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Abstract: Requiring only minimal assumptions for validity, nonparametric permutation testing provides a
flexible and intuitive methodology for the statistical analysis of data from functional neuroimaging experi-
ments, at some computational expense. Introduced into the functional neuroimaging literature by Holmes et
al. ([1996]: J Cereb Blood Flow Metab 16:7–22), the permutation approach readily accounts for the multiple
comparisons problem implicit in the standard voxel-by-voxel hypothesis testing framework. When the
appropriate assumptions hold, the nonparametric permutation approach gives results similar to those ob-
tained from a comparable Statistical Parametric Mapping approach using a general linear model with multiple
comparisons corrections derived from random field theory. For analyses with low degrees of freedom, such
as single subject PET/SPECT experiments or multi-subject PET/SPECT or fMRI designs assessed for popu-
lation effects, the nonparametric approach employing a locally pooled (smoothed) variance estimate can
outperform the comparable Statistical Parametric Mapping approach. Thus, these nonparametric techniques
can be used to verify the validity of less computationally expensive parametric approaches. Although the
theory and relative advantages of permutation approaches have been discussed by various authors, there has
been no accessible explication of the method, and no freely distributed software implementing it. Conse-
quently, there have been few practical applications of the technique. This article, and the accompanying
MATLAB software, attempts to address these issues. The standard nonparametric randomization and per-
mutation testing ideas are developed at an accessible level, using practical examples from functional neuro-
imaging, and the extensions for multiple comparisons described. Three worked examples from PET and fMRI
are presented, with discussion, and comparisons with standard parametric approaches made where appro-
priate. Practical considerations are given throughout, and relevant statistical concepts are expounded in
appendices. Hum. Brain Mapping 15:1–25, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

The statistical analyses of functional mapping ex-
periments usually proceeds at the voxel level, involv-
ing the formation and assessment of a statistic image: at
each voxel a statistic indicating evidence of the exper-
imental effect of interest, at that voxel, is computed,
giving an image of statistics, a statistic image or Statis-
tical Parametric Map (SPM). In the absence of a priori
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anatomical hypotheses, the entire statistic image must
be assessed for significant experimental effects, using
a method that accounts for the inherent multiplicity
involved in testing at all voxels simultaneously.

Traditionally, this has been accomplished in a clas-
sical parametric statistical framework. The most com-
monly used methods are, or are similar to, those orig-
inally expounded by Friston et al. (1995b) and Worsley
et al. (1992). In this framework, the data are assumed
to be normally distributed, with mean parameterized
by a general linear model (this flexible framework
encompasses t-tests, F-tests, paired t-tests, ANOVA,
correlation, linear regression, multiple regression, and
ANCOVA, among others). The estimated parameters
of this model are contrasted to produce a test statistic
at each voxel, which have a Student’s t-distribution
under the null hypothesis. The resulting t-statistic im-
age is then assessed for statistical significance, using
distributional results for continuous random fields to
identify voxels or regions where there is significant
evidence against the null hypothesis (Friston et al.,
1994, 1996; Worsley et al., 1995; Worsley, 1996; Poline
et al., 1997) [see Appendix B for a glossary of statistical
terms].

Holmes et al. (1996) introduced a nonparametric
alternative based on permutation test theory. This
method is conceptually simple, relies only on minimal
assumptions, deals with the multiple comparisons is-
sue, and can be applied when the assumptions of a
parametric approach are untenable. Further, in some
circumstances, the permutation method outperforms
parametric approaches. Arndt (1996), working inde-
pendently, also discussed the advantages of similar
approaches. Subsequently, Grabrowski et al. (1996)
demonstrated empirically the potential power of the
approach in comparison with other methods. Halber
et al. (1997) discussed further by Holmes et al. (1998)
also favour the permutation approach. Applications of
permutation testing methods to single subject fMRI
require modelling the temporal auto-correlation in the
time series. Bullmore et al. (1996) develop permutation
based procedures for periodic fMRI activation designs
using a simple ARMA model for temporal autocorre-
lations, though they eschew the problem of multiple
comparisons. Locascio et al. (1997) describe an appli-
cation to fMRI combining the general linear model
(Friston et al., 1995b), ARMA modelling (Bullmore et
al., 1996), and a multiple comparisons permutation
procedure (Holmes et al., 1996). Liu et al. (1998) con-
sider an alternative approach, permuting labels. Bull-
more et al. (1999) apply nonparametric methods to
compare groups of structural MR images. Applica-
tions of these techniques, however, have been rela-

tively scarce (Andreasen et al., 1996; Noll et al., 1996;
Locascio et al., 1997).

The aim of this study is to make the multiple com-
parisons nonparametric permutation approach of
Holmes et al. (1996) more accessible, complement the
earlier formal exposition with more practical consid-
erations, and illustrate the potential power and flexi-
bility of the approach through worked examples.

We begin with an introduction to nonparametric
permutation testing, reviewing experimental design
and hypothesis testing issues, and illustrating the the-
ory by considering testing a functional neuroimaging
dataset at a single voxel. The problem of searching the
brain volume for significant activations is then consid-
ered, and the extension of the permutation method to
the multiple comparisons problem of simultaneously test-
ing at all voxels is described. With appropriate meth-
odology in place, we conclude with three annotated
examples illustrating the approach. Software imple-
menting the approach is available as an extension of
the MATLAB based SPM package (see Appendix A for
details).

PERMUTATION TESTS

Permutation tests are one type of nonparametric
test. They were proposed in the early twentieth cen-
tury, but have only recently become popular with the
availability of inexpensive, powerful computers to
perform the computations involved.

The essential concept of a permutation test is rela-
tively intuitive. For example, consider a simple single
subject PET activation experiment, where a single sub-
ject is scanned repeatedly under “rest” and “activa-
tion” conditions. Considering the data at a particular
voxel, if there is really no difference between the two
conditions, then we would be fairly surprised if most
of the “activation” observations were larger than the
“rest” observations, and would be inclined to con-
clude that there was evidence of some activation at
that voxel. Permutation tests simply provide a formal
mechanism for quantifying this “surprise” in terms of
probability, thereby leading to significance tests and
p-values.

If there is no experimental effect, then the labelling
of observations by the corresponding experimental
condition is arbitrary, because the same data would
have arisen whatever the condition. These labels can be
any relevant attribute: condition “tags,” such as “rest”
or “active”; a covariate, such as task difficulty or re-
sponse time; or a label, indicating group membership.
Given the null hypothesis that the labellings are arbi-
trary, the significance of a statistic expressing the ex-
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perimental effect can then be assessed by comparison
with the distribution of values obtained when the
labels are permuted.

The justification for exchanging the labels comes
from either weak distributional assumptions, or by
appeal to the randomization scheme used in designing
the experiment. Tests justified by the initial random-
ization of conditions to experimental units (e.g., sub-
jects or scans), are sometimes referred to as randomiza-
tion tests, or re-randomization tests. Whatever the
theoretical justification, the mechanics of the tests are
the same. Many authors refer to both generically as
permutation tests, a policy we shall adopt unless a
distinction is necessary.

In this section, we describe the theoretical underpin-
ning for randomization and permutation tests. Begin-
ning with simple univariate tests at a single voxel, we
first present randomization tests, describing the key
concepts at length, before turning to permutation
tests. These two approaches lead to exactly the same
test, which we illustrate with a simple worked exam-
ple, before describing how the theory can be applied
to assess an entire statistic image. For simplicity of
exposition, the methodology is developed using the
example of a simple single subject PET activation ex-
periment. The approach, however, is not limited to
activation experiments, nor to PET.

Randomization Test

First, we consider randomization tests, using a sin-
gle subject activation experiment to illustrate the
thinking: Suppose we are to conduct a simple single
subject PET activation experiment, with the regional
cerebral blood flow (rCBF) in “active” (A) condition
scans to be compared to that in scans acquired under
an appropriate “baseline” (B) condition. The funda-
mental concepts are of experimental randomization, the
null hypothesis, exchangeability, and the randomization
distribution.

Randomization

To avoid unexpected confounding effects, suppose
we randomize the allocation of conditions to scans
before conducting the experiment. Using an appropri-
ate scheme, we label the scans as A or B according to
the conditions under which they will be acquired, and
hence specify the condition presentation order. This al-
location of condition labels to scans is randomly cho-
sen according to the randomization scheme, and any
other possible labeling of this scheme was equally

likely to have been chosen (see Appendix C for a
discussion of the fundamentals of randomization).

Null hypothesis

In the randomization test, the null hypothesis is
explicitly about the acquired data. For example, *0:
“Each scan would have been the same whatever the
condition, A or B.” The hypothesis is that the experi-
mental conditions did not affect the data differentially,
such that had we run the experiment with a different
condition presentation order, we would have ob-
served exactly the same data. In this sense we regard
the data as fixed, and the experimental design as
random (in contrast to regarding the design as fixed,
and the data as a realization of a random process).
Under this null hypothesis, the labeling of the scans as
A or B is arbitrary; because this labeling arose from the
initial random allocation of conditions to scans, and
any initial allocation would have given the same data.
Thus, we may re-randomize the labels on the data,
effectively permuting the labels, subject to the restric-
tion that each permutation could have arisen from the
initial randomization scheme. The observed data is
equally likely to have arisen from any of these per-
muted labelings.

Exchangeability

This leads to the notion of exchangeability. Consider
the situation before the data is collected, but after the
condition labels have been assigned to scans. For-
mally, a set of labels on the data (still to be collected)
are exchangeable if the distribution of the statistic (still
to be evaluated) is the same whatever the labeling
(Good, 1994). For our activation example, we would
use a statistic expressing the difference between the
“active” and “baseline” scans. Thus under the null
hypothesis of no difference between the A and B con-
ditions, the labels are exchangeable, provided the per-
muted labeling could have arisen from the initial ran-
domization scheme. The initial randomization scheme
gives us the probabilistic justification for permuting
the labels, the null hypothesis asserts that the data
would have been the same.

With a randomization test, the randomization
scheme prescribes the possible labeling, and the null
hypothesis asserts that the labels are exchangeable
within the constraints of this scheme. Thus we de-
fine an exchangeability block (EB) as a block of scans
within which the labels are exchangeable, a defini-
tion that mirrors that of randomization blocks (see
Appendix C).
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Randomization distribution

Consider some statistic expressing the experimental
effect of interest at a particular voxel. For the current
example of a PET single subject activation, this could
be the mean difference between the A and the B con-
dition scans, a two-sample t-statistic, a t-statistic from
an ANCOVA, or any appropriate statistic. We are not
restricted to the common statistics of classical para-
metric hypothesis whose null distributions are known
under specific assumptions, because the appropriate
distribution will be derived from the data.

The computation of the statistic depends on the
labeling of the data. For example, with a two-sample
t-statistic, the labels A and B specify the groupings.
Thus, permuting the labels leads to an alternative
value of the statistic.

Given exchangeability under the null hypothesis,
the observed data is equally likely to have arisen from
any possible labeling. Hence, the statistics associated
with each of the possible labeling are also equally
likely. Thus, we have the permutation (or randomiza-
tion) distribution of our statistic: the permutation dis-
tribution is the sampling distribution of the statistic un-
der the null hypothesis, given the data observed.
Under the null hypothesis, the observed statistic is
randomly chosen from the set of statistics correspond-
ing to all possible relabelings. This gives us a way to
formalize our “surprise” at an outcome: The probabil-
ity of an outcome as or more extreme than the one
observed, the P-value, is the proportion of statistic
values in the permutation distribution greater or equal
to that observed. The actual labeling used in the ex-
periment is one of the possible labelings, so if the
observed statistic is the largest of the permutation
distribution, the P-value is 1/N, where N is the num-
ber of possible labelings of the initial randomization
scheme. Because we are considering a test at a single
voxel, these would be uncorrected P-values in the lan-
guage of multiple comparisons (Appendix E).

Randomization test summary

To summarize, the null hypothesis asserts that the
scans would have been the same whatever the exper-
imental condition, A or B. Under this null hypothesis
the initial randomization scheme can be regarded as
arbitrarily labeling scans as A or B, under which the
experiment would have given the same data, and the
labels are exchangeable. The statistic corresponding to
any labeling from the initial randomization scheme is
as likely as any other, because the permuted labeling
could equally well have arisen in the initial random-

ization. The sampling distribution of the statistic (giv-
en the data) is the set of statistic values corresponding
to all the possible relabeling of the initial randomiza-
tion scheme, each value being equally likely.

Randomization test mechanics

Let N denote the number of relabel, and let, ti the
statistic corresponding to labeling i. The set of ti for all
possible relabeling constitutes the permutation distribu-
tion. Let T denote the value of the statistic for the
actual labeling of the experiment. As usual in statis-
tics, we use a capital letter for a random variable. T is
random, because under *0 it is chosen from the per-
mutation distribution according to the initial random-
ization.

Under *0, all of the ti are equally likely, so we
determine the significance of our observed statistic T
by counting the proportion of the permutation distri-
bution as or more extreme than T, giving us our P-
value. We reject the null hypothesis at significance
level a if the P-value is less than a. Equivalently, T
must be greater or equal to the 100(1 2 a)th percentile
of the permutation distribution. Thus, the critical value
is the c 1 1 largest member of the permutation distri-
bution, where c 5 aN, aN rounded down. If T ex-
ceeds this critical value then the test is significant at
level a.

Permutation Test

In many situations it is impractical to randomly
allocate experimental conditions, or perhaps we are
presented with data from an experiment that was not
randomized. For instance, we can not randomly assign
subjects to be patients or normal controls. Or, for
example, consider a single subject PET design where a
covariate is measured for each scan, and we seek brain
regions whose activity appears to be related to the
covariate value.

In the absence of an explicit randomization of con-
ditions to scans, we must make weak distributional
assumptions to justify permuting the labels on the
data. Typically, all that is required is that distributions
have the same shape, or are symmetric. The actual
permutations that are performed depend on the de-
gree of exchangeability, which in turn depend on the
actual assumptions made. With the randomization
test, the experimenter designs the initial randomiza-
tion scheme carefully to avoid confounds. The ran-
domization scheme reflects an implicitly assumed
degree of exchangeability (see Appendix C for ran-
domization considerations). With the permutation
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test, the degree of exchangeability must be assumed
post hoc. The reasoning that would have led to a
particular randomization scheme can be usually be
applied post-hoc to an experiment, leading to a per-
mutation test with the same degree of exchangeability.
Given exchangeability, computation proceeds as for
the randomization test.

Permutation test summary

Weak distributional assumptions are made, which
embody the degree of exchangeability. The exact form
of these assumptions depends on the experiment at
hand, as illustrated in the following section and in the
examples section.

For a simple single subject activation experiment,
we might typically assume the following. For a par-
ticular voxel, “active” and “baseline” scans within a
given block have a distribution with the same shape,
though possibly different means. The null hypothesis
asserts that the distributions for the “baseline” and
“active” scans have the same mean, and hence are the
same. Then the labeling of scans is arbitrary within the
chosen blocks, which are thus the exchangeability
blocks. Any permutation of the labels within the ex-
changeability blocks leads to an equally likely statistic.

The mechanics are then the same as with the ran-
domization test. For each of the possible relabeling,
compute the statistic of interest; for relabeling i, call
this statistic ti. Under the null hypothesis each of the ti

are equally likely, so the P-value is the proportion of
the ti greater than or equal to the statistic T corre-
sponding to the correctly labeled data.

Single Voxel Example

To make these concepts concrete, consider assessing
the evidence of an activation effect at a single voxel of
a single subject PET activation experiment consisting
of six scans, three in each of the “active” (A) and
“baseline” (B) conditions. Suppose that the conditions
were presented alternately, starting with rest, and that
the observed data at this voxel are {90.48, 103.00, 87.83,
99.93, 96.06, 99.76} to two decimal places (these data
are from a voxel in the primary visual cortex of the
second subject in the visual activation experiment pre-
sented in the examples section).

As mentioned before, any statistic can be used, so
for simplicity of illustration we use the “mean differ-
ence,” i.e., T 5 1

3 (j51
3 (Aj 2 Bj) where Bj and Aj indicate

the value of the jth scan at the particular voxel of
interest, under the baseline and active conditions re-
spectively. Thus, we observe statistic T 5 9.45.

Randomization test

Suppose that the condition presentation order was
randomized, the actual ordering of BABABA having
being randomly selected from all allocations of three
A’s and three B’s to the six available scans, a simple
balanced randomization within a single randomiza-
tion block of size six. Combinatorial theory, or some
counting, tells us that this randomization scheme has
twenty (6C3 5 20) possible outcomes (see Appendix D
for an introduction to combinatorics).

Then we can justify permuting the labels on the
basis of this initial randomization. Under the null
hypothesis *0: “The scans would have been the same
whatever the experimental condition, A or B”, the
labels are exchangeable, and the statistics correspond-
ing to the 20 possible labeling are equally likely. The
20 possible labeling are:

1. AAABBB
2. AABABB
3. AABBAB
4. AABBBA
5. ABAABB
6. ABABAB
7. ABABBA

8. ABBAAB
9. ABBABA

10. ABBBAA
11. BAAABB
12. BAABAB
13. BAABBA
14. BABAAB

15. BABABA
16. BABBAA
17. BBAAAB
18. BBAABA
19. BBABAA
20. BBBAAA

Permutation test

Suppose there was no initial randomization of con-
ditions to scans, and that the condition presentation
order ABABAB was simply chosen. With no random-
ization, we must make weak distributional assump-
tions to justify permuting the labels, effectively pre-
scribing the degree of exchangeability.

For this example, consider permuting the labels
freely amongst the six scans. This corresponds to full
exchangeability, a single exchangeability block of size
six. For this to be tenable, we must either assume the
absence of any temporal or similar confounds, or
model their effect such that they do not affect the
statistic under permutations of the labels. Consider the
former. This gives 20 possible permutations of the
labels, precisely those enumerated for the randomiza-
tion justification above. Formally, we’re assuming that
the voxel values for the “baseline” and “active” scans
come from distributions that are the same except for a
possible difference in location, or mean. Our null hy-
pothesis is that these distributions have the same
mean, and therefore are the same.

Clearly the mean difference statistic under consid-
eration in the current example is confounded with
time for labeling such as AAABBB (no. 1) and BB-
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BAAA (no. 20), where a time effect will result in a
large mean difference between the and the labeled
scans. The test remains valid, but possibly conserva-
tive. The actual condition presentation order of
BABABA is relatively unconfounded with time, but
the contribution of confounds to the statistics for al-
ternative labeling such as no. 1 and no. 20 will poten-
tially increase the number of statistics greater than the
observed statistic.

Computation

Let ti be the mean difference for labeling i, as enu-
merated above. Computing for each of the 20 relabel-
ing:

t1 5 14.82
t2 5 23.25
t3 5 20.67
t4 5 23.15
t5 5 16.86
t6 5 19.45
t7 5 16.97

t8 5 11.38
t9 5 21.10

t10 5 11.48
t11 5 21.48
t12 5 11.10
t13 5 21.38
t14 5 26.97

t15 5 29.45
t16 5 26.86
t17 5 13.15
t18 5 10.67
t19 5 13.25
t20 5 24.82.

This is our permutation distribution for this analysis,
summarized as a histogram in Figure 1. Each possible
labeling was equally likely. Under the null hypothesis
the statistics corresponding to these labeling are
equally likely. The P-value is the proportion of the
permutation distribution greater than or equal to T.
Here the actual labeling (no. 6 with t6 5 19.45) gives

the largest mean difference of all the possible labeling,
so the P-value is 1/20 5 0.05. For a test at given a
level, we reject the null hypothesis if the P-value is less
than a, so we conclude that there is significant evi-
dence against the null hypothesis of no activation at
this voxel at level a 5 0.05.

Multiple Comparisons Permutation Tests

Thus far we have considered using a permutation
test at a single voxel. For each voxel we can produce a
P-value, pk, for the null hypothesis *0

k, where the
superscript k indexes the voxels. If we have an a priori
anatomical hypothesis concerning the experimentally
induced effect at a single voxel, then we can simply
test at that voxel using an appropriate a level test. If
we don’t have such precise anatomical hypotheses,
evidence for an experimental effect must be assessed
at each and every voxel. We must take account of the
multiplicity of testing. Clearly 5% of voxels are ex-
pected to have P-values less than a 5 0.05. This is the
essence of the multiple comparisons problem. In the lan-
guage of multiple comparisons (Appendix E), these
P-values are uncorrected P-values. Type I errors must
be controlled overall, such that the probability of
falsely declaring any region as significant is less than
the nominal test level a. Formally, we require a test
procedure maintaining strong control over image-wise
Type I error, giving adjusted P-values, P-values cor-
rected for multiple comparisons.

The construction of suitable multiple comparisons
procedures for the problem of assessing statistic im-
ages from functional mapping experiments within
parametric frameworks has occupied many authors
(Friston et al., 1991; Worsley et al., 1992, 1995; Poline
and Mazoyer, 1993; Roland et al., 1993; Forman et al.,
1995; Friston et al., 1994, 1996; Worsley, 1994; Poline et
al., 1997; Cao, 1999). In contrast to these parametric
and simulation based methods, a nonparametric resa-
mpling based approach provides an intuitive and eas-
ily implemented solution (Westfall and Young, 1993).
The key realization is that the reasoning presented
above for permutation tests at a single voxel rely on
relabeling entire images, so the arguments can be ex-
tended to image level inference by considering an
appropriate maximal statistic. If, under the omnibus
null hypothesis, the labels are exchangeable with re-
spect to the voxel statistic under consideration, then
the labels are exchangeable with respect to any statis-
tic summarizing the voxel statistics, such as their max-
ima.

We consider two popular types of test, single thresh-
old and suprathreshold cluster size tests, but note again

Figure 1.
Histogram of permutation distribution for single voxel using a
mean difference statistic. Note the symmetry of the histogram
about the y-axis. This occurs because for each possible labeling,
the opposite labeling is also possible, and yields the same mean
difference but in the opposite direction. This trick can be used in
many cases to halve the computational burden.
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the flexibility of these methods to consider any statis-
tic.

Single threshold test

With a single threshold test, the statistic image is
thresholded at a given critical threshold, and voxels
with statistic values exceeding this threshold have
their null hypotheses rejected. Rejection of the omnibus
hypothesis (that all the voxel hypotheses are true) oc-
curs if any voxel value exceeds the threshold, a situa-
tion clearly determined by the value of the maximum
value of the statistic image over the volume of interest.
Thus, consideration of the maximum voxel statistic
deals with the multiple comparisons problem. For a
valid omnibus test, the critical threshold is such that
the probability that it is exceeded by the maximal
statistic is less than a. Thus, we require the distribu-
tion of the maxima of the null statistic image. Approx-
imate parametric derivations based on the theory of
strictly stationary continuous random fields are given
by Friston et al. (1991), Worsley (1994), and Worsley et
al. (1992,1995).

The permutation approach can yield the distribu-
tion of the maximal statistic in a straightforward man-
ner: Rather than compute the permutation distribution
of the statistic at a particular voxel, we compute the
permutation distribution of the maximal voxel statistic
over the volume of interest. We reject the omnibus
hypothesis at level a if the maximal statistic for the
actual labeling of the experiment is in the top 100a% of
the permutation distribution for the maximal statistic.
The critical value is c 1 1 largest member of the
permutation distribution, where c 5 aN, aN
rounded down. Furthermore, we can reject the null
hypothesis at any voxel with a statistic value exceed-
ing this threshold. The critical value for the maximal
statistic is the critical threshold for a single threshold
test over the same volume of interest. This test can be
shown to have strong control over experiment-wise
Type I error. A formal proof is given by Holmes et al.
(1996).

The mechanics of the test are as follows. For each
possible relabeling i 5 1,…,N, note the maximal sta-
tistic ti

max, the maximum of the voxel statistics for
labeling i. This gives the permutation distribution for
Tmax, the maximal statistic. The critical threshold is the
c 1 1 largest member of the permutation distribution
for Tmax, where c 5 aN, aN rounded down. Voxels
with statistics exceeding this threshold exhibit evi-
dence against the corresponding voxel hypotheses at
level a. The corresponding corrected P-value for each
voxel is the proportion of the permutation distribution

for the maximal statistic that is greater than or equal to
voxel statistic.

Suprathreshold cluster tests

Suprathreshold cluster tests threshold the statistic
image at a predetermined primary threshold, and as-
sess the resulting pattern of suprathreshold activity.
Suprathreshold cluster size tests assess the size of
connected suprathreshold regions for significance, de-
claring regions greater than a critical size as activated.
Thus, the distribution of the maximal suprathreshold
cluster size (for the given primary threshold) is re-
quired. Simulation approaches have been presented
by Poline and Mazoyer (1993) and Roland et al. (1993)
for PET, and Forman et al. (1995) for fMRI. Friston et
al. (1994) give a theoretical parametric derivation for
Gaussian statistic images based on the theory of con-
tinuous Gaussian random fields, Cao (1999) gives re-
sults for x2, t, and F fields.

Again, as noted by Holmes et al. (1996), a nonpara-
metric permutation approach is simple to derive. Sim-
ply construct the permutation distribution of the max-
imal suprathreshold cluster size. For the statistic
image corresponding to each possible relabeling, note
the size of the largest suprathreshold cluster above the
primary threshold. The critical suprathreshold cluster
size for this primary threshold is the aN 1 1 largest
member of this permutation distribution. Corrected
P-values for each suprathreshold cluster in the ob-
served statistic image are obtained by comparing their
size to the permutation distribution.

In general, such suprathreshold cluster tests are
more powerful for functional neuroimaging data then
the single threshold approach (see Friston et al., 1995b
for a fuller discussion). It must be remembered, how-
ever, that this additional power comes at the price of
reduced localizing power. The null hypotheses for
voxels within a significant cluster are not tested, so
individual voxels cannot be declared significant. Only
the omnibus null hypothesis for the cluster can be
rejected. Further, the choice of primary threshold dic-
tates the power of the test in detecting different types
of deviation from the omnibus null hypothesis. With a
low threshold, large suprathreshold clusters are to be
expected, so intense focal “signals” will be missed. At
higher thresholds these focal activations will be de-
tected, but lower intensity diffuse “signals” may go
undetected below the primary threshold.

Poline et al. (1997) addressed these issues within a
parametric framework by considering the suprath-
reshold cluster size and height jointly. A nonparamet-
ric variation could be to consider the exceedance mass,
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the excess mass of the suprathreshold cluster, defined
as the integral of the statistic image above the primary
threshold within the suprathreshold cluster (Holmes,
1994; Bullmore et al., 1999). Calculation of the permu-
tation distribution and P-values proceeds exactly as
before.

Considerations

Before turning to example applications of the non-
parametric permutation tests described above, we
note some relevant theoretical issues. The statistical
literature (referenced below) should be consulted for
additional theoretical discussion. For issues related to
the current application to functional neuroimaging,
see also Holmes (1994), Holmes et al. (1996), and
Arndt et al. (1996).

Nonparametric statistics

First, it should be noted that these methods are
neither new nor contentious. Originally expounded by
Fisher (1935), Pitman (1937a–c), and later Edgington
(1964, 1969a,b), these approaches are enjoying a re-
naissance as computing technology makes the requi-
site computations feasible for practical applications.
Had R.A. Fisher and his peers had access to similar
resources, it is possible that large areas of parametric
statistics would have gone undeveloped! Modern
texts on the subject include Good’s Permutation Tests
(Good, 1994), Edgington’s Randomization Tests (Edg-
ington, 1995), and Manly’s Randomization, Bootstrap
and Monte-Carlo Methods in Biology (Manly, 1997). Re-
cent interest in more general resampling methods,
such as the bootstrap, has further contributed to the
field. For a treatise on resampling based multiple com-
parisons procedures, see Westfall and Young (1993).

Many standard statistical tests are essentially per-
mutation tests. The “classic” nonparametric tests, such
as the Wilcoxon and Mann-Whitney tests, are permu-
tation tests with the data replaced by appropriate
ranks, such that the critical values are only a function
of sample size and can therefore be tabulated. Fisher’s
exact test (Fisher and Bennett, 1990), and tests of
Spearman and Kendall correlations (Kendall and Gib-
bons, 1990), are all permutation/randomization based.

Assumptions

For a valid permutation test the only assumptions
required are those to justify permuting the labels.
Clearly the experimental design, model, statistic and
permutations must also be appropriate for the ques-

tion of interest. For a randomization test the probabi-
listic justification follows directly from the initial ran-
domization of condition labels to scans. In the absence
of an initial randomization, permutation of the labels
can be justified via weak distributional assumptions.
Thus, only minimal assumptions are required for a
valid test.

In contrast to parametric approaches where the sta-
tistic must have a known null distributional form, the
permutation approach is free to consider any statistic
summarizing evidence for the effect of interest at each
voxel. The consideration of the maximal statistic over
the volume of interest then deals with the multiple
comparisons problem.

There are, however, additional considerations when
using the non-parametric approach with a maximal
statistic to account for multiple comparisons. For the
single threshold test to be equally sensitive at all vox-
els, the (null) sampling distribution of the chosen sta-
tistic should be similar across voxels. For instance, the
simple mean difference statistic used in the single
voxel example could be considered as a voxel statistic,
but areas where the mean difference is highly variable
will dominate the permutation distribution for the
maximal statistic. The test will still be valid, but will be
less sensitive at those voxels with lower variability. So,
although for an individual voxel a permutation test on
group mean differences is equivalent to one using a
two-sample t-statistic (Edgington, 1995), this not true
in the multiple comparisons setting using a maximal
statistic.

One approach to this problem is to consider multi-
step tests, which iteratively identify activated areas,
cut them out, and continue assessing the remaining
volume. These are described below, but are addition-
ally computationally intensive. Preferable is to use a
voxel statistic with approximately homogeneous null
permutation distribution across the volume of inter-
est, such as an appropriate t-statistic. A t-statistic is
essentially a mean difference normalized by a variance
estimate, effectively measuring the reliability of an
effect. Thus, we consider the same voxel statistics for a
non-parametric approach as we would for a compa-
rable parametric approach.

Pseudo t-statistics

Nonetheless, we can still do a little better than a
straight t-statistic, particularly at low degrees of free-
dom. In essence, a t-statistic is a change divided by the
square root of the estimated variance of that change.
When there are few degrees of freedom available for
variance estimation, this variance is estimated poorly.
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Errors in estimation of the variance from voxel to
voxel appear as high (spatial) frequency noise in im-
ages of the estimated variance or near-zero variance
estimates, which in either case cause noisy t-statistic
images. Given that PET and fMRI measure (indicators
of) blood flow, physiological considerations would
suggest that the variance be roughly constant over
small localities. This suggests pooling the variance
estimate at a voxel with those of its neighbors to give
a locally pooled variance estimate as a better estimate
of the actual variance. Because the model is of the
same form at all voxels, the voxel variance estimates
have the same degrees of freedom, and the locally
pooled variance estimate is simply the average of the
variance estimates in the neighborhood of the voxel in
question. More generally, weighted locally pooled
voxel variance estimates can be obtained by smooth-
ing the raw variance image. The filter kernel then
specifies the weights and neighborhood for the local
pooling. The Pseudo t-statistic images formed with
smoothed variance estimators are smooth. In essence
the noise (from the variance image) has been
smoothed, but not the signal. A derivation of the
parametric distribution of the pseudo t requires
knowledge of the variance-covariance of the voxel-
level variances, and has so far proved elusive. This
precludes parametric analyses using a pseudo t-statis-
tic, but poses no problems for a nonparametric ap-
proach.

Number of relabelings and test size

A constraint on the permutation test is the number
of possible relabelings. Because the observed labeling
is always one of the N possible relabelings, the small-
est P-value attainable is 1/N. Thus, for a level a 5 0.05
test to potentially reject the null hypothesis, there
must be at least 20 possible labeling.

More generally, the permutation distribution is dis-
crete, consisting of a finite set of possibilities corre-
sponding to the N possible relabelings. Hence, any
P-values produced will be multiples of 1/N. Further,
the 100(1 2 a)th percentile of the permutation distri-
bution, the critical threshold for a level a test, may lie
between two values. Equivalently, a may not be a
multiple of 1/N, such that a P-value of exactly a
cannot be attained. In these cases, an exact test with
size exactly a is not possible. It is for this reason that
the critical threshold is computed as the c 1 1 largest
member of the permutation distribution, where c 5
aN, aN rounded down. The test can be described as
almost exact, because the size is at most 1/N less than a.

Approximate tests

A large number of possible labelings is also prob-
lematic, due to the computations involved. In situa-
tions where it is not feasible to compute the statistic
images for all the labelings, a subsample of labelings
can be used (Dwass, 1957; Edgington, 1969a). The set
of N possible relabelings is reduced to a more man-
ageable N9 consisting of the true labeling and N9 2 1
randomly chosen from the set of N 2 1 possible rela-
belings. The test then proceeds as before.

Such a test is sometimes known as an approximate
permutation test, because the permutation distribu-
tion is approximated by a subsample, leading to ap-
proximate P-values and critical thresholds (these tests
are also known as Monte-Carlo permutation tests or
random permutation tests, reflecting the random selec-
tion of permutations to consider).

Despite the name, the resulting test remains exact.
As might be expected from the previous section, how-
ever, using an approximate permutation distribution
results in a test that is more conservative and less
powerful than one using the full permutation distri-
bution.

Fortunately, as few as 1,000 permutations can yield
an effective approximate permutation test (Edgington,
1969a). For an approximate test with minimal loss of
power in comparison to the full test (i.e., with high
efficiency), however, one should consider rather more
permutations (Jöel, 1986).

Power

Frequently, nonparametric approaches are less
powerful than equivalent parametric approaches
when the assumptions of the latter are true. The as-
sumptions provide the parametric approach with ad-
ditional information that the nonparametric approach
must “discover.” The more labelings, the better the
power of the nonparametric approach relative to the
parametric approach. In a sense the method has more
information from more labelings, and “discovers” the
null distribution assumed in the parametric approach.
If the assumptions required for a parametric analysis
are not credible, however, a nonparametric approach
provides the only valid method of analysis.

In the current context of assessing statistic images
from functional neuroimaging experiments, the prev-
alent Statistical Parametric Mapping techniques re-
quire a number of assumptions and involve some
approximations. Experience suggests that the permu-
tation methods described here do at least as well as the
parametric methods on real (PET) data (Arndt et al.,
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1996). For noisy statistic images, such as t-statistic
images with low degrees of freedom, the ability to
consider pseudo t-statistics constructed with locally
pooled (smoothed) variance estimates affords the per-
mutation approach additional power (Holmes, 1994;
Holmes et al., 1996).

Multi-step tests

The potential for confounds to affect the permuta-
tion distribution via the consideration of unsuitable
relabelings has already been considered. Recall the
above comments regarding the potential for the mul-
tiple comparison permutation tests to be differentially
sensitive across the volume of interest if the null per-
mutation distribution varies dramatically from voxel
to voxel. In addition, there is also the prospect that
departures from the null hypothesis influence the per-
mutation distribution. Thus far, our nonparametric
multiple comparisons permutation testing technique
has consisted of a single-step. The null sampling distri-
bution (given the data), is the permutation distribu-
tion of the maximal statistic computed over all voxels
in the volume of interest, potentially including voxels
where the null hypothesis is not true. A large depar-
ture from the null hypothesis will give a large statistic,
not only in the actual labeling of the experiment, but
also in other labelings, particularly those close to the
true labeling. This does not affect the overall validity
of the test, but may make it more conservative for
voxels other than that with the maximum observed
statistic.

One possibility is to consider step-down tests, where
significant regions are iteratively identified, cut out,
and the remaining volume reassessed. The resulting
procedure still maintains strong control over family-
wise Type I error, our criteria for a test with localizing
power, but will be more powerful (at voxels other that
with maximal statistic). The iterative nature of the
procedure, however, multiplies the computational
burden of an already intensive procedure. Holmes et
al. (1996) give a discussion and efficient algorithms,
developed further in Holmes (1994), but find that the
additional power gained was negligible for the cases
studied.

Recall also the motivations for using a normalized
voxel statistic, such as the t-statistic. An inappropri-
ately normalized voxel statistic will yield a test differ-
entially sensitive across the image. In these situations
the step-down procedures may be more beneficial.

Further investigation of step-down methods and
sequential tests more generally are certainly war-

ranted, but are unfortunately beyond the scope of this
primer.

WORKED EXAMPLES

The following sections illustrate the application of
the techniques described above to three common ex-
perimental designs: single subject PET “parametric,”
multi-subject PET activation, and multi-subject fMRI
activation. In each example we will illustrate the key
steps in performing a permutation analysis:

1. Null Hypothesis
Specify the null hypothesis.

2. Exchangeability
Specify exchangeability of observations under
the null hypothesis.

3. Statistic
Specify the statistic of interest, usually broken
down into specifying a voxel-level statistic and a
summary statistic.

4. Relabeling
Determine all possible relabeling given the ex-
changeability scheme under the null hypothesis.

5. Permutation Distribution
Calculate the value of the statistic for each rela-
beling, building the permutation distribution.

6. Significance
Use the permutation distribution to determine
significance of correct labeling and threshold for
statistic image.

The first three items follow from the experimental
design and must be specified by the user; the last three
are computed by the software, though we will still
address them here. When comparable parametric
analyses are available (within SPM) we will compare
the permutation results to the parametric results.

Single Subject PET: Parametric Design

The first study will illustrate how covariate analyses
are implemented and how the suprathreshold cluster
size statistic is used. This example also shows how
randomization in the experimental design dictates the
exchangeability of the observations.

Study description

The data come from a study of Silbersweig et al.
(1994). The aim of the study was to validate a novel PET
methodology for imaging transient, randomly occurring
events, specifically events that were shorter than the
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duration of a scan. This work was the foundation for
later work imaging hallucinations in schizophrenics (Sil-
bersweig et al., 1995). We consider one subject from the
study, who was scanned 12 times. During each scan the
subject was presented with brief auditory stimuli. The
proportion of each scan over which stimuli were deliv-
ered was chosen randomly, within three randomization
blocks of size four. A score was computed for each scan,
indicating the proportion of activity infused into the
brain during stimulation. This scan activity score is our
covariate of interest, which we shall refer to as DURA-
TION. This is a type of parametric design, though in this
context parametric refers not to a set of distributional
assumptions, but rather an experimental design where
an experimental parameter is varied continuously. This
is in contradistinction to a factorial design where the
experimental probe is varied over a small number of
discrete levels.

We also have to consider the global cerebral blood
flow (gCBF), which we account for here by including
it as a nuisance covariate in our model. This gives a
multiple regression, with the slope of the DURATION
effect being of interest. Note that regressing out gCBF
like this requires an assumption that there is no inter-
action between the score and global activity; examina-
tion of a scatter plot and a correlation coefficient of
0.09 confirmed this as a tenable assumption.

Null hypothesis

Because this is a randomized experiment, the test
will be a randomization test, and the null hypothesis
pertains directly to the data, and no weak distribu-
tional assumptions are required:

*0: “The data would be the same whatever the
DURATION.”

Exchangeability

Because this experiment was randomized, our
choice of EB matches the randomization blocks of the
experimental design, which was chosen with temporal
effects in mind. The values of DURATION were
grouped into 3 blocks of four, such that each block had
the same mean and similar variability, and then ran-
domized within block. Thus we have three EBs of size
four.

Statistic

We decompose our statistic of interest into two sta-
tistics: one voxel-level statistic that generates a statistic

image, and a maximal statistic that summarizes that
statistic image in a single number. An important con-
sideration will be the degrees of freedom. The degrees
of freedom is the number of observations minus the
number of parameters estimated. We have one param-
eter for the grand mean, one parameter for the slope
with DURATION, and one parameter for confounding
covariate gCBF. Hence 12 observations less three pa-
rameters leaves just 9 degrees of freedom to estimate
the error variance at each voxel.

Voxel-level statistic

For a voxel-level statistic we always use some type
of t-statistic. Although the nonparametric nature of
the permutation tests allows the use of any statistic at
a single voxel (e.g., the slope of rCBF with DURA-
TION) we use the t because it is a standardized mea-
sure. It reflects the reliability of a change.

Analyses with fewer than about 20 degrees of free-
dom tend to have poor variance estimates, variance
estimates that are themselves highly variable. In im-
ages of variances estimates this variability shows up
as “sharpness,” or high frequency noise. This study
has just 9 degrees of freedom and shows has the
characteristic noisy variance image (Fig. 2). The prob-
lem is that this high frequency noise propagates into
the t-statistic image, when one would expect an image
of evidence against *0 to be smooth (as is the case for
studies with greater degrees of freedom) because the
raw images are smooth.

We can address this situation by smoothing the
variance images (see section on Pseudo t-statistics,
above), replacing the variance estimate at each voxel
with a weighted average of its neighbors. Here we use
weights from an 8 mm FWHM spherical Gaussian
smoothing kernel. The statistic image consisting of the
ratio of the slope and the square root of the smoothed
variance estimate is smoother than that computed with
the raw variance. At the voxel level the resulting statistic
does not have a Student’s t-distribution under the null
hypothesis, so we refer to it as a pseudo t-statistic.

Figure 3 shows the effect of variance smoothing.
The smoothed variance image creates a smoother sta-
tistic image, the pseudo t-statistic image. The key here
is that the parametric t-statistic introduces high spatial
frequency noise via the poorly estimated standard
deviation. By smoothing the variance image we are
making the statistic image more like the “signal.”

Summary statistic

We have a statistic image, but we need a single
value that can summarize evidence against *0 for
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each labeling. For the reasons given in the methods
section, we use a maximum statistic, and in this ex-
ample consider the maximum suprathreshold cluster
size (max STCS).

Clusters are defined by connected suprathreshold
voxels. Under the *0, the statistic image should be
random with no features or structure, hence large
clusters are unusual and indicate the presence of an
activation. A primary threshold is used to define the
clusters. The selection of the primary threshold is cru-
cial. If set too high there will be no clusters of any size;
if set to low the clusters will be too large to be useful.

Relabeling enumeration

Each of the three previous sections correspond to a
choice that a user of the permutation test has to make.
Those choices and the data are sufficient for an algo-
rithm to complete the permutation test. This and the

next two sections describe the ensuing computational
steps.

To create the labeling used in the experiment, the
labels were divided into three blocks of four, and
randomly ordered within blocks. Taking the division
of the labels into the three blocks as given (it is not
random), then we need to count how many ways the
labels can be randomly permuted within blocks. There
are 4! 5 4 3 3 3 2 3 1 5 24 ways to permute four
labels, and because each block is independently ran-
domized, there are a total of 4!3 5 13,824 permutations
of the labels (see Appendix D formulae).

Computations for 13,824 permutations would take a
long time, so we consider an approximate test. The
significance is calculated by comparing our observed
statistic to the permutation distribution. With enough
relabeling, a good approximation to the permutation
distribution can be made; Here we use 1,000 relabel-
ings. So, instead of 13,824 relabeling, we randomly

Figure 2.
Mesh plots of parametric analysis, z 5 0 mm. Upper left: slope estimate. Lower left: standard
deviation of slope estimate. Right: t image for DURATION. Note how the standard deviation image
is much less smooth than slope image, and how t image is correspondingly less smooth than slope
image.
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select 999 relabeling to compute the statistic, giving
1,000 labeling including the actual labeling used in the
experiment. The P-values will be approximate, but the
test remains exact.

Permutation distribution

For each of the 1,000 relabeling, the statistic image is
computed and thresholded, and the maximal suprath-
reshold cluster size is recorded. For each relabeling
this involves fitting the model at each voxel, smooth-
ing the variance image, and creating the pseudo t-
statistic image. This is the most computationally in-
tensive part of the analysis, but is not onerous on
modern computing hardware. See discussion of exam-
ples for run times.

Selection of the primary threshold is not easy. For
the results to be valid we need to pick the threshold
before the analysis is performed. With a parametric
voxel-level statistic we could use its null distribution

to specify a threshold by uncorrected P-value (e.g., by
using t table). Here we cannot take this approach
because we are using a nonparametric voxel-level sta-
tistic whose null distribution is not known a priori.
Picking several thresholds is not valid, as this intro-
duces a new multiple comparisons problem. We sug-
gest gaining experience with similar datasets from
post hoc analyses: apply different thresholds to get a
feel for an appropriate range and then apply such a
threshold to the data on hand. Using data from other
subjects in this study we found 3.0 to be a reasonable
primary threshold.

Significance threshold

We use the distribution of max STCS to assess the
overall significance of the experiment and the signifi-
cance of individual clusters: The significance is the
proportion of labelings that had max STCS greater
than or equal to maximum of the correct labeling. Put

Figure 3.
Mesh plots of permutation analysis, z5 0 mm. Upper left: Slope estimate. Lower left: square root
of smoothed variance of slope estimate. Right: pseudo t image fot5r DURATION. Note that
smoothness of pseudo t image is similar to that of the slope image (c.f. figure 2).
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another way, if max STCS of the correct labeling is at
or above the 95th percentile of the max STCS permu-
tation distribution, the experiment is significant at a 5
0.05. Also, any cluster in the observed image with size
greater than the 95th percentile is the significant at a 5
0.05. Because we have 1,000 labeling, 1,000 3 0.95 5
950, so the 950th largest max STCS will be our signif-
icance threshold.

Results

The permutation distribution of max STCS under
*0 is shown in Figure 4a. Most labelings have max
STCS less than 250 voxels. The vertical dotted line
indicates the 95th percentile. The top 5% are spread
from about 500 to 3,000 voxels.

For the correctly labeled data the max STCS is 3,101
voxels. This is unusually large in comparison to the
permutation distribution. Only five labelings yield
max equal to or larger than 3,101, so the P-value for
the experiment is 5/1,000 5 0.005. The 95th percentile
is 462, so any suprathreshold clusters with size greater
than 462 voxels can be declared significant at level
0.05, accounting for the multiple comparisons implicit
in searching over the brain.

Figure 4b, is a maximum intensity projection (MIP) of
the significant suprathreshold clusters. Only these two
clusters are significant, that is, there are no other su-
prathreshold clusters larger than 462 voxels. These

two clusters cover the bilateral auditory (primary and
associative) and language cortices. They are 3,101 and
1,716 voxels in size, with P-values of 0.005 and 0.015,
respectively. Because the test concerns suprathreshold
clusters it has no localizing power: Significantly large
suprathreshold clusters contain voxels with a signifi-
cant experimental effect, but the test does not identify
them.

Discussion

The nonparametric analysis presented here uses
maximum STCS for a pseudo t-statistic image. Be-
cause the distribution of the pseudo t-statistic is not
known, the corresponding primary threshold for a
parametric analysis using a standard t-statistic cannot
be computed. This precludes a straightforward com-
parison of this nonparametric analysis with a corre-
sponding parametric analysis such as that of Friston et
al. (1994).

Although the necessity to choose the primary
threshold for suprathreshold cluster identification is a
problem, the same is true for parametric approaches.
The only additional difficulty occurs with pseudo t-
statistic images, when specification of primary thresh-
olds in terms of upper tail probabilities from a Stu-
dents’ t-distribution is impossible. Further, parametric
suprathreshold cluster size methods (Friston et al.,
1994; Poline et al., 1997) utilize asymptotic distribu-

Figure 4.
A: Distribution of maximum suprathreshold cluster size, threshold of 3. Dotted line shows 95th

percentile. The count axis is truncated at 100 to show low-count tail; first two bars have counts 579
and 221. B: Maximum intensity projection image of significantly large clusters.
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tional results, and therefore require high primary
thresholds. The nonparametric technique is free of this
constraint, giving exact P-values for any primary
threshold (although very low thresholds are undesir-
able due to the large suprathreshold clusters expected
and consequent poor localization of an effect).

Although only suprathreshold cluster size has been
considered, any statistic summarizing a suprathresh-
old cluster could be considered. In particular an ex-
ceedance mass statistic could be employed.

Multi-Subject PET: Activation

For the second example consider a multi-subject,
two condition activation experiment. We will use a
standard t-statistic with a single threshold test, en-
abling a direct comparison with the standard paramet-
ric random field approach.

Study description

Watson et al. (1993) localized the region of visual
cortex sensitive to motion, area MT/V5, using high
resolution 3D PET imaging of 12 subjects. These the
data were analyzed by Holmes et al. (1996), using
proportional scaling global flow normalization and a
repeated measures pseudo t-statistic. We consider the
same data here, but use a standard repeated measures
t-statistic, allowing direct comparison of parametric
and nonparametric approaches.

The visual stimulus consisted of randomly placed
rectangles. During the baseline condition the pattern
was stationary, whereas during the active condition
the rectangles smoothly moved in independent direc-
tions. Before the experiment, the 12 subjects were ran-
domly allocated to one of two scan condition presen-
tation orders in a balanced randomization. Thus six
subjects had scan conditions ABABABABABAB, the
remaining six having ABABABABABAB, which we’ll
refer to as AB and BA orders, respectively.

Null hypothesis

In this example the labels of the scans as A and B are
allocated by the initial randomization, so we have a
randomization test, and the null hypothesis concerns
the data directly:

*0: For each subject, the experiment would
have yielded the same data were the conditions
reversed.

Note that it is not that the data itself is exchangeable,
as the data is fixed. Rather, the labels are the observed
random process and, under the null hypothesis, the
distribution of any statistic is unaltered by permuta-
tions of the labels.

Exchangeability

Given the null hypothesis, exchangeability follows
directly from the initial randomization scheme. The
experiment was randomized at the subject level, with
six AB and six BA labels randomly assigned to the 12
subjects. Correspondingly, the labels are exchangeable
subject to the constraint that they could have arisen
from the initial randomization scheme. Thus we con-
sider all permutations of the labels that result in six
subjects having scans labeled AB, and the remaining
six AB. The initial randomization could have resulted
in any six subjects having the AB condition presenta-
tion order (the remainder being BA), and under the
null hypothesis the data would have been the same,
hence exchangeability.

Statistic

Note that the permutations arrived at above per-
mute across subjects, such that subject-to-subject dif-
ferences in activation (expressed through the as yet
unspecified statistic) will be represented in the permu-
tation distribution. Because subject-to-subject differ-
ences in activation will be present in the permutation
distribution, we must consider a voxel statistic that
accounts for such inter-subject variability, as well as
the usual intra-subject (residual) error variance. Thus
we must use a random effects model incorporating a
random subject by condition interaction term (many
published analyses of multi-subject and group com-
parison experiments have not accounted for variabil-
ity in activation from subject-to-subject, and used
fixed effects analyses).

Voxel-level statistic

Fortunately, a random effects analysis can be easily
effected by collapsing the data within subject and com-
puting the statistic across subjects (Worsley et al., 1991;
Holmes and Friston, 1999). In this case the result is a
repeated measures t-statistic after proportional scaling
global flow normalization: Each scan is proportionally
scaled to a common global mean of 50; each subjects data
is collapsed into two average images, one for each con-
dition; a paired t-statistic is computed across the sub-
jects’ “rest”–“active” pairs of average images. By com-
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puting this paired t-statistic on the collapsed data, both
the inter-subject and intra-subject (error) components of
variance are accounted for appropriately. Because there
are 12 subjects there are 12 pairs of average condition
images, and the t-statistic has 11 degrees of freedom.
With just 11 degrees of freedom we anticipate the same
problems with noisy variance images as in the previous
examples, but to make direct comparisons with a para-
metric approach, we will not consider variance smooth-
ing and pseudo t-statistics for this example.

Summary statistic

To consider a single threshold test over the entire
brain, the appropriate summary statistic is the maxi-
mum t-statistic.

Relabeling enumeration

This example is different from the previous one in
that we permute across subjects instead of across rep-
lications of conditions. Here our EB is not in units of
scans, but subjects. The EB size here is 12 subjects,
because the six AB and six BA labels can be permuted

freely amongst the 12 subjects. There are S 12

6 D
5

12!

6!~12 2 6!!
5 924 ways of choosing six of the 12

subjects to have the AB labeling. This is a sufficiently

small number of permutations to consider a complete
enumeration.

Note that although it might be tempting to consider
permuting labels within subjects, particularly in the permu-
tation setting when there is no initial randomization dictat-
ing the exchangeability, the bulk of the permutation distri-
bution is specified by these between-subject permutations.
Any within-subject permutations just flesh out this frame-
work, yielding little practical improvement in the test at
considerable computational cost.

Permutation distribution

For each of the 924 labelings we calculate the maxi-
mum repeated measures t-statistic, resulting in the per-
mutation distribution shown in Figure 5a. Note that for
each possible labeling and t-statistic image, the opposite
labeling is also possible, and gives the negative of the
t-statistic image. Thus, it is only necessary to compute
t-statistic images for half of the labelings, and retain their
maxima and minima. The permutation distribution is
then that of the maxima for half the relabeling concate-
nated with the negative of the corresponding minima.

Significance threshold

As before, the 95th percentile of the maximum t
distribution provides both a threshold for omnibus

Figure 5.
A: Permutation distribution of maximum repeated measures t-statistic. Dotted line indicates the 5%
level corrected threshold. B: Maximum intensity projection of t-statistic image, thresholded at
critical threshold for 5% level permutation test analysis of 8.401.
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experimental significance and a voxel-level signifi-
cance threshold appropriate for the multiple compar-
isons problem. With 924 permutations, the 95th per-
centile is at 924 3 0.05 5 46.2, so the critical threshold
is the 47th largest member of the permutation distri-
bution. Any voxel with intensity greater than this
threshold can be declared significant at the 0.05 level.

Results

Figure 5a shows the permutation distribution of the
maximum repeated measures t-statistic. Most maxima
lie between about 4 and 9, though the distribution is
skewed in the positive direction.

The outlier at 29.30 corresponds to the observed t-
statistic, computed with correctly labeled data. Because
no other labelings are higher, the P-value is 1/924 5
0.0011. The 47th largest member of the permutation dis-
tribution is 8.40, the critical threshold (marked with a
dotted vertical line on the permutation distribution). The
t-statistic image thresholded at this critical value is
shown in Figure 5b. There is a primary region of 1,424
significant voxels covering the V1/V2 region, flanked by
two secondary regions of 23 and 25 voxels correspond-
ing to area V5, plus six other regions of 1 or 2 voxels.

For a t-statistic image of 43,724 voxels of size 2 3
2 3 4 mm, with an estimated smoothness of 7.8 3
8.7 3 8.7 mm , the parametric theory gives a 5% level
critical threshold of 11.07, substantially higher than

the corresponding 4.61 of the nonparametric result.
The thresholded image is shown in Figure 6b. The
image is very similar to the nonparametric image (Fig.
5b), with the primary region having 617 voxels, with
two secondary regions of 7 and 2 voxels. Another
parametric result is the well-known, but conservative
Bonferroni correction; here it specifies a a-0.05 thresh-
old of 8.92 that yields a primary region of 1,212 voxels
and 5 secondary regions with a total of 48 voxels. In
Figure 6a we compare these three approaches by plot-
ting the significance level vs. the threshold. The critical
threshold based on the expected Euler characteristic
(Worsley et al., 1995) for a t-statistic image is shown as a
dot-dash line and the critical values for the permuta-
tion test is shown as a solid line. For a given test level
(a horizontal line), the test with the smaller threshold
has the greater power. At all thresholds in this plot the
nonparametric threshold is below the random field
threshold, though it closely tracks the Bonferroni
threshold below the 0.05 level. Thus the random field
theory appears to be quite conservative here.

Discussion

This example again demonstrates the role of the
permutation test as a reference for evaluating other
procedures, here the parametric analysis of Friston et
al. (1995b). The t field results are conservative for low
degrees of freedom and low smoothness (Holmes,

Figure 6.
A: Test significance (a) levels plotted against critical thresholds, for nonparametric and parametric
analyses. B: Maximum intensity projection of t image, thresholded at parametric 5% level critical
threshold of 11.07.
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1994; Stoeckl et al., 2001); the striking difference be-
tween the nonparametric and random field thresholds
makes this clear.

Figure 6a provides a very informative comparison
between the two methods. For all typical test sizes
(a # 0.05), the nonparametric method specifies a lower
threshold than the parametric method. For these data,
this is exposing the conservativeness of the t field
results. For lower thresholds the difference between
the methods is even greater, though this is anticipated
because the parametric results are based high thresh-
old approximations.

Multi-Subject fMRI: Activation

For this third and final example, consider a multi-subject
fMRI activation experiment. We will perform a permuta-
tion test so that we can make inference on a population, in
contrast to a randomisation test. We will use a smoothed
variance t-statistic with a single threshold test and will
make qualitative and quantitative comparisons with the
corresponding parametric results.

Before discussing the details of this example, we
note that fMRI data presents a special challenge for
nonparametric methods. Because fMRI data exhibits
temporal autocorrelation (Smith et al., 1999), an as-
sumption of exchangeability of scans within subject is
not tenable. To analyze a group of subjects for popu-
lation inference, however, we need only assume ex-
changeability of subjects. Therefore, although intrasu-
bject fMRI analyses are not straightforward with the
permutation test, multisubject analyses are.

Study description

Marshuetz et al. (2000) studied order effects in
working memory using fMRI. The data were analyzed
using a random effects procedure (Holmes and Fris-
ton, 1999), as in the last example. For fMRI, this pro-
cedure amounts to a generalization of the repeated
measures t-statistic.

There were 12 subjects, each participating in eight
fMRI acquisitions. There were two possible presenta-
tion orders for each block, and there was randomiza-
tion across blocks and subjects. The TR was two sec-
onds, with a total of 528 scans collected per condition.
Of the study’s three conditions we only consider two,
item recognition and control. For item recognition, the
subject was presented with five letters and, after a two
second interval, presented with a probe letter. They
were to respond “yes” if the probe letter was among
the five letters and “no” if it was not. In the control
condition they were presented with five X’s and, two

seconds later, presented with either a “y” or a “n”;
they were to press “yes” for y and “no” for n.

Each subject’s data was analyzed, creating a differ-
ence image between the item recognition and control
effects. These images were analyzed with a one-sam-
ple t-test, yielding a random effects analysis that ac-
counts for intersubject differences.

Null hypothesis

This study used randomization within and across
subject and hence permits the use of a randomization
test. Although randomization tests require no distri-
butional assumptions, they only make a statement
about the data at hand. To generalize to a population
we need to use a permutation test.

The permutation test considers the data to be a ran-
dom realization from some distribution, which is the
same approach used in a parametric test (except that a
particular parametric distribution, usually a normal, is
specified). This is in distinction to the randomization test
used in the last two examples, where the data is fixed
and we use the randomness of the experimental design
to perform the test. Although the machinery of the per-
mutation and randomization tests are the same, the as-
sumptions and scope of inference differ.

Each subject has an image expressing the item rec-
ognition effect, the difference of the item and control
condition estimates. We make the weak distributional
assumption that the values of the subject difference
images at any given voxel (across subjects) are drawn
from a symmetric distribution (the distribution may
be different at different voxels, provided it is symmet-
ric). The null hypothesis is that these distributions are
centered on zero:

*0: The symmetric distributions of the (voxel
values of the) subjects’ difference images have
zero mean.

Exchangeability

The conventional assumption of independent sub-
jects implies exchangeability, and hence a single EB
consisting of all subjects.

We consider subject labels of “11” and “21,” indi-
cating an unflipped or flipped sign of the data. Under
the null hypothesis, we have data symmetric about
zero, and hence for a particular subject the sign of the
observed data can be flipped without altering its dis-
tribution. With exchangeable subjects, we can flip the
signs of any or all subjects’ data and the joint distri-
bution of all of the data will remain unchanged.
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Statistic

In this example we use a single threshold test.

Voxel-level statistic

As noted above, this analysis amounts to a one-sample
t-test on the first level images, testing for a zero-mean
effect across subjects. Because we will have only 11 de-
grees of freedom we will use a pseudo t-test. We used a
variance smoothing of 4 mm FWHM, comparable to the
original within subject smoothing. In our experience, the
use of any variance smoothing is more important than
the particular magnitude (FWHM) of the smoothing.

Summary statistic

Again we are interested in searching over the whole
brain for significant changes, hence we use the maxi-
mum pseudo t.

Relabeling enumeration

Based on our exchangeability under the null hy-
pothesis, we can flip the sign on some or all of our
subjects’ data. There are 212 5 4,096 possible ways of
assigning either “11” or “21” to each subject.

Permutation distribution

For each of the 4,096 relabelings, we computed a
pseudo t-statistic image and noted the maximum over
the image, yielding the distribution in Figure 7a. As in
the last example, we have a symmetry in these labels;
we need only compute 2,048 statistic images and save
both the maxima and minima.

Significance threshold

With 4,096 permutations the 95th percentile is
4,096 3 0.05 5 452.3, and hence the 453rd largest

Figure 7.
A: Permutation distribution of
maximum repeated measures t
statistic. Dotted line indicates
the 5% level corrected threshold.
B: Maximum intensity projection
of pseudo t statistic image
threshold at 5% level, as deter-
mined by permutation distribu-
tion. C: Maximum intensity pro-
jection of t statistic image
threshold at 5% level as deter-
mined by permutation distribu-
tion. D: Maximum intensity pro-
jection of t statistic image
threshold at 5% level as deter-
mined by random field theory.
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maxima defines the 0.05 level corrected significance
threshold.

Results

The permutation distribution of the maxim pseudo-
t-statistics under *0 is shown in Figure 7a. It is cen-
tered around 4.5 and is slightly skewed positive; all
maxima are found between about 3 and 8.

The correctly labeled data yielded the largest max-
imum, 8.471. Hence the overall significance of the
experiment is 1/4,096 5 0.0002. The dotted line indi-
cates the 0.05 corrected threshold, 5.763. Figure 7b
shows the thresholded MIP of significant voxels.
There are 312 voxels in 8 distinct regions; in particular
there is a pair of bilateral posterior parietal regions, a
left thalamus region and an anterior cingulate region;
these are typical of working memory studies
(Marshuetz et al., 2000).

It is informative to compare this result to the tradi-
tional t-statistic, using both a nonparametric and para-
metric approach to obtain corrected thresholds. We
reran this nonparametric analysis using no variance
smoothing. The resulting thresholded data is shown in
Figure 7c; there are only 58 voxels in 3 regions that
exceeded the corrected threshold of 7.667. Using stan-
dard parametric random field methods produced the
result in Figure 7d. For 110,776 voxels of size 2 3 2 3
2 mm, with an estimated smoothness of 5.1 3 5.8 3 6.9
mm, the parametric theory finds a threshold of 9.870;
there are only 5 voxels in 3 regions above this thresh-
old. Note that only the pseudo-t-statistic detects the
bilateral parietal regions. Table I summaries the three
analyses along with the Bonferroni result.

Discussion

In this example we have demonstrated the utility of
the nonparametric method for intersubject fMRI anal-

yses. Based solely on independence of the subjects and
symmetric distribution of difference images under the
null hypothesis, we can create a permutation test that
yields inferences on a population.

Intersubject fMRI studies typically have few sub-
jects, many fewer than 20 subjects. By using the
smoothed variance t-statistic we have gained sensitiv-
ity relative to the standard t-statistic. Even with the
standard t-statistic, the nonparametric test proved
more powerful, detecting 5 times as many voxels as
active. Although the smoothed variance t can increase
sensitivity, it does not overcome any limitations of the
face validity of an analysis based on only 12 subjects.

We note that this relative ranking of sensitivity
(nonparametric pseudo-t, nonparametric t, parametric
t) is consistent with the other second level datasets we
have analyzed. We believe this is due to a conserva-
tiveness of the random field method under low de-
grees of freedom, not just to low smoothness.

Discussion of Examples

These examples have demonstrated the nonpara-
metric permutation test for PET and fMRI with a va-
riety of experimental designs and analyses. We have
addressed each of the steps in sufficient detail to fol-
low the algorithmic steps that the software performs.
We have shown how that the ability to utilize
smoothed variances via a pseudo t-statistic can offer
an approach with increased power over a correspond-
ing standard t-statistic image. Using standard t-statis-
tics, we have seen how the permutation test can be
used as a reference against which parametric random
field results can be validated.

Note, however, that the comparison between para-
metric and nonparametric results must be made very
carefully. Comparable models and statistics must be
used, and multiple comparisons procedures with the
same degree of control over image-wise Type I error

TABLE I. Comparison of four inference methods for the item recognition fMRI data*

Statistic
Inference
method

Minimum
corrected
P value

Number of
significant

voxels

Corrected threshold

t Pseudo-t

t Random field 0.0062646 5 9.870
t Bonferroni 0.0025082 5 9.802
t Permutation 0.0002441 58 7.667
Pseudo-t Permutation 0.0002441 312 5.763

* The minimum corrected P-value and number of significant voxels give an overall measure of sensitivity; corrected thresholds can only be
compared within statistic type. For this data, the Bonferroni and random field results are very similar, and the nonparametric methods are
more powerful. The nonparametric t method detects 10 times as many voxels as the parametric method, and the nonparametric pseudo-t
detects 60 times as many.
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used. Further, because the permutation distributions
are derived from the data, critical thresholds are spe-
cific to the data set under consideration. Although the
examples presented above are compelling, it should
be remembered that these are only a few specific ex-
amples and further experience with many data sets is
required before generalizations can be made. The
points noted for these specific examples, however, are
indicative of our experience with these methods thus
far.

Finally, although we have noted that the nonpara-
metric method has greater computational demands
than parametric methods, they are reasonable on
modern hardware. The PET examples took 35 min and
20 min, respectively, on a 176 MHz Sparc Ultra 1. The
fMRI example took 2 hr on a 440 MHz Sparc Ultra 10.
The fMRI data took longer due to more permutations
(2,048 vs. 500) and larger images.

CONCLUSIONS

In this paper, the theory and practicalities of multi-
ple comparisons non-parametric randomization and
permutation tests for functional neuroimaging exper-
iments have been presented, and illustrated with
worked examples.

As has been demonstrated, the permutation ap-
proach offers various advantages. The methodology is
intuitive and accessible. By consideration of suitable
maximal summary statistics, the multiple compari-
sons problem can easily be accounted for; only mini-
mal assumptions are required for valid inference, and
the resulting tests are almost exact, with size at most
1/N less than the nominal test level a, where N is the
number of relabelings.

The nonparametric permutation approaches de-
scribed give results similar to those obtained from a
comparable Statistical Parametric Mapping approach
using a general linear model with multiple compari-
sons corrections derived from random field theory. In
this respect these nonparametric techniques can be
used to verify the validity of less computationally
expensive parametric approaches (but not prove them
invalid). When the assumptions required for a para-
metric approach are not met, the non-parametric ap-
proach described provides a viable alternative analy-
sis method.

In addition, the approach is flexible. Choice of voxel
and summary statistic are not limited to those whose
null distributions can be derived from parametric as-
sumptions. This is particularly advantageous at low
degrees of freedom, when noisy variance images lead
to noisy statistic images and multiple comparisons

procedures based on the theory of continuous random
fields are conservative. By assuming a smooth vari-
ance structure, and using a pseudo t-statistic com-
puted with smoothed variance image as voxel statistic,
the permutation approach gains considerable power.

Therefore we propose that the nonparametric per-
mutation approach is preferable for experimental de-
signs implying low degrees of freedom, including
small sample size problems, such as single subject
PET/SPECT, but also PET/SPECT and fMRI multi-
subject and between group analyses involving small
numbers of subjects, where analysis must be con-
ducted at the subject level to account for inter-subject
variability. It is our hope that this paper, and the
accompanying software, will encourage appropriate
application of these non-parametric techniques.
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APPENDIX A: STATISTICAL
NONPARAMETRIC MAPPING

Statistical Parametric Mapping refers to the conceptual
and theoretical framework that combines the general
linear model and Gaussian random field (GRF) theory to
construct, and make inferences about statistic maps re-
spectively. The approach depends on various image pro-
cessing techniques for coregistering, smoothing and spa-
tially normalizing neuroimages. As the name suggests,
the statistical technology employed is parametric. The
data are modeled using the general linear model, and the
resulting statistic images are assessed using approximate
results from the theory of continuous random fields. The
methodologies are presented in the peer reviewed liter-
ature (Friston et al., 1995a,b; Worsley and Friston, 1995).
A complete and more accessible exposition, together
with examples, is presented in Human Brain Function
(Frackowiak et al., 1997).

The Statistical Parametric Mapping approach is im-
plemented in a software package known as SPM,
which runs within the commercial MATLAB (http://
www.mathworks.com/) numerical computing envi-
ronment. The SPM software is freely available to the
functional neuroimaging community, and may be re-
trieved from the SPM web site at http://www.fil.
ion.ucl.ac.uk/spm.

The nonparametric permutation methods described
in this study build on the Statistical Parametric Map-
ping framework and may be referred to as Statistical
nonParametric Mapping. The computer programs used
in this article are available as a “toolbox” built on top
of SPM, hence SnPM. SnPM is available from the SPM
website, at http://www.fil.ion.ucl.ac.uk/spm/snpm,
where additional resources complementing this article
can be found. These include an example data set and
a step-by-step description of the analysis of these data
using the SnPM toolbox.

APPENDIX B: STATISTICAL
HYPOTHESIS TESTING

Statistical hypothesis testing formulates the experimen-
tal question in terms of a null hypothesis, written *0,
hypothesizing that there is no experimental effect. The
test rejects this null hypothesis in favor of an alterna-
tive hypothesis, written *A, if it is unlikely that the
observed data could have arisen under the null hy-
pothesis, where the data are summarized by a statistic,
and appropriate assumptions are made. Thus, the
probability of falsely rejecting a true null hypothesis, a
Type I error, is controlled. The test level, usually de-
noted by a, is the accepted “risk” of the test, the

probability of committing a Type I error. Formally, we
compute the P-value as the probability that the statis-
tic would exceed (or equal) that observed under the
null hypothesis, given the assumptions. If the P-value
is smaller than the chosen test level a, then the null
hypothesis is rejected. Rigorously we say “there is
evidence against the null hypothesis at level a,” or “at
the 100a% level.” Hence, the P-value is the smallest
test level a at which the null hypothesis would be
rejected. The value of the statistic with P-value equal
to a is the critical value because more extreme values
lead to rejection of the null hypothesis. Commonly a is
chosen to be 0.05, corresponding to an expected false
positive rate of one in every 20 applications of the test
(5%).

Frequently the computation of the P-value involves
approximations, either direct mathematical approxi-
mations, or indirectly via reliance on results or as-
sumptions that are only approximately true. The size
of a test is the actual probability of a Type I error. A
test is valid if the size is at most the specified test level
a, that is the true probability of a Type I error is less
than a. If approximate P-values are under-estimated
(overestimating the significance), the size exceeds a,
and the test is invalid. If the approximate P-values are
over-estimated (underestimating the significance),
then the test is said to be conservative, because the size
of the test is less than the allowed a. A test with size
equal to the specified level of a is said to be exact.

A Type II error is a false-negative, the error of not
rejecting a false null-hypothesis. The probability of a
Type II error, obviously dependent on the degree of
departure from the null hypothesis, is often denoted
by b. The power of a test, for a given departure from
*0, is given by (1 2 b). Frequently power is discussed
generically. A conservative test is usually, but not
necessarily, a less powerful test than an exact test. In
functional neuroimaging the emphasis has been on
avoiding false positives at all costs, concentrating on
Type I errors, frequently at the expense of power. This
has led to testing procedures with a high probability
of Type II error, for even a fairly robust departure
from the null hypothesis. In this study, we shall con-
sider the traditional testing framework, focusing on
Type I error.

Lastly, hypothesis tests may be two-sided, in which
the alternative hypothesis *A specifies any departure
from the null; or one-sided, in which the alternative
hypothesis is directional. For instance a two-sided two
sample t-test would assume normality and equal vari-
ance of the two groups, and assess the null hypothesis
*0: “equal group means” against the alternative *A:
“group means differ.” A one-sided test would have
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alternative *A: “Group 1 mean is greater than Group
2 mean,” or vice-versa.

APPENDIX C: EXPERIMENTAL DESIGN
AND RANDOMIZATION

Randomization is a crucial aspect of experimental de-
sign. The basic idea is to randomly allocate subjects to
treatments, or in our case conditions to scans, so that
any unforeseen confounding factors are randomly dis-
tributed across all treatments/conditions, and are
thereby accounted for as error. In the absence of ran-
dom allocation, unforeseen factors may bias the re-
sults.

For instance, consider the example of a simple PET
activation experiment, where a single subject is to be
scanned under two conditions, A and B, with six
replications of each condition. We must choose a con-
dition presentation order for the 12 scans. Clearly
BBBBBBAAAAAA is unsatisfactory, because compar-
ing the A’s with the B’s will reveal changes over time
as well as those due to condition. The condition effect
is confounded with time. Even the relatively innocuous
and widely employed ABABABABABAB paradigm,
however, may be confounded with time. Indeed, prin-
cipal component analysis of datasets often indicates
that time is a serious confound, whose effect may not
be easy to model, and temporal effects are only one
example of possible confounds. Thus, some form of
randomization is almost always required.

The simplest scheme would be to decide the condi-
tion for each scan on the toss of a fair coin. This
unrestricted randomization, however, may not result in
six scans for each condition, and is therefore unsatis-
factory. We need a restricted randomization scheme
that allocates equal A’s and B’s across the 12 scans. A
simple balanced randomization would allocate the six
A’s and six B’s freely amongst the 12 scans. This is
obviously unsatisfactory, because BBBBBBAAAAAA
& ABABABABABAB are possible outcomes, unac-
ceptable due to temporal confounding. A block ran-
domization is required.

In a block randomization scheme, the scans are split
up into blocks, usually contiguous in time, and usu-
ally of the same size. Conditions are then randomly
allocated to scans within these randomization blocks,
using a simple restricted randomization scheme. For
instance, consider our simple PET activation experi-
ment example. The 12 scans can be split up into
equally sized randomization blocks in various ways:
two blocks of six scans; three blocks of four scans; or
six blocks of two scans. The size of the randomization
blocks in each case is a multiple of the number of

conditions (two), and a divisor of the number of scans
(12). Within randomization blocks, we assign equal
numbers of A’s and B’s at random. So, a randomiza-
tion block of size 2 could be allocated in two ways as
AB or BA; blocks of size four in six ways as AABB,
ABAB, ABBA, BAAB, BABA, or BBAA; and for ran-
domization blocks of size six there are 20 possible
allocations. The implicit assumption is that the ran-
domization blocks are sufficiently short that con-
founding effects within blocks can be ignored. That is,
the different allocations within each block are all as-
sumed to be free from confound biases, such that the
distribution of a statistic comparing the A’s and B’s
will be unaffected by the within-block allocation. This
parallels the properties of the exchangeability blocks.

APPENDIX D: COMBINATORICS

Combinatorics is the study of permutations and com-
binations, usually expressed generically in terms of
“drawing colored balls from urns.” Fortunately we
only need a few results:

• There are n! ways of ordering n distinguishable
objects. Read “n-factorial,” n! is the product of the
first n natural numbers: n! 5 1 3 2 3 … 3 (n 2
1) 3 n Example: In the current context of func-
tional neuroimaging, a parametric design pro-
vides an example. Suppose we have 12 scans on a
single individual, each with a unique covariate.
There are 12! ways of permuting the 12 covariate
values amongst the 12 scans.

• There are nCr ways of drawing r objects (without
replacement) from a pool of n distinguishable ob-
jects, where the order of selection is unimportant.
Read “n-choose-r,” these are the Binomial coeffi-

cients. Also written (n
r), nCr is a fraction of facto-

rials: nCr 5
n!

r!(n2t)!
Example: Consider a balanced

randomization of conditions A and B to scans
within a randomization block of size four. Once
we choose two of the four scans to be condition A,
the remainder must be B, so there are

4
C2 5 6

ways of ordering two A’s and two B’s.
• There are nr ways of drawing r objects from a pool

of n distinguishable objects, when the order is
important and each drawn object is replaced be-
fore the next selection. Example: Suppose we have
a simple single subject activation experiment with
two conditions, A and B, to be randomly allocated
to 12 scans using a balanced randomization
within blocks of size four. From above, we have
that there are 4C2 5 6 possibilities within each
randomization block. Because there are three such
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blocks, the total number of possible labeling for
this randomization scheme is 63 5 216.

APPENDIX E: MULTIPLE COMPARISONS

For each voxel k in the volume of interest W, k [ W, we
have a voxel level null hypothesis *0

k, and a test at
each voxel. In the language of multiple comparisons
(Hochberg and Tamhane, 1987), we have a family of
tests, one for each voxel, a “collection of tests for
which it is meaningful to take into account some com-
bined measure of errors.” The probability of falsely
rejecting any voxel hypothesis is formally known as
the family-wise or experiment-wise Type I error rate. For
the current simultaneous testing problem of assessing
statistic images, experiment-wise error is better de-
scribed as image-wise error.

If the voxel hypotheses are true for all voxels in the
volume of interest W, then we say the omnibus hypoth-
esis *0

W is true. The omnibus hypothesis is the inter-
section of the voxel hypotheses, a hypothesis of “no
experimental effect anywhere” within the volume of
interest. Rejecting any voxel hypothesis implies reject-
ing the omnibus hypothesis. Rejecting the omnibus
hypothesis implies rejecting some (possibly unspeci-
fied) voxel hypotheses. Image-wise error is then the
error of falsely rejecting the omnibus hypothesis.

Clearly a valid test must control the probability of
image-wise error. Formally, a test procedure has weak
control over experiment-wise Type I error if the prob-
ability of falsely rejecting the omnibus hypothesis is
less than the nominal level a:

Pr~“reject”*Wu*W! # a

Such a test is known as an omnibus test. A significant
test result indicates evidence against the omnibus null
hypothesis, but because the Type I error for individual
voxels is not controlled the test has no localizing
power to identify specific voxels. We can only declare
“some experimental effect, somewhere.”

For a test with localizing power we must consider a
further possibility for Type I error, namely that of
attributing a real departure from the omnibus null
hypothesis to the wrong voxels. If we are to reject
individual voxel hypotheses, then in addition to con-
trolling for image-wise Type I error, we must also
control the probability of Type I error at the voxel
level. This control must be maintained for any given
voxel even if the null hypothesis is not true for voxels
elsewhere. A test procedure has strong control over
experiment-wise Type I error if the tests are valid for
any set of voxels where the null hypothesis is true,
regardless of the veracity of the null hypothesis else-
where. Formally, for any subset U of voxels in the
volume of interest, U # W, where the corresponding
omnibus hypothesis *0

U is true, strong control over
experiment-wise Type I error is maintained if and only
if

Pr~“reject”*Uu*U! # a

In other words, the validity of a test in one region is
unaffected by the veracity of the null hypothesis else-
where. Such a test has localizing power: A departure
from the null hypothesis in one region will not cause
the test to pick out voxels in another region where the
null hypothesis is true. Clearly strong control implies
weak control.

A multiple comparisons procedure with strong con-
trol over experiment-wise Type I error can yield cor-
rected or adjusted P-values. Considering a test at a
single voxel, the P-value is the smallest test level a at
which the null hypothesis is rejected. In the context of
the multiple comparisons problem of assessing the
statistic image, these are uncorrected P-values, because
they do not take into account the multiplicity of test-
ing. By analogy, a corrected P-value for the null hy-
pothesis at a voxel is the smallest test level a at which
an appropriate multiple comparisons procedure with
strong control over experiment-wise Type I error re-
jects the null hypothesis at that voxel. Thus, corrected
P-values, denoted ˜, account for the multiplicity of
testing.
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