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Abstract—We describe a method for computing a continuous
time estimate of tracer density using list-mode positron emission
tomography data. The rate function in each voxel is modeled as an
inhomogeneous Poisson process whose rate function can be rep-
resented using a cubic B-spline basis. The rate functions are es-
timated by maximizing the likelihood of the arrival times of de-
tected photon pairs over the control vertices of the spline, modi-
fied by quadratic spatial and temporal smoothness penalties and
a penalty term to enforce nonnegativity. Randoms rate functions
are estimated by assuming independence between the spatial and
temporal randoms distributions. Similarly, scatter rate functions
are estimated by assuming spatiotemporal independence and that
the temporal distribution of the scatter is proportional to the tem-
poral distribution of the trues. A quantitative evaluation was per-
formed using simulated data and the method is also demonstrated
in a human study using11C-raclopride.

Index Terms—Calibration, conjugate gradient methods, estima-
tion, Poisson processes, smoothing methods, spline functions.

I. INTRODUCTION

DYNAMIC positron emission tomography (PET) imaging
usually involves a sequence of contiguous acquisitions

each of which can range in duration from 10 s to over 20 min.
Data from each of the frames is independently reconstructed
to form a set of images which can be visualized and used to
estimate physiological parameters [1]. This approach involves
selection of the set of acquisition times, where one must choose
between collecting longer scans with good counting statistics
but poor temporal resolution, or shorter scans that are noisy but
preserve temporal resolution.

List-mode data acquisitions provide extremely high temporal
resolution with full spatial resolution. List-mode data can be
binned into sinograms, allowing frame durations to be deter-
mined after acquisition. Alternatively, the problem of temporal
binning can be avoided entirely by directly using the arrival
times in the list-mode data to estimate a dynamic image. Such
an approach is the focus of this paper.

Manuscript received February 19, 2001; revised March 2, 2002. This work
was supported by the National Cancer Institute under Grant R01 CA59794. The
Associate Editor responsible for coordinating the review of this paper and rec-
ommending its publication was D. Townsend.Asterisk indicates corresponding
author.

T. E. Nichols is with the Department of Biostatistics, University of Michigan,
Ann Arbor, MI 48109 USA.

J. Qi is with the Center for Functional Imaging, Lawrence Berkeley National
Laboratory, University of California, Berkeley, CA 94720 USA.

E. Asma and R. M. Leahy are with the Signal and Image Processing Institute,
University of Southern California, Los Angeles CA 90089-2564 USA.

*R. M. Leahy, 3740 McClintock Ave, EEB400, University of Southern Cali-
fornia, Los Angeles CA 90089-2564 USA (e-mail: leahy@sipi.usc.edu).

Publisher Item Identifier S 0278-0062(02)04687-6.

Snyder [2] developed a list-mode expectation-maximization
(EM) maximum-likelihood (ML) method for estimation of
dynamic PET images using inhomogeneous Poisson processes.
Each voxel has an associated time-varying tracer density that is
modeled using basis functions that are based on assumptions
about the physiological processes generating the data, e.g.,
blood activity curves convolved with a basis of exponentials.
The observed list-mode PET data are modeled as inhomo-
geneous Poisson processes whose rate functions are linear
combinations of the dynamic voxel tracer densities. Here, we
follow a similar approach but instead work with rate functions
formed as a linear combination of known basis functions
estimated with a conjugate gradient penalized ML approach.
Not only does the linearity of the model lend itself to efficient
computation of the estimates, but also we can better represent
the dynamic activity seen in experimental data that is not
well modeled by more restrictive physiological models. We
demonstrate this greater flexibility in Section VI-B, where we
discover nonmonotonic behavior inC-raclopride data that is
not accounted for in a physiological model.

A second advantage of using list-mode data arises in cases
where the number of detected photon pairs in a particular study
is far less than the total number of detector pairs. This is often
the case in modern three-dimensional (3-D) PET systems which
can have in excess of 10sinogram elements in a single frame.
To reduce this number to manageable proportions, the data are
often rebinned by aggregating nearby elements. Alternatively,
the raw list-mode data can be stored and the need for rebin-
ning is avoided. Barrettet al. [3], [4] describe a list-mode ML
method for estimation of a temporally stationary image. While
this method will often reduce storage costs and avoid the need
for rebinning, the random spatial ordering of the detected events
in the list-mode data does not lend itself to fast forward and
backprojection and exploitation of the many symmetries in 3-D
projection matrices [5], [6]. To avoid this problem we use a hy-
brid of the sinogram and list-mode formats that allows the re-
construction algorithm to exploit the same matrix symmetries
used in our static imaging work [6]. All events in a dynamic
study are collected into a single standard sinogram augmented
by a “timogram” that contains the arrival times of each event
stored so that they are indexed using the values in the associ-
ated sinogram.

In this paper we present a method for reconstructing a con-
tinuous time estimate of a dynamic PET image using list-mode
data and the theory of inhomogeneous Poisson processes. A
general B-spline model represents the dynamic activity in each
voxel so that the dynamic image is parameterized by a sequence
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of control vertex “images” where the control vertices are the co-
efficients for the spline basis. Tomographic projections of these
control vertices produce the control vertices for the rate func-
tions of the inhomogeneous Poisson processes representing co-
incidence detections between each detector pair. An ML esti-
mate of the control vertices for each voxel can then be com-
puted using the standard likelihood function for inhomogeneous
Poisson processes [2], [7]. The final result is a temporally con-
tinuous representation of the PET image that utilizes the tem-
poral resolution of list-mode data. Preliminary investigations of
this approach are described in our earlier conference articles [8],
[9].

Our parameterization of the inhomogeneous Poisson rate
function is applicable to any linear combination of basis
functions. This form encompasses the parametric imaging work
of Matthews [10], Zibulevsky [11], and Snyder [2] and the
mixture models of O’Sullivan [12]. We also note that Ollinger
[13] used list-mode data to reconstruct rate functions as his-
tograms with adaptive bin sizes; our work could be viewed as
a continuous-time extension of this. For this paper we consider
only cubic B-splines. The key advantage to B-splines are that
they have systematic compact support. In particular, for any
point on a cubic spline only four basis functions are nonzero.
Also, simple closed forms exist for all derivatives and integrals
of a polynomial spline.

Since inhomogeneous Poisson rate functions are unnormal-
ized densities, we note that the density estimation literature
using splines is closely related to our work (e.g., [14] and [15]).
The standard methods involve exponentiated splines or squared
splines. While these implicitly constrain the rate function to
be positive, they cannot be represented with a linear basis.
As there are substantial computational savings to having a
common linear basis for all voxels and projections, we did not
pursue these approaches.

The paper is organized as follows. We describe the model
and ML method in Sections II and III, respectively. Methods
for selecting the spline knot points and methods for randoms
and scatter correction are included in Section IV. Computational
considerations including re-sorting data into a timogram format
and the details of the algorithm used for computing the ML es-
timate are given in Section V. In Section VI, we demonstrate the
performance of the method with quantitative simulations studies
andin vivo human data.

II. DYNAMIC MODELING USING INHOMOGENEOUSPOISSON

PROCESSES

We model the positron emissions from each voxel in the
volume as an inhomogeneous Poisson process. The rate
function for the voxel represents, to within a scalar calibration
factor, the time varying PET tracer density. We parameterize
the rate functions using a cubic B-spline basis

where is the rate function for voxel, is the th basis
weight (control vertex) for voxel, and is the th spline

basis function. The problem of reconstructing the dynamic PET
image is then reduced to estimating the control vertices for each
voxel.

We denote by the probability of detecting at detector pair
a photon pair produced by emission of a positron from voxel
. The probabilities are identical to those used in static PET

imaging. Here we use the factored matrix forms developed in
[6]. Assuming that the detection probabilities are independent
and time invariant, it follows that coincidence detection at de-
tector pair is also an inhomogeneous Poisson process with rate
function

(1)
where the right-most term demonstrates that the rate functions
for the data are also B-splines.

The Poisson process observed at the detectors is corrupted
by random and scatter components that can also be modeled as
inhomogeneous Poisson processes. Combining the three com-
ponents, we have the model

where and are the randoms and scatter rate func-
tions for detector pair and is the rate function for the
process actually observed at detector pair. In estimating the
rate function parameters , we will assume that the rate func-
tions for the random and scatter components have been deter-
mined through a calibration procedure and can be treated as
known processes.

For a Poisson process with rate function , with
events observed from time to and event arrival times

, the likelihood function [7] is

(2)

For , the product is defined as unity.
For the set of independent events recorded in the list-mode

data the log likelihood is given by

s.t. (3)

where denotes the list-mode data and the set of pa-
rameters for the rate functions. We represent the data as

, where
are the sinogram count data and ,
the event arrival times at detector pair. For the B-spline
basis, are the set
of basis coefficients. While is a function of and, hence,
redundant, we use the sinogram counts to index the arrival
times, as described in Section V-A.
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III. PENALIZED ML ESTIMATION

We estimate the image control vertex values that define our
dynamic image using penalized ML. The objective function of
the statistical model is modified with three regularizing terms

(4)

The terms and regularize temporal and spatial
roughness, respectively; penalizes negativity of the
image rate functions; , , and are the tuning parameters. We
now describe each of these terms.

We employ a temporal smoothing term to control the rough-
ness of the spline rate functions [16]. The form of the roughness
penalty is the integrated squared curvature. For voxelthis is

Fortunately, for cubic splines this quantity has a simple expres-
sion, a quadratic form of the control vertices [16, pg. 238]. We
denote the symmetric, banded matrix of this quadratic form.
Thus, the temporal roughness penalty is given by

We regularize the estimates of the control vertices using a
spatial smoothing function equivalent to the pair-wise quadratic
penalty used previously in penalized ML [17] and Bayesian es-
timation [6] of static PET images

where denotes a set of neighbors of voxeland is the re-
ciprocal of the Euclidean distance between voxeland . Other
possible choices of the penalty function include the discrete ap-
proximation of the thin plate spline bending energy [18] or a
nonquadratic edge preserving function such as that described in
[19]. In this two-dimensional (2-D) work, we use a second-order
neighboorhood, where each voxel has eight neighbors.

We note that because the spatial smoothness penalty is not
linear, our regularization of the spline coefficient images is not
equivalent to penalizing the rate function images. This is prin-
cipally motivated by computational concerns, but is justified by
the use of a B-spline basis. The B-spline basis is well condi-
tioned [16], meaning that small changes in the control vertices
produce small changes in the spline function. Hence, if we want
two rate functions to be similar, then it is sufficient to constrain
their control vertices to be similar.

The optimization method must account for the nonnegativity
of the image rate functions . We use unconstrained opti-
mization with a penalty function [20]. The problem is compli-
cated somewhat in that the control vertices themselves are not
necessarily nonnegative; instead we need to ensure that the cor-
responding spline does not become negative. The local extrema
of a cubic spline have a closed form, so we initially tried penal-
izing negative local minima. This approach complicated the gra-
dient and Hessian and made their evaluation prohibitively slow.
Instead we simply penalize negative values computed at a fi-
nite number of time points. The vectorcontains the locations
at which we enforce positivity. It is constructed by uniformly
spacing points in each interknot interval. Any elements of

for which the spline is negative are penalized with the square of
the spline value, resulting in the penalty

This approach does not necessarily ensure that the spline is
nonnegative everywhere. However, we have found that when
used in combination with the temporal roughness penalty, the
resulting estimates do not become negative, except possibly in
the intervals just preceding a large increase in activity.

It is straightforward to show that each of the four terms in
the penalized likelihood is concave and, hence, the conjugate
gradient method should converge to a global maximum of the
cost function.

IV. CALIBRATION PROCEDURES

A. Selection of Knot Spacing

A cubic B-spline basis is defined by knot locations,
, where is the number of basis elements

and the first and last four knots are identical, to allow discon-
tinuity at the end points. Uniformly spaced knots will not be
efficient for most PET tracers since early changes in concen-
tration are much greater than those later in the study. While we
do not attempt to adaptively place the knots, in a modest at-
tempt to optimize knot placement, we use the head curve to de-
fine knots that produce approximately equal arc lengths, as sug-
gested in [16]. The head curve is a temporal histogram using all
of the list-mode data and it serves as an estimate of the average
rate function. Once the knot locations are determined, the actual
basis functions are computed using recurrence relations as de-
scribed in [16] and [21].

B. Randoms and Scatter Rate Functions

To apply the penalized likelihood estimation procedure de-
scribed above, we first apply calibration procedures to account
for the presence of scattered and random events in the list-mode
data. Randoms and scatter correction are essential in extracting
accurate quantitative dynamic information from our results. We
note that the simple randoms subtraction method that is used in
static imaging is not applicable here.

The spatio-temporal randoms distribution is a function of the
dynamic tracer distribution. We assume no interaction between
the temporal and spatial distribution and scale a fixed spatial
estimate over time. While this is a rather crude approximation,
it is reasonably accurate due to the very smooth nature of the
randoms contribution to the sinogram.

The list-mode data produced by ECAT HRand ECAT
HR PET scanners (CTI Systems, Knoxville, TN) contain
both prompt (on-time) and delayed events. Let denote
the total number of delayed events detected at theth line
of response during the entire acquisition period and be
an estimate of the dynamic variation in randoms. We com-
pute from a spline fit to the delayed-event head-curve,

; the control vertices, , are obtained
as least squares estimates of the head-curve of the delayed
events using the same B-spline basis as we use to represent the
dynamics of the emission source distribution. We constrain the
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least square estimate to be positive and normalize the result to
integrate to unity. The estimated randoms rate function is, thus

We compute the scatter contribution in a similar manner to the
randoms, that is we model the scatter rate for each detector pair
using an inhomogeneous Poisson process assuming spatiotem-
poral independence.

The total, time-integrated sinogram is used to estimate the
spatial scatter distribution using the simulation method in [22].
Let denote the estimated scatter contribution at theth line
of response. Next, we calculate a least-squares spline estimate
of the overall trues head-curve (prompts minus delays) using
the same B-spline basis as we use to represent the dynamics
of the emission source distribution. We normalize the result to
integrate to unity. Denote this estimate as
where are the control vertices of the trues head-curve spline
fit. The estimated scatter rate function is then

V. COMPUTATIONAL CONSIDERATIONS AND IMAGE

ESTIMATION

A. The “Timogram”

The raw list-mode data is in a form that is inconvenient for
computing the gradient of the penalized likelihood function.
The list-mode events arrive in random spatial order and, hence,
require random rather than sequential access to the projection
domain rate functions. We have, therefore, developed a means
to store list-mode data in sinogram form while preserving the
temporal information. This is achieved using a single standard
sinogram, which contains all detected events, augmented by a
second file listing the arrival times of all events sorted in pro-
jection order. We call this second file the “timogram.” The sino-
gram is required to indicate how many arrival times to read for
each bin. The resulting pair of files can be substantially smaller
than either the original list-mode data file or the set of sinograms
that would be stored in a conventional dynamic study. We note
that Ollinger [13] also resorted list-mode data prior to recon-
struction, though his format did not completely eliminate the
random spatial order.

ECAT HR list-mode data consists of a sequence of 4-byte
event words, each either a coincident event or a timing event.
The coincident events record the sinogram bin, optional
gating information and are identified as “prompt” or “delay.”
The timing events are inserted in the list-mode stream every
millisecond and they also record time with a 27-bit integer. By
re-encoding the arrival time of each coincidence event using
16 bits, we can retain a temporal resolution of 256 ms and a
maximum acquisition time of 4.6 hours. Using this format we
need only 2 bytes/event in the timogram. Thus, we can discard
all of the timing events in the list-mode data and save a factor
of two in the space required to store the remaining coincidence
arrival times. The space savings from discarding the timing
events are significant. For example, in a 90-min scan, the timing
events take more space than a 3-D sinogram set and, hence,

the raw list-mode data will always take more space than the
sinogram-timogram, even if no coincidences are detected!

The sinogram-timogram format will also be more space effi-
cient than a multiframe sinogram when the space required to
store the event arrival times in the timogram is less than the
second through th sinograms. For example, an 11-frame ac-
quisition is ten frames larger ( 200 MB larger) than a sino-
gram-timogram with no events; only after 200 MB-worth of
events, or 100 million counts are stored will the sinogram-tim-
ogram be less space efficient.

The sinogram-timogram format could be made even more
compact by storing interarrival times and then performing en-
tropy-based compression [23]. The motivation for this is that
lines of response with high activity will tend to have short inter-
arrival times, hence, will have many high bits consistently zero,
a property that compression can exploit.

B. Preconditioned Conjugate Gradient (PCG)-Based
Reconstruction

A PCG method was used to maximize the objective function.
The particular method closely follows our previous work on
static reconstructions [6], [24], so we only describe the method
briefly here. We use the following preconditioned Polak–Ri-
biere form of the conjugate gradient method:

where is the gradient vector of the penalized likelihood (4)
at , is a preconditioner, and the step size
is found using a Newton-Raphson line search; prime () denotes
matrix transpose.

In this study, was chosen analogously to the static PET
reconstruction [25] as

diag

where is a small positive number to ensure that is posi-
tive definite and , the area of each basis element.
Here, we set equal to 0.01 . Note that the stan-
dard static preconditioner only has the term in the de-
nominator, which is the (spatial) sensitivity of voxel; we have
included since it is a measure of thetemporalsensitivity of
basis element. Whilead hoc, we found that this preconditioner
had a profound impact on convergence rate (Fig. 1).

The algorithm was initialized with a constant image for which
the forward projected rate function matches the average rate
of the data after subtracting scatters and randoms. The search
vector is initialized by setting . At each iteration
we test whether the search vector is an ascent direction, i.e.,

. If not, then we reinitialize the PCG algorithm
with . To ensure reliable convergence we used a
one-sided Newton-Raphson line search: a prospective step size

was rejected if the sign of the line-search derivative changed.
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Fig. 1. Convergence of a randomly selected simulation study with and without
the use of a preconditioner.

Specifically, the slope of the objective at our current estimate in
the direction of the line search is

(5)

where is the objective function; the slope in the same di-
rection for a prospective is

(6)

If the sign of this second slope disagrees with the original slope,
then is cut in half.

The logarithm in the likelihood function requires that the line
search in (5) is performed with the hard constraint that the for-
ward projected rate function at any arrival time is nonnegative,
i.e.,

The negativity penalty in (4) is soft, allowing small negative
values. The hard constraint can be satisfied by altering the step
size in the update step of the PCG algorithm. In essence, we are
using a bent, rather than truncated, line search [26]. The bent
line search is illustrated in Fig. 2: At a given voxel there are
time intervals when the rate function may be essentially zero
but the search direction is negative. To prevent this interval from
being driven negative we “bend” the search direction, altering
it such that it is no longer negative where the rate function is
zero. There are many possible alterations that could affect such
a change, but we choose the one which causes the smallest
norm change in the direction control vertices.

More precisely, consider a particular voxel; we check each
point to see if

and

(7)

where is the th control vertex of the th voxel in and
10 . For each for which this condition holds, we alter

the direction as follows

(8)

Fig. 2. Illustration of bent line search. If the rate function�(t) is zero at some
pointandthe search direction� (t) is negative, we “bend” the search direction
(� ) so that we do not push the rate negative at that point.

This rule can be shown to minimize subject to
the constraint 0. We check each in order
and immediately update the direction each time (7) is satisfied.

This issue of how to choose the penalty parameters, , and
is difficult. In static maximuma posteriori(MAP) reconstruc-

tion, parameters for the smoothing priors can be chosen using
ML principles by interpreting the smoothing terms as the Gibbs
energy functions of a Markov random field model [27] or can be
chosen to achieve a given resolution [28]. These approaches can
be extended to include the temporal smoothing parameters, but
this is beyond the scope of this paper. We have adjusted the spa-
tial and temporal parameters to obtain resolution typical of that
used in clinical PET studies. Objective methods for selecting the
weighting of the nonnegativity constraint are needed.

VI. SIMULATION STUDIES AND PERFORMANCEEVALUATION

We evaluated our method with simulated and real data. We
simulated a blood flow data set using a single slice of the
Hoffman brain phantom. We evaluated the simulated data on
the basis of temporally averaged rate accuracy as described
below. We also applied our approach to real data from a

C-raclopride study; our subjective evaluations focused on
tissues that are known to have distinctly different dynamics
with this tracer.

A. Simulation Study

The simulated data were based on a simplified model of the
dynamics of a bolus injection of O-water using tissue time
activity curves generated by the Kety autoradiographic model
(Fig. 3, cf. [29, Fig. 3B]). We chose two extreme curves, one cor-
responding to very high blood flow, one to very low blood flow.
White matter voxels were assigned to have low blood flow, gray
matter voxels to have high blood flow; cerebral spinal fluid was
assigned the white matter curve at 20% magnitude. Within the
circular support of the reconstruction, the proportion of voxel
types were as follows: White matter 15%, gray matter 21%,
cerebral spinal fluid 4%, and the remainder background. We
used an 11-element B-spline basis with support from 0 s to 140
s; the spacing of the knot locations was determined by dividing a
medium blood flow curve into eight equal arc-lengths. We used
seven negativity penalty points () in each knot interval. 50
realizations each with approximately 500 000 counts were gen-
erated. No scatter or randoms were added or estimated and the
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Fig. 3. Three temporal functions defining truth in the simulation study. Gray
matter (GM) has highest peak and quick wash out, white matter (WM) has slow
rise and cerebral spinal fluid (CSF) has neglible activity. Dotted vertical lines
indicate knot locations.

simulations used the same system model as the reconstruction.
Each realization was reconstructed using 100 iterations.

We evaluated the method’s ability to estimate average rate
over time intervals centered about three times, 23, 45, and
100 s. As a comparison, we estimated average rate using static
MAP reconstructions based on events arriving in the same time
intervals; the MAP reconstruction method was based on the
same system model and spatial prior and is the base from which
the spline reconstruction code was developed. With our method
we have two means to adjust temporal resolution: via the tem-
poral regularization parameterand by adjusting the length of
the time interval; we did both. We considered 1-, 2-, 4-, 10-,
and 20-s intervals. We also varied spatial resolution in both
our method and the static method by adjusting theparam-
eter. The parameter ranges in the two different methods were
chosen to approximately match noise and resolution properties.
Since measuring the spatial resolution of the spline method is
not straightforward, we measured the point spread function of
the static reconstruction for the 20-s interval about 23; we
found this to be 9.2-mm full-width at half-maximum for the
second of three spatial resolutions considered.

We considered voxel-wise squared bias and variance aver-
aged over the whole image and region of interest (ROI) squared
bias and variance. Four ROIs were defined based on the left
and right caudate and putamen, the two structures comprising
the striatum; note that these bilateral regions are not symmetric
in the Hoffman phantom. In addition to their neurological rel-
evance, these structures were chosen because they were sur-
rounded by white matter and cerebral spinal fluid and, hence,
susceptible to bias from limited spatial resolution.

While variance has a well known unbiased estimator, the nat-
ural estimator of squared bias is, itself, biased. With an assump-
tion of Gaussian noise of magnitude, we show in Appendix A
that the expected value of squared bias estimated from 50 Monte
Carlo realizations is positively biased by . Since itself
is unknown, correcting this bias with an estimated variance for
each voxel or small ROIs is not useful, since the correction will
increase variability of the squared bias estimator, even leading
to negative estimates! But for image averages and large ROIs,
we found this correction to be useful and we have applied it to
the results below.

Fig. 4 shows average voxel-wise bias-variance curves for the
three time points considered. The left plot shows performance as
temporal resolution is varied, the right plot shows performance
as spatial resolution is varied. In each plot there are three sets
of curves shown, one for each time point (23, 45, and 100 s).
Note that for each time point, for a given variance, the spline
reconstruction has lower bias.

For the left plot showing the varying temporal resolution,
each spline result (solid lines) shows the performance over
different temporal penalty parameters, while each static result
(dashed lines) shows the performance over different length
temporal intervals (1, 2, 4, 10, and 20 s). Note that there are a
pair of nearly-overlapping spline results for each time point:
While we have a spline result for each of the five temporal
interval lengths, we only show those for 1 and 20 s; the 1-s
result is above and to the right of the 20-s result. Observe
that the static results have nearly constant bias, which is to
be expected since the spatial resolution is fixed on this plot.
Also note that, with decreasing temporal resolution, the static
and spline estimates will eventually converge, as both will
essentially estimate a single static image based on all counts.

The right plot shows the results over different spatial resolu-
tions. On this plot, both the spline and static results show the
usual bias-variance tradeoffs.

Fig. 5 shows ROI bias-variance curves for 23 s, the time
of the mode of the high flow curve. The top two plots are for the
caudate ROIs, the bottom two are for the putamen ROIs. The
left plots show performance as temporal resolution is varied,
the right plots show performance as spatial resolution is varied.
The plots show a similar performance to the voxelwise averaged
results: Varying temporal resolution, both 1- and 20-s interval
averaged spline results are superior to the static results, which
have near-constant bias; for both spatial and temporal results,
for a given variance, the spline reconstruction has lower bias.

B. Human Studies

The C-raclopride study was performed using data from the
ECAT HR scanner. We used a 15-element B-spline basis
with support over the whole acquisition duration of 95 min and
knot spacing was determined by equal spacing of 11 points
along the head-curve. Single slice rebinning was used to create
95 2-D list-mode data sets that were each independently recon-
structed to form the final four-dimensional (4-D) image. Fig. 6
shows one slice of the tracer distribution for theC study after
30 iterations. On a 450-MHz Sun Ultra workstation this took
approximately 2 min/iteration/slice, or about one hour/image
for 30 iterations. Increased specific binding ofC-raclopride
in the striatum is seen from 150 to 1200 s in Figs. 6(c) and
6(d). Fig. 6(b) shows three time activity curves for uptake in
the scalp, cortex and striatum for the regions of interest marked
in Fig. 6(a). Note the faster rise in the sinus, reflecting the early
arrival of the tracer in the blood relative to brain tissue. These
two observations demonstrate the ability of our method to retain
spatialand temporal contrast.

We were concerned that the nonmonotonic decrease in tracer
density in striatum and cortex after peak uptake (approximately
700 s) was artifactual. We reconstructed this data using different
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Fig. 4. Voxel-wise average results of average rate estimation simulations, for 23, 45, and 100 s; solid lines are spline estimates, dashed lines are static estimates.
For each spatial and temporal resolution, 50 Monte Carlo realizations were created to produce images of squared bias and variance; the average of these images is
plotted. There are two ways to vary temporal resolution with the spline estimates and, hence, two curves for each spline result in the left graph, though they closely
overlap for the 45- and 100-s results. The lower curve is for averaging over a 20-s interval, the upper curve is for a 1-s interval.

Fig. 5. ROI results of average rate estimation simulations, for time point 23 s; solid lines are spline estimates, dashed lines are static estimates; plus marks
(+) indicate left ROIs, circles (�) right ROIs. For each spatial and temporal resolution, ROI squared bias and variance were calcuated based on 50 Monte Carlo
realizations. Each plot shows the left and right ROIs. There are two curves for each spline result in the left two graphs; the lower curve is for averaging over a 20-s
interval, the upper curve is for a 1-s interval.
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(a) (b)

(c) (d)

Fig. 6. C-raclopride study from EXACT HR++. (a) A 2-D transaxial section through striatum showing activity integrated over the full 5700-s acquisition.
(b) Decay-corrected time activity curves averaged over 25-voxel ROIs for scalp (lower curve), cortex (middle curve), and striatum (upper curve)—the smooth lines
are from the spline reconstruction, the jagged lines are from the static reconstructions. Sample images of the continuous time reconstructions obtained by sampling
the B-spline curves at each voxel at (c) timet = 150 s and (d)t = 1200 s.

knot locations and different numbers of knots. We found little
change in the estimated activity. This appears to indicate that
the effect was not due to our curve parameterization. We also
binned the data into 300-s static datasets with 25-s shifts (i.e.,
275-s overlap) and reconstructed each independently; while the
time courses extracted from these images were much noisier,
the nonmonotonicity was again evident. This decrease could be
due to head motion or an unexpected physiological effect.

VII. D ISCUSSION ANDCONCLUSION

We have presented an approach and preliminary results for es-
timating continuous time dynamic PET images from list-mode
PET data. We modeled the dynamic tracer density as an inhomo-
geneous Poisson process and parameterized the rate functions
with a B-spline basis. We introduced the timogram as a means
to compactly represent the temporal information of list-mode
data. The B-spline basis and the timogram’s spatial ordering
both contribute to an efficient implementation that makes the
creation of continuous time reconstructions feasible.

We have described and implemented approaches to scatter
and randoms correction based on spatiotemporal independence,
though have left dead time for future work. We have presented
basic performance analysis with arbitrarily chosen tuning pa-
rameters for spatial and temporal regularization. For the con-
sidered range, our method out-performs a comparable static es-
timate. While our method is 2-D, generalization to three dimen-
sions is straight forward and simply involves use of 3-D system
matricies (( )) instead of the 2-D ones we used here.

We believe that direct estimation of 4-D spatiotemporal tracer
distributions based on list-mode is an important direction for
PET. Many of the central issues in image reconstruction will
have to be revisited (e.g., scatter and randoms) and updated to
account for the lack of temporal stationarity. We have intro-
duced only basic solutions for these problems, but have demon-
strated that continuous-time image reconstruction is a tractable
problem and that it can offer superior performance relative to
static methods.

APPENDIX

BIAS OF SQUARED BIAS ESTIMATOR

Here, we show that the natural estimator for squared bias is,
itself, biased. Let be the true rate at a given voxel or ROI.
Let be the rate estimate at voxelfrom realization ,

. Let be the error at voxelassociated with theth
realization. We assume that this error is normally distributed,
centered at with variance . That is, the bias of the recon-
struction method is and its variance is

We are interested in the variance and squared bias. We first
consider variance; the unbiased estimator is

where is the average of the Monte Carlo realizations, that is
.
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Now consider the squared bias

To work out the expecation, first note

Then

(9)

(10)

The inner term in (9) vanishes because . In (10),
is a standard normal, hence, its sum of squares is a

random variable with degrees of freedomand, hence, has
expectation .
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