception that no spatial dimension-
reduction was performed, in order to compare forward models
directly (see Appendix). For MSP, a fixed number of patches (256
per hemisphere) and smoothness (0.6) was used for all cortical
meshes (note that higher density meshes entail smaller patches); for
freely-oriented sources, each direction at each vertex had the same
prior variance.

Reliable effects in the free-energy across participants were
assessed using repeated-measures Analysis of Variance (ANOVA)
with a Greenhouse–Geisser correction to the degrees of freedom. For
subsequent evaluation of the source reconstructions, the difference in
mean evoked energy across trials and participants, within a Gaussian
window from 150 to 190 ms (Friston et al., 2006), was estimated for
faces relative to scrambled faces.

Results

In what follows, we describe the results of our model-comparison
and report the results of source reconstructions for the selected
models identified by the heuristic search over model-space.

Analysis 1: effects of meshes, head-model and source-priors

In the first analysis, cortical meshes of approximately 7000
normally-oriented dipoles were used, and three factors were crossed:
source-priors (2 levels), meshes (4 levels) and head-model (3 levels).
The source-priors were the standard (L2) Minimum Norm (MNM)
and Multiple Sparse Priors (MSP). The four meshes were 1: Template
cortex, inner skull and scalp meshes (Tem), 2: Canonical (inverse-
normalised Template) cortex, inner skull and scalp meshes (Can), 3:
Canonical cortex mesh and individual skull and scalp meshes
(CanInd), and 4: Individual cortex, skull and scalp meshes (Ind)
(see Fig. 1). The three head-models (all fit to the inner-skull mesh)
were 1: Single-sphere (Sph), 2: Overlapping-spheres (OS) and 3:
Boundary Element Model (BEM).

The average free-energy across the nine participants for the
resulting 24 models is shown in Figs. 2A and B. The largest effect
size (η2=0.12) in the 2×4×3 ANOVA was the main effect of source-
priors, F(1,8)=90.5, pb .001, which reflected greater evidence for
MSP relative to standard MNM (cf. panels A and B of Fig. 2). The next
largest effect size (η2=0.09) was the main effect of meshes, F
(1.03,8.26)=12.8, pb .01, which appeared to be driven by weaker
evidence for Template meshes than the other three types of mesh
(consistent with the absence of a reliable main effect of mesh when
excluding Template meshes, F(1.53,12.2)b1).

The three-way interaction did not reach significance, F(3.43,27.5)
= 1.91, p=.14, but there were reliable two-way interactions between

http://brainvisa.info
http://neuroimage.usc.edu/brainstorm
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source-prior andhead-model, F(1.48,11.9)=15.1, pb .001, and between
mesh and head-model, F(2.28,18.3)=3.58, pb .05, and a trend for an
interaction between Method and mesh, F(1.24,9.94)=3.99, p=.07.
These were explored in further ANOVAs for MSP and MNM source-
priors separately. The 4×3 ANOVA for MNM source-priors showed a
reliable interaction between head-model and meshes, F(2.37,18.9)=
3.38, pb .05 (even when excluding Template meshes, F(1.47,11.8)
=6.15, pb .05). This pattern appeared to reflect an advantage of BEM
over sphere-based head-models, which became more pronounced for
Fig. 3.Mean source solutions across participants for selected models from Analysis 1 and 2. T
source strengths within MNI space; the right part shows the magnitude of the evoked respon
showing the biggest face-related response. For definition of acronyms, see Fig. 2 legend. Not
have a one-to-one mapping with MNI space. For illustration purposes, the source estimates
adjacency ratio (autoregression coefficient) of 1/16.
individual skull meshes (i.e., for Ind and CanInd versus Can conditions
in Fig. 1A). Indeed, separate one-way ANOVAs on each set of meshes
separately showed a reliable main effect of head-model for Ind
meshes, F(1.61,12.9)=4.46, pb .05, and a trend for CanInd meshes, F
(1.35,10.8)=3.68, p=.073 (but no trend for Can meshes, Fb1). This
effect was confirmed by a reliable pairwise difference between BEM
and Single-spheres for both Ind and CanInd meshes, F(1,8)'sN5.14,
pb .05 (though any improvement of BEMs over Overlapping-spheres
did not reach significance, F(1,8)b2.60, pN .14).
he left part of each panel shows aMaximal Intensity Projection (MIP) of the 512 greatest
se to faces (dark lines) and scrambled faces (light lines) across the epoch for the dipole
e only solutions with a Template or Canonical cortical mesh are shown, since only these
have been smoothed on the 2D mesh surface via 32 iterations of a graph Laplacian with
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The 4×3 ANOVA for MSP source-priors also showed a reliable
interaction between head-model and meshes, F(2.43,19.4)=3.55,
pb .05 (even when excluding Template meshes, F(1.73,13.8)=5.96,
pb .05). This pattern again reflected an advantage of BEM over
sphere-based head-models, which became more pronounced for
Individual skull meshes (Fig. 1B). Indeed, separate one-way ANOVAs
on each set of meshes separately showed a reliable main effect of
head-model for CanInd and Ind meshes, FN6.91, pb .05 (but not for
Can meshes, Fb1), which were confirmed by reliable pairwise
differences between BEM and both Single- and Overlapping-spheres
for CanInd meshes, FN6.83, pb .05, and Ind meshes, FN5.32, pb .05.

To examine the choice of cortical mesh more closely, a final
analysis was restricted to the CanInd and Ind conditions, which are
matched in terms of the inner skull and scalp meshes that determine
the head-model and data coregistration respectively. ANOVAs with
the additional factor of head-model showed no reliable main effect or
interaction involving canonical vs. individual cortical meshes, for
either MNM or MSP source-priors, Fb1.98, pN .17, nor was any reliable
difference found between canonical and individual meshes when
restricted to the best (i.e., BEM) head-model, Fb1.

Figs. 3A–D show the resulting face-evoked responses around the
latency of M170 component believed sensitive to face perception for
selected models in MNI source space. The images on the left of each
panel show Maximal Intensity Projections (MIPs) of the average
source activity across participants for the 512 dipoles that show the
greatest face-related activity; where the ‘activity’ reflects the
difference of the evoked response magnitude for faces relative to
scrambled faces within a Gaussian window between 150 and 190 ms.
The plots on the right show themagnitude of activity across thewhole
epoch for faces (dark lines) and scrambled faces (light lines) for the
dipole showing the biggest face-related response. Fig. 3A shows the
solution for the optimal inversion (that with the highest free-energy);
i.e., MSP with a canonical cortical mesh and a BEM defined on the
individually-defined inner skull mesh.

Firstly, note the effect of source-priors (cf. Figs. 3A and B), in that
the sparse solutions assumed by MSP encourage deeper sources (e.g.,
more medial in ventral temporal cortex) than the more superficial
solutions characteristic of standard MNM (see also Friston et al.,
2008). Secondly, note the effect of cortical mesh (cf. Figs. 3A and C), in
the more realistic localisation of the M170 in ventral temporal regions
using a Canonical cortical mesh than a Template cortical mesh.
Thirdly, note the effect of head-model (when individually-defined; cf.
Figs. 3A and D), in the differences between BEM and Single-sphere
head-models, where the former appears to identify more occipital
sources (possibly corresponding to the “OFA”, Rossion et al., 2003),
presumably because the single-sphere approximation is less accurate
near the occipital pole.

Analysis 2: effects of source-priors, mesh-size and dipole-orientation

In the second analysis, three factors were explored: source-priors
(MNM vs. MSP), mesh-size (7004 vs. 3004 dipoles) and dipole-
orientation (Normal or Free). These eight models were based on a
canonical cortical mesh, individual skull and scalp meshes and a BEM
head-model (i.e., the optimal CanInd-BEM model from Analysis 1).
The average free-energy across the nine participants is shown for each
model in Fig. 2C.

As above there was a profound advantage of MSP over MNM, F
(1,8)=47.3, pb .001 (η2=0.025). The three-way interaction between
source-priors, mesh-size and dipole-orientation was not significant, F
(1,8)=1.04, p=.34, but the two-way interaction between source-
priors and dipole-orientation was highly significant, F(1,8)=29.5,
pb .001, with freely orientated sources increasing free-energy for
MNM, but decreasing free-energy for MSP. The interaction between
mesh-size and dipole-orientation was also significant, F(1,8)=12.6,
pb .01, and the interaction between source-prior and mesh-size
approached significance, F(1,8)=5.23, p=.052. These interactions
were explored by separate ANOVAs on MSP and MNM source-priors.
For MNM source-priors, there was only a highly reliable effect of
dipole-orientation, F(1,8)=47.9, pb .001 (neither the main effect of
mesh-size nor the interaction approached significance, Fb1.01). The
main effect of dipole-orientation reflected a greater free-energy for
free, relative to normally-oriented sources, which was true in pairwise
tests of orientation for both small and large mesh-sizes, F(1,8)N31.1,
pb .001.

For MSP source-priors, the main effects of mesh-size and dipole-
orientation were significant, F(1,8)=7.34, pb .05 and F(1,8)=8.97,
pb .05 respectively and their interaction approached significance, F
(1,8)=4.40, p=.07. This reflected the greatest free-energy for large
meshes with normally-oriented dipoles. This pattern was clarified by
reliable pairwise differences between the MSP-Nrm-7004 model and
each of the other three models, F(1,8)N10.5, pb .05, but no reliable
differences between any of the other threemodels, F(1,8)b2.56, pN .14.

Figs. 3E–H shows the resulting face-evoked responses for selected
models in MNI source-space. Firstly, note the small effect of mesh-size
for standard minimum norm (cf. Figs 3E and B), yet a noticeable effect
of free vs. normal orientation (cf. Figs. 3E and F), in that the maxima
are more posterior without orientation constraints. For MSP, both
smaller meshes (cf. Figs. 3G and A) and free-orientations (cf. Figs. 3H
and A) result in less plausible solutions, consistent with their lower
free-energy.

Discussion

Using a free-energy approximation to the Bayesian model-
evidence and MEG data from nine participants, we compared
different forward (generative) models within the same Parametric
Empirical Bayesian framework (described in Appendix). We used a
source-space in which several thousand dipoles were constrained to
a tessellated neocortical manifold, and reconstructed the source
activity over 172 epochs of 700 ms. We found greater model-
evidence for MSP models that assumed multiple sparse sources
(Friston et al., 2008), relative to MNM models that assumed a single
uniform spatial prior across sources (corresponding to the standard
Minimum Norm approach). Note that while both MSP and MNM had
the same number of parameters (i.e., dipoles on the cortical mesh),
MSP had many more hyperparameters (∼750 vs 1), so is the more
complex model. Importantly, the measure of model evidence
penalizes model complexity, and yet MSP still had a higher model
evidence than MNM, by virtue of being a more accurate model of the
data covariance (see Appendix). This greater model-evidence was
accompanied by a more realistic source reconstruction for the
increase in evoked activity around 170 ms for faces relative to
scrambled faces; namely in ventral temporal regions close to the
fusiform gyrus, compared to the more superficial reconstructions
that characterise the standard MNM approach. These MSP results
confirm and extend prior conclusions from a single-participant EEG
dataset (Friston et al., 2008).

Second, while we found evidence that the cortical mesh obtained
from an individual's native MRI was superior to a “template” mesh
(from a different brain in Talairach space), we found no reliable
evidence that this individual cortical mesh was superior to a
“canonical” mesh obtained by inverse-normalising the template
cortical mesh (using normalisation parameters derived from warping
the individual MRI to the template MRI). This was the case for both
MSP and MNM source-priors. The lack of difference between
individual and canonical cortical meshes held even when directly
comparing our Ind and CanInd conditions, in which the inner-skull
and scalp meshes were equivalent (individually-defined), and only
the cortical mesh differed. This is an important result because it
suggests that creating individual cortical meshes (and all the
difficulties that this entails) can be an unnecessary exercise, in that
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it does not necessarily improve the ensuing forwardmodels relative to
canonical mesh-based models.

These results concerning cortical meshes extend our prior claims
from a single-participant analysis (Mattout et al., 2007). The inverse-
normalisation of a template mesh can never be as accurate as an
individually-defined cortical mesh (when the latter is done carefully),
because normalisation typically only matches brains to a certain
spatial scale (typically∼1 cm). Thus the inability to distinguish the two
meshes empirically is likely to reflect the under-determinacy of the
inverse problem (i.e., that there is simply insufficient information in
the sensors to distinguish these two source spaces). Another
perspective is that if the forward model is poor, or inversion
assumptions are incorrect, then it does not matter which mesh is
used. Nonetheless, the sufficiency of canonical meshes is important to
establish, because construction of accurate cortical meshes directly
fromMRIs is time-consuming and often requires manual intervention.
Moreover, the use of canonicalmeshes provides a one-to-onemapping
between the source solutions in an individual's space and the template
space, and hence a one-to-one mapping across individuals, which
facilitates group analyses (Litvak and Friston, 2008). For example, it
allows the individual source solutions to be written directly as a 3-
dimensional image in the template space and then entered into a
group-level SPM analysis (as is standard for summary measures of
fMRI activity) (Henson et al. 2007). It also allows spatial constraints
that live in the template space, such as fMRI results fromgroup studies,
to be easily applied to new MEG/EEG data (Flandin et al., 2009).

Third, we found that BEMs increase the model-evidence compared
to single or overlapping spherical models, and led to more plausible
reconstructions, suggesting that BEMs can justify the extra computa-
tion entailed. Note however, that the increase in model-evidence for
BEMs was conditional on the use of individual skull and scalp meshes.
This makes sense, given that spatial normalisation of MRIs (in SPM5)
is based on matching grey- and white-matter segments to corre-
sponding segments in template space (not on matching the skull or
scalp). These normalisation parameters are therefore unlikely to be
optimal for inverse-normalisation of a template skull and scalp. Thus
both the BEM (aligned to the inner skull mesh) and the coregistration
of MEG and MRI data (via aligning the digitised head shape to the
scalp mesh) will be better for individual skull and scalp meshes.2

Indeed, it would be informative to separate the relative contribution of
these two effects (Lecaignard et al. 2008). Note also that the inner
skull and scalp meshes are much easier to create automatically from
MRIs by conventional shrink-wrap algorithms, because they are
relatively smooth, unlike the highly convoluted surface of the cortex.

Fourth, we found interesting effects of cortical mesh size (3000 vs.
7000 vertices) and whether or not the dipoles in those meshes were
constrained to be normal to the mesh surface. These results depended
on the source-priors. For standard MNM, allowing the dipole
component to be estimated for each orientation, rather than just the
normal orientation, improved themodel-evidence for both coarse and
fine cortical meshes, while there was no reliable effect of mesh size.
The effect on the source solutions was marked, moving the maximal
signal magnitude for face-related activity more posteriorly in the
brain. This may again reflect the bias towards superficial sources with
MNM, if the greater flexibility in dipole orientation allows superficial
sources to fit the data better.

For the MSP source-priors however, allowing free dipole-orienta-
tions or reducing the mesh-size both reduced the model-evidence,
and led to less plausible source solutions. In other words, the use of
2 One caveat when using a canonical cortical mesh with a BEM based on an
individually-defined inner skull mesh is to check that the cortical mesh lies completely
within the inner skull mesh (since this is not guaranteed when the cortical mesh is
created by inverse-normalisation), and to ensure that the distance between each
source and the closest part of the inner skull mesh is greater than the distance
between vertices of the inner skull mesh (Mosher et al, 1999).
multiple sparse priors works best when orientations are constrained
and the cortical mesh density is closer to 7000 than 3000. The lack of a
reliable increase in model evidence for free vs fixed orientations when
using MSP priors may seem surprising, since there are bound to be
errors in estimation of the surface normal, and small errors in dipole
orientation can have large effects on the forwardmodel (Phillips et al.,
2005; Salayev et al., 2006). One reason for this may be that another
location close to the true source has by chance an orientation close to
that of the true source (i.e., orientation errors trade-off against small
location errors). This would seemmore likely to be the case for denser
meshes, consistent with our results. But if this were not true, there
may be much larger mislocalisations. While large mislocalisations
were not obvious in the inversions of the present data (when
assuming fixed orientations and the larger mesh), given the sources
expected from previous studies, the only way to test this properly is
with simulations of known sources.

The above observations speak to finding models of the optimum
complexity. They suggest that MSP models cover optimal models;
whereas MNMmodels do not. MSP is more flexible than MNM since it
allows different variances for different locations in the brain. However
it enforces neighbouring sources to covary, which allows MSP to
emulate equivalent current dipole models, should they be the best
explanation of the data. Critically, adding more parameters to MNM
models improves them (either by adding more dipoles or more
moments per dipole). Conversely, for MSP, increasing the number of
dipoles improves the model, but reducing the degrees of freedom (by
enforcing normal dipole orientation) makes these models even better.
This makes sensewhen one considersMSP as a flexible model that can
optimize source orientation locally by weighting the contribution of
neighbouring dipoles with similar dynamics. Since dipoles in the same
region have different orientations (under the normal constraint), they
afford sufficient degrees of freedom to fit the regional source
orientation.

Note that our inferences are based on the model evidence, which
takes into account both the data fit and model complexity; if accuracy
of localizationwere the sole criterion, more complexmodels (e.g, with
free orientation, or higher mesh densities) might be justified in some
cases. For example, while model-evidence is a principled metric in the
present context, there are other important criteria, such as an inverse
model's predictive validity and the reproducibility of its results across
datasets. Of particular importance for future work will be to
investigate further the role of fixed vs free orientations of distributed
dipoles under sparse spatial priors using simulations. Note also that all
of the above findings are restricted to the data we examined, and may
not generalise to other datasets. For example, individually-defined
cortical meshes may prove superior to canonical meshes for accurate
localisation of very focal sources (e.g., for dipolar responses to the
early response evoked by median-nerve stimulation; Wood et al.,
1985). Nonetheless, the present data were chosen for their slightly
later and more dispersed perception-based contrast (i.e., the M170 for
faces vs. scrambled faces), and for group-level inferences in a
normalised space, for which such precise localisation is less
important. Future work may show whether the present findings
generalise to other datasets, but in the absence of such tests, we
expect that our findings will be a useful interim guide to MEG
researchers when specifying their generative models.

Conclusion

Several recent methodological developments have been proposed
for source reconstruction of MEG/EEG data, but the solutions
furnished by these inversions are only as good as the generative
model that is inverted. In relation to the present data and range of
options explored, the optimal generative model was one that assumed
Multiple Sparse Priors, a Boundary Element Model based on an
individually-defined inner skull mesh, an individually-defined scalp
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mesh to align the MEG data with the MRI, and approximately 7000
dipolar sources constrained within, and oriented normal to, a cortical
mesh. This was regardless of whether the cortical mesh was defined
individually or from inverse-normalising a template mesh (i.e., a
canonical mesh). Thus, we have demonstrated again the superiority of
multiple sparse priors over conventional minimum norm approaches
to source reconstruction and the sufficiency of canonical meshes
relative to individual cortical surface extraction.

Software note

All the inversion routines described in this paper are available
freely as part of the SPM academic software (http://www.fil.ion.ucl.
ac.uk/spm).
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Appendix

We assume a hierarchical linear model with Gaussian errors that
can be formulated in a “Parametric Empirical Bayes” (PEB) framework
(Phillips et al. 2005). This corresponds to a two-level model, with the
first level representing the sensors and the second level representing
the sources:

Y= LJ+ E 1ð Þ E1fN 0;V ;C 1ð Þ
� �

J=0+ E 2ð Þ E2fN 0;V ;C 2ð Þ
� �

where Y is an n (sensors)× t (time points) matrix of sensor data; L is a
n×p (sources) matrix representing the “forward model”, and J is the
p× t matrix of unknown dipole currents; i.e., the model parameters
that we wish to estimate. E1 and E2 represent zero-mean, multivariate
Gaussian distributions that assume a spatiotemporal factorisation into
temporal covariance, V, and spatial covariances C(1) and C(2) (Friston
et al., 2006).

The spatial covariance matrices are represented by a linear
combination of N covariance components, Qj:

C ið Þ =
XN
j = 1

λ ið Þ
j Q ið Þ

j

where λ ið Þ
j is the “hyperparameter” for the j-th component of the i-th

level. At the sensor level we assume white noise by setting Q(1)=
I(n)⇒C(1)=λ(1)I(n), where I(n) is a n×n identity matrix. C(2)

represents a spatial prior on the sources. It can be shown that the
standard minimum norm solution corresponds to setting:

Q 2ð Þ = I pð ÞZC 2ð Þ = λ 2ð ÞI pð Þ

Alternatively, in the “multiple sparse priors” (MSP) approach:

Q 2ð Þ
j = qjqTj ZC 2ð Þ =

XN
j = 1

λ 2ð Þ
j qjqTj

where qj is the j-th column regularly sampled from a p×p matrix, G,
that codes the proximity of sources within the cortical mesh. C(2)

therefore represents N cortical patches, where N is typically several
hundred (see Friston et al., 2008, for more details).

The data, Y, are projected onto a small number (typically 6–8)
temporal modes over the epoch using singular-value decomposition,
in order to equate the temporal correlations at sensor and source
levels within this subspace (see Friston et al., 2006, for more details).
A similar projection can be performed onto a spatial subspace based
on the lead-field matrix (Friston et al., 2008); however, this latter step
was not performed for the present purposes of comparing different
lead-field matrices.

We also add hyperpriors on the hyperparameters, for example
to ensure positive covariance components. The latter is achieved
by a log-normal hyper-prior, where αi=ln(λi)⇔λi=exp(αi) and p
(α)=N(η,Ω) (Henson et al., 2007).

The generative model is then given by M={L,Qj
(i)}. Because the

priors factorise, maximising themodel-evidence, p(Y∣M), is equivalent
to maximising:

lnp YjMð Þ= ln
Z

p Y; JjMð ÞdJ≈F

where F is the variational “free-energy”, and is equal to (bar a
constant):

F =
1
2
ð−tr C−1YYT� �

− ln jCj− α−ηð ÞTX−1 α−ηð Þ+ ln jXX−1jÞ

where C=LC(2)LT+C(1), and ∑ is the posterior covariance of the
hyperparameters (see Friston et al., 2007, for details). F can also be
considered as the difference between the model accuracy (the first
two terms) and the model complexity (the second two terms).

F can be maximised using standard variational schemes such as
Expectation Maximisation (EM) to furnish a tight bound approxima-
tion to the log-evidence (given the linear, Gaussian model, Friston
et al., 2007; see also Wipf and Nagarajan, 2009; Friston et al., 2008),
which also yield posterior estimates of the hyperparameters and, in
turn, the parameters:

λ̂= EM YYT ;eQn o eQ = Q 1ð Þ; LQ 2ð Þ
1 LT ; LQ 2ð Þ

2 LT ; N
n o

Ĵ= Ĉ
2ð Þ
LTĈ

−1
Y Ĉ = Ĉ

2ð Þ
+ λ 1ð ÞQ 1ð Þ Ĉ

2ð Þ
=

X
j
λ̂

2ð Þ
j LQ 2ð Þ

j LT :
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