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The field of functional neuroimaging (FNI) methodology has developed into a mature but evolving area
of knowledge and its applications have been extensive. A general problem in the analysis of FNI data is
finding a signal embedded in noise. This is sometimes called signal detection. Signal detection theory
focuses 1n general on issues relating to the optimization of conditions for separating the signal from noise.
When methods from probability theory and mathematical statistics are directly applied in this procedure
it 1s also called statistical inference. In this paper we briefly discuss some aspects of signal detection
theory relevant to FNI and, in addition, some common approaches to statistical inference used in FNI.
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Low-pass filtering in relation to functional-anatomical variability and some effects of filtering on signal
detection of interest to FNI are discussed. Also, some general aspects of hypothesis testing and statistical
inference are discussed. This includes the need for characterizing the signal in data when the null
hypothesis is rejected, the problem of multiple comparisons that is central to FNI data analysis, omnibus
tests and some issues related to statistical power in the context of FNI. In turn, random field, scale space,
non-parametric and Monte Carlo approaches are reviewed, representing the most common approaches to
statistical inference used in FNI. Complementary to these issues an overview and discussion of non-
inferential descriptive methods, common statistical models and the problem of model selection is given in
a companion paper. In general, model selection is an important prelude to subsequent statistical
inference. The emphasis in both papers is on the assumptions and inherent limitations of the methods
presented. Most of the methods described here generally serve their purposes well when the inherent
assumptions and limitations are taken into account. Significant differences in results between different
methods are most apparent in extreme parameter ranges, for example at low effective degrees of freedom
or at small spatial autocorrelation. In such situations or in situations when assumptions and approxi-
mations are seriously violated it is of central importance to choose the most suitable method in order to

obtain valid results.

Keywords: functional neuroimaging methods; PET; fMRI; signal detection; image filtering;

statistical inference

1. INTRODUCTION

Some aspects of signal detection theory relevant to
functional neuroimaging (FNI) and common approaches
to statistical inference used in FNI are discussed in this
review. In a companion paper (Petersson et al., preceding
paper), non-inferential descriptive methods and statistical
models for FNI data, as well as some issues related to the
problem of model selections relevant to FNI, are
reviewed. The field of FNI methodology has developed
into a mature but evolving area of knowledge, illustrating
the need for validated and effective descriptive and
inferential methods. Non-inferential descriptive methods
are used to characterize signals present in the data, while
inferential methods are commonly used to test hypotheses
and determine confidence intervals. Because of the
danger of making incorrect assertions in an emerging
area of neuroscience, the emphasis in the analysis of FNI
data has so far been on statistical methods protecting
against false-positive results.

In this and the companion paper (Petersson e/ al.,
preceding paper) the focus is on the assumptions, approx-
imations and limitations of the methods reviewed. This
delineates the limits of applicability and is essential in
order to use the available methods optimally and to inter-
pret FNI results appropriately. The methods described
have been selected as representative and because of their
widespread application; in general they perform well
when the assumptions and limitations are taken into
account. For technical details and a more complete
picture of these methods, their benefits and examples of
their applicability we refer to the original literature that
describes these aspects well. The inferential methods used
in FNI differ in the assumptions made about the proper-
ties of data and in the approximations used in the statis-
tical theory. Approximations and assumptions about data
need to be critically examined. However, it is not the
assumptions or approximations themselves that are of
critical importance. Rather, the central issues are how
well these are fulfilled by empirical data, how robust the
methods are to departures from the assumptions and the
effect of the approximations made. This highlights the
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importance of empirical validation and the explicit char-
acterization of the inherent limitations of a given method,
themes which are developed in this review. We will
concentrate mainly on the most common methods, giving
an updated and concise conceptual overview.

Most FNI methods are based on voxel data, an
approach pioneered by Fox et al. (1988; Fox & Mintun
1989) and Friston et al. (1990, 1991). Tox et al. (1988; Fox
& Mintun 1989) based their approach on intersubject
averaging and change-distribution analysis of subtracted
positron emission tomography (PET) images, repre-
senting an omnibus approach (cf. §3(c)). Friston et al.
(1990, 1991) introduced the concept of statistical para-
metric mapping underscoring the need for strong control
of the familywise error rate in hypothesis testing (cf.
§3(b)). Alternatively, FNI approaches can also be based
on regions of interest (ROIs). Defining ROIs can be
problematic and is, to a certain extent, arbitrary, in parti-
cular when defined directly on FNI data unless specific
regional hypotheses are given prior to inspection of the
data. When defined on co-registered anatomical images
this approach has some attractive features, in particular
avoidance of the severe multiple comparisons problem
associated with a global search of statistic images.

The primary FNI data are commonly pre-processed
(e.g. realigned, anatomically normalized and low-pass
filtered), a statistical model and a test statistic are chosen
and model parameters are estimated for statistical infer-
ence taking into account multiple non-independent
comparisons and possible temporal autocorrelation.
Anatomical normalization is performed to adjust for gross
anatomical differences when data are averaged across
subjects, but has limits at different anatomical levels. At a
basic level, it is unlikely that a unique point-to-point trans-
formation can be defined from one brain to the other in a
meaningful way. For example, some anatomical feature
may exist in one brain but not in another. This makes
assessing the adequacy of different transformations diffi-
cult since no gold standard is given (Grachev et al. 1999).
In certain situations and in particular for functional
magnetic resonance imaging (fMRI) data, an ROI
approach may offer a way around some of the limitations



Signal detection and statistical inference

K. M. Petersson and others 1263

with anatomical normalization (Mazoyer ef al. 1993;
Crivello et al. 1995). Anatomically defined ROIs can offer a
good solution when the anatomical regions are well
defined, as, for example, in the case of subcortical struc-
tures or when there are natural and well-defined, prior,
regionally specific hypotheses. In combination with several
single-subject fMRI studies, a meta-analytic approach
may be used on ROI data without the need to normalize
the primary data. There would also be a limited need for
image smoothing or spatial filtering (cf. §2). The defini-
tion of ROIs is driven by prior anatomical information,
while the arbitrariness of anatomical normalization proce-
dures 1s often less guided. Automatic segmentation proce-
dures for the sulci, gyri, grey matter and white matter
have become important tools in defining ROIs. Increased
and detailed knowledge of the actual anatomy of the
human brain is required if the aim of relating any region of
a normal brain to its counterpart in another normal brain
1s to be achieved (Mangin et al. 1995; Regis et al. 1995).

The use of sufficiently well-fitting statistical models
and making sure that the assumptions made are fulfilled
1s generally necessary for the validity of the subsequent
statistical inference. If the assumptions are violated or
ill-fitting models are used, then this may make the
ensuing inference (statistically) invalid. This indicates the
importance of proper model selection and the
verification of assumptions (cf. Petersson et al., preceding
paper). In this paper, therefore, we will assume that
appropriate model selection has been performed and that
the chosen model fits sufficiently well.

This review is broadly organized as follows. First, some
aspects of signal detection, filtering of FNI data and bias
of the detection sensitivity are discussed. These issues are
related to functional-anatomical variability and across-
subject averaging of data. Next follows a brief overview of
some general issues with implications for statistical infer-
ence. Of particular interest in the context of FNI is the
need to characterize the signal present in data when the
null hypothesis is rejected, the multiple comparisons
problem and statistical power. Finally, three methods of
statistical inference in common use in FNI, parametric
random field (RF), non-parametric and Monte Carlo
approaches, are reviewed.

2. SPATIAL FILTERING

In this
anatomical

section some 1implications of functional—-
variability on across-subject averaging,
strategies to handle this variability and the biasing of
detection sensitivity by spatial filtering are discussed.

(a) Functional-anatomical variability

In cognitive activation experiments, the changes in
neuronal activation due to experimental manipulation
are often moderate compared to the background noise.
However, modern imaging systems have improved the
signal-to-noise ratio significantly. To improve signal to
noise further the experimental manipulation can be
repeated several times on the same or different subjects
and the acquired data averaged over repetitions (Fox et
al. 1988). Since experimentally induced responses can be
quite variable there are statistical motivations for
acquiring multiple scans per subject and also for
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including multiple subjects in a study. Repeated measure-
ments allow generalization to average effects and to
properly estimated different within- and between-subjects
sources of variability.

In the case of intersubject averaging, it is first necessary
to realign the data from each individual and to standar-
dize (i.e. spatially normalize) and transform the data
anatomically into a standard stereotactic space. There are
limits on both the anatomical normalization procedures
and the precision with which an anatomic correspondence
between different brains can be defined. It is an open
question whether functional-anatomical variability can
always be effectively normalized or if this variability
sometimes 1s too large (Hunton et al. 1996). Several
current FNI methods assume that brain function can be
mapped to structure uniquely at the resolution of the
imaging system and the spatial pre-processing (i.e.
realignment, spatial normalization and optional low-pass
filtering). For PET data, this assumption seems to work
sufficiently well. However, for fMRI data, the spatial
resolution makes it possible to detect appreciable residual
anatomical and structure—function variability between
subjects. This opens up for three possibilities: first, to
study population generalizations of functional anatomy
down to a given resolution, second, to study the varia-
bility in localization of a given function in relation to a
well-defined anatomical landmark and, third, we may
also be interested in studying a given function and its
actual location in an individual subject. These aims
require different information and different types of
spatial pre-processing.

There have been some attempts to assess residual
functional-anatomical variability, mostly in realigned,
spatially normalized and more or less low-pass filtered
PET data. These attempts have often used the variability
in location of the local maximum statistic (peak location).
However, the variability in peak location may not always
be an ideal measure of functional-anatomical variability.
For example, the local maximum of the ¢-statistic image
is known to have appreciable intrinsic variability in
location, in particular when the degrees of freedom are
low relating to noise in the estimated variance image
(Taylor et al. 1993; Worsley et al. 1993; Holmes 1994
Holmes et al. 1996). Thus, there may be an inherent
variability in peak location that adds to the true residual
functional—anatomical variability. The intersubject varia-
bility estimated in this way may thus be overestimated.
Several studies have estimated intersubject standard
deviations of the peak coordinates to be in the order of 5—
10mm (Fox & Pardo 1991; Hunton ef a/. 1996; Ramsey et
al. 1996; Hasnain et al. 1998). When PET data from
different laboratories are compared this variability
increases (Poline et al. 1996; Senda ez al. 1998) and there
are some indications that activation foci that are less than
10 mm apart may not always be reliably distinguished
with PET (Grabowski et al. 1996). The intra-individual
variability may also be significant, even for robust
primary motor activations (Hunton et al. 1996). The
residual intra-individual variability is likely to reflect in
part inherent variability in peak location.

The interindividual residual variability generally exhi-
bits spatial structure and 1s dependent on the algorithm
used for anatomic normalization. Simulation studies have
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indicated that a reduction of misregistration error and
minimizing the residual anatomic variability can signifi-
cantly improve the signal detection sensitivity (Worsley et
al. 19965). It should be noted that the effect of intersubject
averaging, when there is a residual functional-anatomical
variability, amounts to a spatial filtering effect. In
general, using a voxel-based analysis, it is important to
reduce the impact of misregistration and interindividual
residual functional-anatomical variability. A common
strategy is to low-pass filter the data either at reconstruc-
tion or with a suitably chosen convolution kernel (e.g. an
isotropic Gaussian kernel). Alternative approaches have
been suggested (Coulon ef al. 1997) which may be more
stable in terms of interindividual functional-anatomical
variability. This is based on the idea that it is difficult to
define appropriate point-to-point transformation between
brains but that three-dimensional (3D) landmarks and
anatomical structures may be more easy to relate
(Mangin et al. 1995; Regis et al. 1995). Whether it is
possible to identify 3D landmarks that can be reliably
matched across different brains and to what extent such
landmarks can constrain spatial normalization and corre-
spond to functional units is an open question. 1o the
extent such procedures can be validated, knowledge about
stable landmarks may be used to match the signal across
subjects in a structural sense.

Spatial filtering, which in effect is a local weighted
averaging procedure, may also increase the equivalence
of voxel data across measurements and, thus, the validity
of voxel-based statistical models. On the other hand, too
much filtering may average functionally different signals
yielding a functional-anatomic blurring effect. Note that
there is a fundamental distinction between fMRI and
PET in the sense that it is generally possible to obtain
reliable within-subject signals with fMRI, while radio-
active dose limitation often precludes this in PET. This
opens up the possibility of using different pre-processing
strategies for the two imaging modalities.

(b) Image smoothing and signal detection

Filtering data may or may not increase the signal-to-
noise ratio, depending on the relationship between the
size and shape of the signal and the convolution kernel.
Some of the effects of image smoothing may be under-
stood in the light of the matched filter theorem (Rosenfeld
& Kak 1982). This theorem states that a signal in a back-
ground of white noise is detected with optimal sensitivity
if a convolution kernel, which matches the size and shape
of the signal, is used. It should be noted that the situation
1s slightly more complicated when the noise component is
coloured, that is autocorrelated, which is most often the
case with FNI data. If the spatial extent of the signal
is large compared to the extent of the spatial auto-
correlation, then the result of the matched filter theorem
may serve as a good approximation. However, if this is
not the case, the choice of an optimal filter is more
complicated than just choosing a matched filter. In this
case the autocorrelation has to be taken into account.
This can be illustrated in the stationary case; assuming
that the data can be whitened with a filter ¥, then the
matched filter theorem can be applied to the whitened
data generating a matched filter S. This 1s equivalent to
applying the convolution of W and S, WxS, as a filter
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directly. Since the whitening filter W is related to the
autocorrelation, this makes the dependence of the
optimal filter on the autocorrelation explicit. However,
we will reason informally here, describing the qualitative
effects of filtering, assuming that the matched filter
theorem 1s a good approximation.

Empirical and simulation studies indicate that the
choice of filter kernel affects detection sensitivity and the
results of subsequent statistical analysis (Poline &
Mazoyer 1991, 1994¢; Andreasen et al. 1995; Worsley et al.
19964). Image smoothing amounts to applying a spatial
low-pass filter that affects the data or signal itself by
attenuating high-frequency components and possibly
(slightly) displacing the location. Note that PET and
fMRI are measuring haemodynamic indicators of
neuronal activity, that is in effect imaging a smooth fluid
process, and FNI data are essentially always filtered. In
PET, image reconstruction (e.g. filtered back projection)
applies a filter to reconstruct image data from projection
data, which corresponds to a ramp filter with a chosen
window (e.g. Hanning or Butterworth). In fMRI, the
frequency spectrum in £-space is approximated with a
function of compact support. This is equivalent to the
application of a band-pass filter, that is, each voxel is a
filtered version of the true 77 signal. This implies that the
choice not to filter the data is equivalent to accepting the
implicit filter of the imaging system. There are some
indications that accepting the detection bias inherent in
the imaging system (i.e. no image smoothing) may some-
times decrease the signal-to-noise ratio relative to when
smoothing is used (Andreasen et al. 1995). In addition,
unless the variability in functional-anatomical localiza-
tion and misregistration error can be reduced to zero,
averaging measurements within and across subjects
corresponds to a low-pass filter.

The matched filter theorem indicates that the detection
sensitivity 1s biased towards signals similar to the
smoothing kernel. An alternative to the single-filter
approach takes the mirror consequence of this theorem as
its starting point. Specifically, given that a matching filter
optimizes sensitivity, this also implies that the choice of a
particular filter biases the detection sensitivity towards
signals of a certain shape and size (or scale). For
sufficiently different signals the filter choice will be sub-
optimal with reduced detection sensitivity as a conse-
quence. A solution to the problem of detection bias is to
use several different filters and search for signals at
different scales (Poline & Mazoyer 1994a,c). The multi-
filtering approach has recently been integrated with RF
theory (RFT), the so-called scale space approach
(Worsley et al. 19965, 1997a; Worsley 1999). The scale
space approach is discussed below in § 5.

A second alternative is based on the concept of signal
and image restoration (e.g. Andrews & Hunt 1977,
Geman & Geman 1984). Ideally, the restoration process
smoothes the image noise while the signal is preserved.
Markov RF (MRF) theory (Besag 1974; Chellapa & Jain
1993) can be used to incorporate prior information via
prior distributions in a Bayesian approach (Holmes &
Ford 1993). There is a close relationship between MRF
and Gibbs RFs (via the Hammersley—Clifford theorem)
(Besag 1974; Geman & Geman 1984; Chellapa & Jain
1993). The Bayesian approach has been successfully used
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to tackle problems of image registration, reconstruction,
restoration and segmentation (Geman & Geman 1984;
Chellapa & Jain 1993; Gee et al. 1995; Aschburner et al.
1997). However, signal restoration and smart filtering
techniques have so far not been extensively applied
because the impact on the subsequent statistical inference
is often unclear. Although spatial smoothing biases the
results of an analysis, the effect is better understood than
the way a strong prior might bias the results, for example
the effect of edge-respecting filters.

In this context, the Bayesian approach may be viewed
as stochastic regularization closely related to standard
regularization theory (Tikhonov & Arsenin 1977; for
interesting connections to statistical learning theory see
Vapnik (1998) and Wahba (1995)). Recently an applica-
tion of the MRF-Bayesian regularization approach to
fMRI signal restoration was described (Descombes et al.
1998), using spatio-temporal MRFs in combination with
simulated annealing optimization (Kirkpatrick et al.
1983). The prime difficulty with this approach is in speci-
fying adequate prior information in terms of a Bayesian
prior. The use of a specific restoration prior may intro-
duce image artefacts and, if the wrong order of the MRF
1s chosen, high bias may result (Rangarajan & Chellappa
1995; Descombes et al. 1998). Extensive simulations and
validation may shed light on these issues. There are some
indications that the restoration approach using tuned
priors may suppress spatio-temporal noise without
spoiling the signal, resulting in better spatio-temporal
delineation of the fMRI signal (Descombes et al. 1998).
However, the implications on the subsequent statistical
inference are at present unknown.

In closing this section, which has mainly focused on
signal detection in relation to image smoothing, it should
be noted that the arguments are general and also apply to
signals in the temporal domain. In particular, this relates
to whether it is beneficial to smooth or filter fMRI time-
series in the temporal dimension. If there is prior
knowledge of the characteristics of the temporal signal,
this could be used to construct a matching filter, thus opti-
mizing signal detection. For example, it has been suggested
that fMRI data should be temporally filtered with the
haemodynamic response function (Friston et al. 1994aq;
Frackowiak et al. 1997). In the case of limited prior knowl-
edge of the temporal signal, a multifiltering approach may
bias the detection sensitivity less than a single-filter
approach at the cost of a more extensive search (cf. §5).
Finally, it should also be pointed out that brain activations
can bias automatic realignment and anatomic normaliza-
tion procedures. Even if this bias can be small, since it is
highly correlated with the experimental paradigm, it may
introduce false-positive activations. In addition, stimulus-
correlated motion may introduce systematic intensity
changes in fMRI data (Hajnal et al. 1994). Note also that
global normalization may be biased by activation introdu-
cing paradigm correlated errors (this is further discussed
in Petersson et al. (preceding paper)).

3. STATISTICAL INFERENCE IN FUNCTIONAL
NEUROIMAGING

In the following sections, some general aspects of statis-
tical inference, hypothesis testing and the determination
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of confidence intervals are discussed. We also describe the
multiple comparisons problem and weak and strong
control of the familywise error rate, which is the relevant
measure of the false-positive rate in a multiple compari-
sons situation. In addition, we describe some omnibus
tests that have been used in FNI, with weak control over
the familywise error rate. We also review some issues
relating to statistical power and discuss the three main
approaches to statistical inference used in FNI, that i1s RF,
non-parametric and Monte Carlo approaches, in some
detail.

(a) Hypothesis testing and determination of
confidence intervals

In §3 of the companion paper, we described the ways
in which parameters of interest and nuisance parameters
are related to the data and means of estimating those
parameters (Petersson et al., preceding paper; see also
Frackowiak et al. 1993). Ostensibly, we are interested in
the parameters themselves, such as the magnitude of an
activation. However, the overriding concern in the field
has been the avoidance of making false claims. Hence,
the parameters are always assessed relative to their
uncertainty in a statistical hypothesis-testing framework.
Informally, we wish to know whether the magnitude of
the parameter (or contrast of parameters) is substantial
with respect to its uncertainty. In this section, hypothesis
testing and its use in NI are reviewed.

Hypothesis testing proceeds as such. The null hypoth-
esis 1s assessed with a test statistic, a function of the data
which is sensitive to departures from the null hypothesis
and reflects the effects of interest; the observed statistic is
compared to its distribution under the null hypothesis,
producing a p-value. A small p-value is interpreted as
indicating that there is little support for the null hypoth-
esis, though its interpretation is more subtle. The p-value
is the probability of observing a statistical value as large
or larger, under an identical replication of the experiment
and under the assumption that the null hypothesis is true.
Hence, the p-value is a statement about the data under
the null hypothesis, not the null hypothesis itself. In the
decision theoretic framework of hypothesis testing, a pre-
specified level of significance is used to accept or reject
the null hypothesis. Alternatively, the smallness of the
p-value may be viewed as a measure of the strength of
the empirical evidence against the null hypothesis
(Edgington 1995), representing a smooth transition
between empirical evidence interpretable as indicating
the alternative hypothesis and empirical evidence in
favour of the null hypothesis.

If one rejects the veracity of the null hypothesis when-
ever the p-value is below a critical value ¢, then a valid
test will control the false-positive rate at «. The false-
negative rate (3 is closely related to the statistical power 1.
The statistical power is the probability of rejecting the
null hypothesis when it is false. While it would seem
natural to focus attention on the power of the test, the
power is a function of the unknown alternative and the
best that can be done is to use test statistics that maximize
power over all alternatives (relative to all other tests of
the same class). Most standard test statistics satisfy this
requirement. In general, the power of tests increases with
the sample size (strictly, the degrees of freedom).
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The regression approach in FNI fits univariate models
at every voxel and effects of interest are tested in each
individual model by generating and assessing a statistic
image. Usually an image regression approach is used,
which implies that the same univariate model is fitted at
cach voxel. The choice of test statistic is central and
should represent a valid measure of the phenomenon of
interest. While the details of some common test statistics
are considered below, the common test procedures in FNI
conform to the standard structure of hypothesis testing. If
a particular, pre-specified voxel or ROI is of interest,
then standard univariate theory can be applied. Other-
wise the statistic image is searched for, for example voxels
of significant magnitude using the local maximum
statistic or, given an intensity threshold, significant clus-
ters using the suprathreshold statistic.
However, the notion of characterizing the signal when the
null hypothesis is rejected and issues similar to it
regarding the status of the alternative hypothesis have
often been neglected under the standard hypothesis-
testing framework.

cluster size

(1) Some general inference issues

Statistical inference in FNI has focused on hypothesis
testing, which is primarily concerned with the null
hypothesis. This is convenient, since the distribution of
the test statistic is only needed under the null hypothesis.
However, once the null hypothesis is rejected it is useful
to try to characterize the signal present in the data. In
traditional univariate statistics this amounts to using
confidence intervals instead of p-values. In FNI, the
dimensionality of the statistical image precludes straight-
forward use of confidence intervals. However, there is a
clear need to characterize the alternative hypothesis.
While there are multivariate approaches for character-
1zing the alternative hypothesis (cf. Petersson et al.,
preceding paper), there is still a need to characterize the
signal, that is a departure from the null hypothesis statis-
tically at a regional or voxel level. For example, if two
clusters are declared significant, a natural question is
whether one cluster is significantly larger than the other.
As another example, consider two statistical images each
with significant activation foci in approximately the same
region, with a few significant overlapping voxels but sepa-
rated maxima. An interesting question is whether these
two foci represent the same anatomical location given the
variability of the intersubject registration and other sources
of variability. Currently, there are no methods that address
such questions and in general there are few methods to
characterize the signal present in the data.

A further problem is that a significant effect may not
be a relevant one. Since statistical power increases with
independent measurements, with sufficient observations a
hypothesis test has the power to detect minuscule
changes. The limiting case is colloquially known as the
hypothesis-testing fallacy: since the null hypothesis of
exactly no change is essentially never true for any contin-
uous system, as the number of observations tends to
infinity a hypothesis test will always reject the null
hypothesis given enough observations. Arguably, any
consistent change may be of interest, but such minuscule
effects may simply reflect unmodelled idiosyncrasies of
the particular experiment or effects not specifically
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related to the task. This is particularly a problem for
single-subject (single-session) fMRI experiments, where
effects are commonly assessed relative to the scan-to-scan
error variance (i.e. using a fixed effects model) for which
a large number of observations can be obtained.

The implicit interpretation of significant regions as
important regions implicated in processing the particular
mental task of interest may become
problematic as the sensitivity of the test increases with
sample size. In essence, this exposes the mismatch
between the statistical hypothesis of no difference and
that of the experimental hypothesis that the region is not
involved in processing the given task. Given that no part
of the brain remains exactly the same and that some FNI
systems are beginning to have the power to measure even
very small changes reliably, the question becomes one of
spatio-temporal modelling and interpretation, rather
than the simple ‘is there a difference’ hypothesis-testing
approach. This also points towards the need for quanti-
tative spatio-temporal models linking neuronal dynamics
to the haemodynamic effects observable with FNI
techniques.

Finally, an additional concern is the opposite of the
above. Without knowledge of the power of our testing
procedures, we have no idea of the imagewise false-
negative error rate, the sensitivity, save vague notions
from past experience. This problem is compounded by
the erroneous tendency to interpret lack of significance as
evidence of no change, when in fact the lack of signifi-
cance could be due to low sensitivity due to low subject
numbers. Recent clinical applications of FNI, such as pre-
surgical planning, highlight a related issue. In these
situations it is commonly type II errors (false negatives)
that are most important. For example, consider pre-
surgical planning for a resection on an epileptic subject,
where functional experiments are conducted to see
whether a specific brain region supports important
functions. The tragic consequence of a false negative, if
acted on, may be that an important brain region is
damaged.

increasingly

(b) The multiple comparisons problem

Statistical analysis of FNI data often implies that many
hypotheses are tested on the same data set. Central to the
multiple (e.g. voxel-by-voxel) hypothesis-testing approach
is an adequate handling of the multiple comparisons
problem, that is, it is necessary to control the false-positive
rate appropriately. The overall false-positive rate increases
with multiple testing unless care is taken. For example, if
cach voxel is assessed with a univariate test at level
a=0.01, corresponding to thresholding a Gaussian stat-
istic image at £ =2.33, then one would expect ca. 1% of
the voxels to appear above the threshold by chance even
if there 1s no activation anywhere. It should also be noted
that these false-positive voxels may be clustered due to
spatial autocorrelation. Ideally, the statistical inference
procedure should handle the multiple comparisons
problem effectively, avoiding any unnecessary loss of
sensitivity and statistical power.

Given the null hypothesis H; and a test statistic 7 (X)
of the data X, the test is said to be liberal, conservative
or exact if, for any given level o and rejection region
R(a), the probability that 7 (X) belongs to the rejection
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region R(a), P[T(X) € R(a))|H,), is greater than, less
than or equal to o, respectively. Appropriate control of the
false-positive rate requires an exact or conservative test.
Usually the more conservative the test the less the
sensitivity. (However, this does not always have to be the
case since sensitivity is a function of the actual alternative.)

(1) Weak and strong control over the familywise error rate

In order to handle the multiple comparisons problem
(Hochberg & Tamhane 1987) appropriately, the rejection
criteria have to be chosen so that the probability of
rejecting one or more of the null hypotheses when the
rejected null hypotheses are actually true is sufficiently
small. Let the search volume 2={u,, . . ., v;} consist of
K voxels v, ...,vp and let H,, ..., Hy be the null
hypotheses for each voxel. The omnibus null hypothesis
Hg, is the (logical) conjunction of H, .. ., Hy, that is,
Ho=HN...NHgTo test H,, . . ., Hy we use a family of
tests, 7y, . . ., Ty For all j € {1...K} let E; be the event
that the test 7; incorrectly rejects H, that is, £=[7;
€ R(oy)], where R(qy) is the corresponding rejection
region at the level . Suppose the test is exact or possibly
conservative, i.e. P[E|Hp| < «;.

In the context of the family 7, . .., 7 of tests, the
familywise error rate (FWE) is defined as the probability
of falsely rejecting any of the null hypotheses H, . . ., Hj.
Let E, be the event that the omnibus hypothesis is
rejected, that is, Ep = E, U ... U Eyp. Weak control of the
FWE requires that the probability of falsely rejecting the
omnibus null hypothesis Hj, is, at most, the test level a,
that is, P[Eg|Hg] < a. Evidence against the omnibus
hypothesis H, indicates the presence of some activation
somewhere. This implies that the test has no localizing
power, meaning that the false-positive rate for individual
voxels is not controlled. Tests that have only weak control
over the FWE are called omnibus tests and are useful in
detecting whether there is any experimentally induced
effect at all, regardless of location. If, on the other hand,
there is interest in not only detecting an experimentally
induced signal but also reliably locating the effect, a test
procedure with strong control over the FWE is required.

Strong control over the FWE requires that the FWE
be controlled, not just under Hy, but also under any
subset of hypotheses. Specifically, for any subset of voxels
wC 2 and corresponding omnibus hypothesis H,,
PIE,|H,] < a. That 1s, all possible subsets of hypotheses
are tested with weak control over the FWE. This ensures
that the test is valid at every voxel and that the validity
of the test in any given region is not affected by the
truth of the null hypothesis elsewhere. Thus, a test
procedure with strong control over the FWE has local-
1zing power.

(1) Spatial autocorrelation and multiple non-independent
comparisons

One way to achieve strong FWE control, to control the
otherwise increasing level of false-positive results with an
increasing number of comparisons, is to adjust the level of
significance at which the different hypotheses H,, . . ., Hy
are tested. The single-step Bonferroni correction is an
illustrative example of such a strategy. Suppose that
H,, ... H are tested at an equal level, say b, 1e.
PIE||Hp)=b, ..., P[EgHg]=5. If all voxels have the

Phil. Trans. R. Soc. Lond. B (1999)

same marginal distribution, then testing them at an
equal level amounts to thresholding the statistical image,
giving a single threshold test. In general, P[E|H]
=P[E, U...UEp|Hg] < PIE|Hp| +...+ PlEy|Hg]
=K xb. If b is chosen so that K xb=aq, 1.e. b=a/K, it
follows that P[E,|Hj] < o This so-called Bonferroni
correction will be conservative when the tests are corre-
lated, since then P[E,|Hp] will be smaller than
PIE||Hp|+...+ P[Eg|Hy). For a large number of corre-
lated tests, the Bonferroni correction results in a conser-
vative overall procedure and an unnecessary loss of
statistical power. There are other and more refined multi-
step procedures for handling the general multiple
comparisons problem (Hochberg & Tamhane 1987).

FNI data are often characterized by spatial autocorre-
lation, that 1s closely spaced voxels are correlated. The
spatial autocorrelation is partly due to the point spread
function of the imaging system but physiological factors
are also important. The spatial autocorrelation is
commonly less extensive in fMRI than in PET data. It
should also be noted that image smoothing introduces
spatial autocorrelation. Given non-trivial spatial auto-
correlation in the statistic image this implies multiple
non-independent comparisons and a simple Bonferroni
correction would be conservative. Instead, an effective
solution of the multiple non-independent comparisons
problem is central to the voxel approach. The different
approaches to statistical inference described below
attempt to solve this problem in different ways. Broadly
speaking, these divide into parametric, non-parametric
and Monte Carlo simulation approaches (cf. below). In
general, parametric approaches are exact when no
approximations are made and the assumptions made are
fulfilled. The parametric approaches used in FNI are
usually based on some type of RFT (e.g. Adler 1981,
1998; Worsley et al. 1992, 19964; Worsley 1994; Friston et
al. 1995) generating distributional approximations. The
results of the Monte Carlo approaches are always
approximations and whether the Monte Carlo results are
good approximations depends critically on whether all
significant sources of variability under null hypothesis
conditions are sufficiently well modelled. The non-
parametric approaches solve the multiple comparisons
problem exactly.

() Omnibus tests

There are some similarities between multivariate
approaches developed for assessing non-focal distributed
change in activation pattern (for a review, see Worsley
et al. 1995) and several statistical tests with weak FWE
control. Experimentally induced distributed changes
consist of changes in a subset of voxels in the search
volume. In principle, these changes may be detected by
univariate voxel statistics if sufficient statistical power is
available. Since tests with strong FWE control aim at
localization of experimental effects these are (usually) less
powerful than tests with weak control for testing the exis-
tence of any experimental effect. At present, the statistical
power of FNI studies is most often unknown and there
are indications that some FNI studies are lacking in
power. In the context of low statistical power, omnibus
tests with weak FWE control are interesting since they
can (often) detect whether there is any experimental



1268 K. M. Petersson and others

Signal detection and statistical inference

effect at all with a greater sensitivity than tests with
strong control (Friston ef al. 19944, 1996).

Onme of the earliest proposed omnibus tests was the -
statistic (Fox et al. 1988; Fox & Mintun 1989) based on
the idea that activations may increase the number of local
maxima outliers, implying increased kurtosis of the
distribution of local maxima. The +?-statistic is therefore
relatively more sensitive to focal changes than other
proposed omnibus tests, making it potentially less useful
in detecting distributed changes. No theoretical basis for
the specificity of the test has so far been derived (Worsley
et al. 1995), but the specificity of the y’-statistic has been
investigated empirically. Another early proposal was the
suprathreshold exceedence proportion test, that is, the
proportion of voxels of the search volume that passed a
given but arbitrary intensity threshold (Friston et al.
1990). Originally, it was assumed that the voxels in the
statistic image were independent, leading to an under-
estimation of the variance of the statistic, increasing the
false-positive rate compared to the nominal level. This
has recently been corrected and the correct limiting
distributions derived and described (Worsley & Vandal
1994; Worsley et al. 1993). As an alternative, Worsley et al.
(1995) proposed the S-statistic for comparing distributed
differences between two states. The S-statistic is equal to
the squared Z(-score averaged over the search volume
representing a mean sum of squares test. If the search
volume 1s large enough then the distribution of the
S-statistic is well approximated by a x? distribution with
estimable effective degrees of freedom. This approximate
result is based on the theory for smooth stationary
Gaussian RFs (cf. below; Worsley & Vandal 1994 ). The
detection sensitivity of the S-test is optimized when the
smoothing kernel matches the underlying activation
(Worsley & Vandal 1994) representing a special case of
the matched filter principle. The sensitivity of the
S-statistic is also biased towards distributed signals and
there is a corresponding lack of power in detecting focal
changes (Worsley et al. 1995). Since most effects of interest
in FNI are focal in nature, a suitable univariate approach
may be preferred when sufficient statistical power is
available. However, if there is prior information indi-
cating that the signal is likely to be subtle and distributed
in nature, the S-statistic may yield a gain in detection
sensitivity. However, a univariate test with strong control
can detect distributed changes and omnibus tests with
weak control can pick up focal changes. Which is the most
suitable test in a given situation is a question of what kind
of experimentally induced changes are expected, the
statistical power available and what types of changes a
certain test is most sensitive to, that is, the detection bias
of the test statistic. It is worth remembering that the null
hypothesis is the same whether the testing procedure has
strong or weak FWE control, only the localizing power
differs. Lastly, it should be noted that the S-statistic has
recently been generalized and used in a multivariate
linear modelling framework (Worsley et al. 19975). This is
further discussed in the multivariate section of the
companion paper (Petersson et al., preceding paper). In
addition, the concept of set-level inference was recently
introduced (Friston et al. 1996). Set-level inference repre-
sents an omnibus test based upon the number of activated
clusters. Here the number of activated clusters is defined
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by two thresholds, an intensity or height threshold for the
test statistic, defining the voxels contained in a supra-
threshold cluster and a threshold for the clusters size. A
distributional approximation for this test, based on
stationary smooth Gaussian RFT and some additional
assumptions (high thresholds and a distributional approx-
imation for the number of voxels in a suprathreshold
cluster), has been derived (Friston et al. 1996).

(d) Statistical power in functional neuroimaging

Several authors have pointed to the problem of
statistical power in FNI (Andreasen et al. 1995; Grabowski
et al. 1996; Vitouch & Gluck 1997; Van Horn et al. 1998).
Most studies are interpreted with an informal notion of
power based on what has been detected in previous
studies and these considerations have been used to
determine the sample sizes. The need to specify the
spatio-temporal characteristics of the signal completely
(1.e. the alternative hypothesis) has precluded general
power analyses. Lack of statistical power may add a
complication to interpretation of the results. Lack of
power can be reflected in limited reproducibility of results
across similar experimental studies. For example, an
activation that does not reproduce across studies may be
the result of a false-positive detection, an effect specific to
the particular subjects studied or a false negative due to
lack of statistical power. There are some indications that
the number of subjects commonly used in FNI studies
may need to be increased to obtain reproducibility even
at nominally high significance levels (Strother et al. 1997).
A natural strategy for increasing statistical power is to
increase the sample size (Vitouch & Gluck 1997; Van
Horn et al. 1998). In the case of fixed effect studies and
fMRI this is less of a problem. However, in random
effects analyses (cf. Petersson et al., preceding paper), the
number of subjects is a major determinant of statistical
power. In particular, when the interindividual variability
is large relative to the intra-individual variability, it is still
the number of subjects included in the study that is most
important when seeking to generalize the results to the
population sampled (even though many scans may be
available per subject).

4. RANDOM FIELD (RF) APPROACHES

RFT has been extensively developed and used in
assessing the significance of signals present in FNI data.
The RFIT approach provides a way of handling the
problem of multiple non-independent comparison in large
FNI data sets. Essentially, the RFT approach allows for
spatial correlation between voxels in the statistical image
when correcting for multiple comparisons, thereby
improving on the Bonferroni correction. With a single
threshold test, where all suprathreshold voxels are
declared activated, the omnibus hypothesis is rejected as
soon as a voxel with maximum value exceeds the
threshold. Thus, when a single threshold test is used, the
distribution of interest is that of the maximal value
(global maximum) in the random field. RFT is used to
deduce an approximate distribution characterizing the
distribution of the global maximum, using results on the
expectation of topological characteristics of excursion
sets, the set of points with values above a given threshold.
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Examples of topological characteristics that have been
very useful in smooth RFT are the Euler characteristic
and the Hadwiger characteristic. At high thresholds u,
the Euler characteristic counts the number of connected
components minus the number of holes plus the number
of hollows (Worsley 19966). For higher thresholds, the
holes and hollows occur with low probability, that is, they
tend to disappear and the FEuler characteristic will
approximately count the number of local maxima. For
even higher thresholds near the global maximum A, the
Euler characteristic counts 1 if M>u and 0 otherwise,
such that the expected Euler characteristic approximates
the p-value of M. This p-value approximation is used for
significance evaluation of the local maximum statistic.
The fundamental results for Gaussian RFs (GRFs) can
be found in the work of Nosko (1969), Hasofer (1976) and
Adler (1981).

Applications of RFT to FNI data were first described
in the seminal papers of Friston et al. (1991) and Worsley et
al. (1992). They presented methods of testing for the
intensity of the signal using the maximum test statistic in
statistical images in two and three dimensions, respec-
tively, using smooth GRFs. GRF theory was later used to
derive approximate distributions for the size of the largest
suprathreshold cluster, where clusters are defined by a
primary threshold at predetermined height (Iriston et al.
19946). One reason for using the size of clusters above a
given threshold is that this may be a more sensitive test
for spatially extended activations in FNI data, since
localizing power at the voxel level is not demanded. The
local maximum statistic is not always the most sensitive
way of characterizing the signal in FNI data. Further
work provided the means of computing the probability of
getting N clusters of size greater than K in a given search
volume (Friston et al. 19945). More recently, with some
additional assumptions, an approximate distribution for
the conjoint distribution of the size £ and the maximum
value in a cluster were also derived (Poline et al. 1997).
The search for local maxima over different scales has also
been made possible in the GRF context (Siegmund &
Worsley 1995; Worsley et al. 19965).

RFT has been further developed to accommodate
other statistic fields, such as ¢-, x*- and F-fields (Worsley
1994; Cao 1999). These non-GRFs are constructed from
GRFs. The x’-fields are constructed as the sum of
squared GRFs, F-fields are constructed as the quotient
between two x2-fields and t-fields are constructed as the
quotient between a Gaussian and the square root of a -
field. In general, there are fewer results for non-GRFs.
However, these fields are fundamental when the local
variance cannot be considered constant across the volume
(-fields) or when testing for a number of effects at each
location (x* or Ffields). Recently, RFT has been
extended to include theory for different covariance fields,
so-called autocorrelation, cross-correlation and homolo-
gous correlation fields (Cao & Worsley 1999; cf. §3(e) in
Petersson et al., preceding paper).

In the original work of Worsley et al. (1992) it was
assumed that the excursion sets did not touch the
boundary of the search volume, limiting the results to
infinite search volumes. The results are reasonable
approximations for finite search volumes provided the
search volume is large relative to the surface area and the
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smoothness of the field. These constraints have recently
been relaxed and a unified approach described; the RF is
transformed to an isotropic RF and then the volume,
surface area and diameter are estimated in the ‘resel
space’ (resel, resolution element; Worsley et al. 19964). In
this section, we review the assumptions on which the use
of smooth RFT is based and discuss some aspects of the
robustness of these methods. The more general assump-
tions are presented first. Tests that
constraining assumptions are presented later.

RFs are often introduced as underlying smooth RFs,
which are assumed to be well approximated by the
lattice representation, the discrete (voxellated) statistic
image process. The RFs in question are the component
fields, that is, the normalized error fields. Since the
variance field is unknown the residual images cannot be
normalized to obtain realizations of the component field
process (unless the variance can be assumed constant
across the volume and considered known by the high
degrees of freedom implicit in global pooling). Instead,
the residual images are viewed as approximate realiza-
tions of the error field process and the estimated
variance is used to standardize the residual images to
obtain estimates of the component fields. Alternatively,
one may take the opposite perspective that the discrete
statistic image is approximated with a smooth RF (of
the same size and smoothness). Note that, for GRFs, the
component field 1s the GRF itself, but for ¢-, F- and
x?-fields the component fields are the GRFs that are
used in generating the #-, F- and x2-fields, respectively.
Since the smoothness is defined on the component fields,
the smoothness i1s not simply related to the autocovar-
iance function (ACF) of the field itself but to the ACF of
the component fields.

require more

(a) Stationarity assumptions

Stationarity (also called translational invariance)
requires that the covariance structure of the RF does not
depend on its location in the field. In other words, it is
assumed that the ACFs of the unobservable component
fields approximated by normalized error fields, from
which the f-, F- or y’-fields are constructed, are not
dependent on their location in the field. For fMRI data
with many scans acquired per subject, it may be possible
to detect departures from stationarity (given adequate
statistical power) since it is possible to estimate a map of
local smoothness. Investigating the robustness of the RFT
approximations and results with respect to departures
from the stationarity assumption in simulated fields is of
some importance. However, some results for RFs with
local non-stationarities are under development (Worsley
et al. 1999).

It should be noted that voxel variance estimation is a
characteristic of statistical parametric mapping (Friston
et al. 1991, 19944, 1995). 'To leverage results for GRFs, the
resulting f-statistic image can be transformed pointwise
into a (-statistic image via a probability integral trans-
form. The resulting {-image is known as a Gaussianized
{-statistic image. After a local correction and with a
sufficient number of degrees of freedom, the -image
can be considered well approximated as a stationary
GRTY (Worsley et al. 1992). Sufficient image smoothing

should ensure that the local covariance structure is
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approximately stationary. However, there are signal
detection issues and other problems associated with too
much filtering (cf. §2). In general, RFT models the
stationary covariance component, which in practice is
often local. In addition, there may be a non-local, non-
stationary covariance structure (e.g. distant voxels may
be correlated). Some empirical results indicate that the
p-values for local maxima may not be greatly affected
by local non-stationarity. In contrast, the p-values for
cluster sizes were more sensitive to this non-stationarity

(Worsley et al. 1999).

(b) Regularity conditions, lattice representation,
sampling issues and smoothness estimation

Another general assumption in the application of
smooth RFT to discrete statistical images is that the
statistical image can be considered as a well-sampled
version of the smooth RF or, conversely, that the smooth
RF is a good approximation of the statistic image. All the
tests described that are applied to the discrete statistic
images require that this assumption is a reasonable
approximation. In theory, the tests are applicable to
smooth RFs requiring that some regularity conditions be
fulfilled. In particular, the smooth RF should be differen-
tiable (i.e. L2 differentiable; cf. Adler 1981; Worsley 1994,
1995). In practice, these assumptions are reasonable for a
sufficiently large number of degrees of freedom and a
sufficient amount of image smoothing during pre-proces-
sing (Worsley et al. 1992, 1996a). In general, the frequency
spectrum of the stochastic process is not bounded, but in
experimental data the observable frequencies are limited
(1.e. only the frequencies below half the frequency of the
sampling process are observable by the Shannon—Nyqvist
sampling theorem). The sampling becomes
particularly important in the context of ‘smoothness’
estimation.

Smoothness estimation amounts to the estimation of a
parameter related to the spatial ACF. Note that no
assumption is made on the shape of the ACF, the only
requirement being that it is twice differentiable at the
origin. It can be shown that this second derivative is
always negative and equals minus the variance of the
derivative of the process (Adler 1981). It should also be
noted that the smoothness estimation in RFT relates to
the spatial autocorrelation of the statistic image, which is
described by the smoothness parameter and this is
different from image smoothing or filtering applied to
the data during pre-processing. Specifically, the ACF of
interest is that of the statistic image and this is in
principle different from the ACF of a smoothing filter
applied to the data during pre-processing. The smooth-
ness estimate is based on the determinant of the
variance—covariance matrix of the partial derivatives of
the component RF (Worsley 1996q). If it is assumed that
the principle axes of the covariance function are aligned
with the axes of the statistical image then all off-
diagonal elements of this matrix are zero and only the
diagonal elements need to be estimated. However, this
assumption is not required (Worsley et al. 1992). The
approach proposed by Worsley et al. (1992) was limited to
cases where the excursion set did not touch the boundary
of the search region and in Worsley et al. (19964) this
assumption is relaxed.

issue
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The sampling or voxel size issue 1s an important
constraint in relation to the smoothness estimation in the
statistic image and this issue has become increasingly
important with fMRI data, which in general have a
better spatial resolution than PET data. Smoothness
estimation has been the subject of several investigations,
particularly for images with limited spatial
correlation. The smoothness of the statistic image is a
central parameter in the assessment of the probability of
occurrence of a maximum above a given value and for
the approximate distribution of the size of regions above
some threshold. In case the estimated smoothness,
measured in FWHM (full width at half maximum), is
less than three times the voxel size it cannot be expected
that the RF is well sampled. In other words the statistic
image is not well approximated by a smooth RF. It has
been observed that the smoothness is overestimated at
low FWHM (Forman et al. 1995, Xiong et al. 1995;
Ledberg et al. 1998). This leads to a conservative test and
loss of power for the suprathreshold cluster size statistic.
One may think that this also would lead to an increased
false-positive rate of the local maximum statistic, but at
small smoothness values this effect is counteracted by the
fact that the smooth RF has features at the subvoxel level
which are not evident in the statistic image. Specifically,
the subvoxel resolution structure becomes increasingly
likely as the smoothness of the RF decreases (which is just
another way of saying that as smoothness decreases the
RF 1s less well sampled). This effect will (at some point)
more than compensate for the effect of overestimated
smoothness. It has been observed (Worsley 1997) that the
RFT correction of the local maximum statistic is conser-
vative and may in certain cases be more stringent that the
Bonferroni correction (at low smoothness). Instead,
Worsley (1997) proposed a continuity correction in the
special case of a GRF with a Gaussian ACF to bridge the
gap between the case of independent voxels (for which
the Bonferroni correction is accurate) and the case of
large smoothness : voxel size ratio for which the RFT is
accurate. There are several other suggestions to correct
the inflated measure of smoothness at low FWHM, parti-
culary in the context of suprathreshold cluster size tests
(Forman et al. 1995; Xiong et al. 1995). Note that, unless
the estimated smoothness in FWHM is greater than three
times the voxel size, the good lattice representation condi-
tion required by the RF approach cannot be considered
fulfilled. Instead, the smooth RF approach becomes
increasingly inadequate at lower smoothness and other
approaches to statistical inference have to be applied.

Xiong et al. (1995) derived an estimate of the smooth-
ness parameter based on heuristic arguments. At low
smoothness, this estimate shows less discrepancy with the
expected value than the estimate used for well-sampled
RFs. Xiong et al. (1995) also proposed an empirically
estimated correction of the approximate distribution of
suprathreshold cluster sizes. Both the estimated smooth-
ness and the estimated distributional correction introduce
variability in the estimated p-values (Poline e al. 1995).
Xiong et al. (1995) used these estimates in combination
with a GRYF approach. This lacks theoretical foundation
since the theory for smooth RF requires that the condi-
tion of good lattice representation be reasonably fulfilled.
However, the approach was validated on phantom data

auto-
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and on simulated two-dimensional (2D) Gaussian white
noise processes convolved with a Gaussian kernel giving
rise to a Gaussian ACF (which seems to be a good
approximation for appropriately filtered fMRI data).
There was fair agreement between the estimated and
observed results (Xiong et al. 1995). Related work has
been carried out by Forman et al. (1995). They derived a
modified estimate of the smoothness parameter that was
used in combination with a Monte Carlo approach
(cf. §7(c)). The modified estimate shows less discrepancy
to the expected value than the estimate used for well-
sampled RFs. However, as already indicated, smoothness
is a concept from the theory of smooth RFs and the use
of this concept in situations when this theory becomes
increasingly inadequate requires careful validation.

Recent developments in RFT are related to the issue of
continuity corrections. Results have been derived for
GRFs while the results for ¢- and F-fields are still
unknown (K. Worsley, personal communication). In the
case of GRFs, the results are not much different from the
minimum of the Bonferroni and the Adler threshold
(K. Worsley, personal communication). The results from
RFT are applicable under the assumption of good lattice
representation. To achieve this, one possibility is to filter
the data and another is to use a supersampling inter-
polation approach (Friston et al. 1996). If the underlying
biological signal can be considered continuous, the
sampled volume can be interpolated to ensure that the
FWHM is three times larger than the voxel size, a value
for which the original smoothness estimation is accurate.
The interpolation kernel used should reflect the a prior:
hypotheses about the smoothness of the underlying
process, although it is unlikely that the choice of the inter-
polation kernel will make very much difference in actual
analyses. In the case of fMRI data, the best way is sinc
interpolation, but this does not quite maintain
stationarity. Instead, the highest possible frequency
should first be filtered out and then sinc interpolated so
that exact stationarity is preserved (K. Worsley, personal
communication).

(1) Robustness of the smoothness estimate

The estimation of the smoothness parameter should be
independent of experimentally induced effects. Smooth-
ness estimation should generally be made on the residual
images. Worsley e al. (1992) estimated the smoothness on
the difference images minus the average difference image
divided by the global variance estimate (i.e. the residuals).
Under the assumption that the global variance estimate
can be regarded as the true global variance (because of
the large number of degrees of freedom implicated), these
difference images then have the same variance structure
as the underlying component fields. In a general linear
model context, the residual image corresponds to the
original image data minus all model effects and after
standardization to unit variance at each voxel. Since the
estimated voxel variance is used to standardize the resi-
dual fields resulting in additional noise in the estimated
component fields, a correction for the degrees of freedom
is necessary (Worsley et al. 1992; Worsley 19964).

It is important to note that the smoothness estimate
itself 1s the realization of a random variable (Poline et al.
1995). Poline et al. (1995) gave an approximate expression
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for the variance of this estimator. When estimated on a
single image, the variability of the resulting corrected
p-value is found to be moderate (i.e. s.d.(p)/E[ p] is of the
order of 20%). Averaging the estimation over several
residual images can reduce this variability. In fMRI
where the number of volumes per subject can be very
large, it is necessary for practical reasons to limit the
number of residual images on which this estimation is
performed. The estimate is expected to be very stable
when performed on more than 60 residual images.
However, the appropriateness of the estimate depends on
the adequate fit of the statistical model at a sufficient
number of voxels.

(c) The Gaussian assumption and Gaussianized
t-fields

The Gaussian assumption is fundamental to the results
derived by Adler (1981) and Worsley et al. (1996a,b). The
RFs are assumed to be smooth stationary standard GRFs.
That is, the marginal distributions are assumed to be
multivariate Gaussian with zero mean, unit variance and
with the same covariance structure for any pattern of
locations regardless of position within the field. Even if
the expected value for the Hadwiger characteristic is
given for any RF (Worsley 1995), the actual computation
of this requires a known parametric form of the marginal
distributions of the RF. The corrections proposed in the
unified approach (Worsley et al. 1996a) assume either
Gaussian, x2-, F- or t-fields (see also Worsley 1994). In
some sense, all these are based on the multivariate
normal assumption since x?-, F- and tfields are
constructed from GRFs.

The multivariate Gaussian assumption is difficult to
verify for FNI data. However, sufficient image smoothing,
a sufficient number of effective degrees of freedom and
the multivariate central limit theorem (Billingsley 1995)
lend support to the approximation. On the other hand, it
is fairly simple to test for normality in each voxel of the
residuals. These tests have so far not indicated significant
departure from the Gaussian assumption (Poline &
Mazoyer 1993; Holmes 1994; Aguirre et al. 1998;), but the
issue is to test for the multivariate Gaussian behaviour of
any set of voxels. As suggested by the central limit
theorem (Billingsley 1995) and the fact that the PET
reconstruction process (filtered back projection) implies
summations of a large number of Poisson distributed
count data, the regional activity in reconstructed PET
images is expected to be approximately Gaussian distrib-
uted. Further, it has recently been shown that, as the
projection counts approach infinity, the reconstructed
images will become multivariate and normally distrib-
uted, given that PET projection data are Poisson distrib-
uted (Maitra 1997). However, in the case of low-count
PET data there may be departures from normality. An
attractive alternative is to cross-validate the smooth RF
approach through comparison with non-parametric
procedures (Nichols & Holmes 1999).

Empirical validation of the RFT results for ¢-, F- and
x2-fields with large degrees of freedom is computationally
demanding. Many GRFs have to be simulated and then
combined, this process being replicated a great number of
times to obtain a reasonable estimate of the number of
level crossings for high thresholds, so that the tails of the
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probability distributions are well estimated. In this
context, it should be noted that Gaussianized i-fields are
fundamentally different from GRTs (Worsley et al. 1992,
19964; Worsley 1994; Worsley & Vandal 1994; Cao 1999),
since in general the marginal distributions are not multi-
variate Gaussian. In principle, this implies that Gaussia-
nized f-fields cannot be directly simulated by GRFs.
Approximating Gaussianized t-fields with GRFs, without
appropriate corrections will lead to an increased false-
positive rate of the local maximum statistic for small to
moderate degrees of freedom (i.e. 10-40d.f.; cf. Worsley
1994, 1997; Worsley et al. 1996a), while the opposite is the
case for the suprathreshold cluster size statistic (Cao
1999). For example, at 40d.f. and a search volume of
1000 cc, a nominal 5% false-positive rate of the local
maximum statistic corresponds to an actual test size of
6.9% (i.e. the true false-positive rate). This implies that at
low degrees of freedom it is preferable to use the results
on ¢-fields directly rather than attempt to Gaussianize the
t-field.

(d) Global variance pooling

The assumption of unequal voxel variance across the
brain volume has not always been rejected in PET data
(Worsley et al. 1992, 1996a). However, there 1s evidence
that this assumption is not generally tenable (Holmes et
al. 1996; Worsley et al. 19964a), particularly for fMRI data
(Worsley et al. 19974). This would imply the use of ¢-field
results but, more often than not, these will be catered for
by GRF theory after Gaussianization when the number of
effective degrees of freedom is sufficiently large. As a
curious observation, the global pooling of variance may
have adaptive signal detection properties, that is, possible
underestimation of variance in activated areas in
combination with overestimation in non-activated areas,
enhancing the contrast between activated and non-
activated regions. There are some indications that the
stationary variance assumption may be less problematic
in relation to the false-positive rate for PET data
(Grabowski et al. 1996; Worsley et al. 19964). In an
empirical study, no false-positive activations
observed and the replicability (as measured in this study)
was no lower when compared to other methods investi-
gated (Grabowski et al. 1996). The pooled variance
approach seems to tolerate variations in the voxel
variance of ca. 8%, while the local approach seems to
tolerate variations in the variance between experimental
conditions of c¢a. 6% reasonably well (Worsley et al.
19964). In the case of low degrees of freedom it would be
attractive to be able to use the pooled variance estimate,
thereby obtaining a more reliable variance estimate.
There are some indications that using a pooled variance
estimate may give results that are more reproducible
compared to using voxel variance estimates (Hunton et al.
1996; Strother et al. 1997). Since a statistic image is
constructed by dividing the estimated signal image by the
estimated standard deviation, any noise in the variance
image 1s propagated to the statistic image. In particular,
this 1s a problem for f-statistic images with low degrees of
freedom, even though the signal image may be smooth.
Since the variance image is noisy at low degrees of
freedom, this implies instability in the location of the
local maximum statistic (Taylor et al. 1993; Grabowski et

were
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al. 1996; Holmes et al. 1996; Hunton et al. 1996). The
properties of such noisy statistic images are not well
approximated by those of a smooth RF with the same
smoothness, since the smooth RF may have subvoxel
resolution features. The net result is that the RF approach
1s conservative for voxel level inference at smaller degrees
of freedom. A preferable strategy in this case would be to
pool the variance estimates locally, effectively smoothing
the variance image. However, this requires a non-para-
metric approach to statistical inference (Holmes et al.

1996).

(e) The high threshold assumption

As previously noted, the expected Euler characteristic
approximates the probability of detecting a local
maximum above a given threshold, when the given
threshold 1s high (Worsley 19964). Thus, it is necessary to
use high thresholds in order for the p-value used for
significance evaluation to be a good approximation. The
approximation appears to be accurate for high thresholds
such that the p-value is less than 0.2 (Worsley e al. 1996q).
At lower thresholds the expected Euler characteristic
approximates the expected number of local maxima. In
fact, the approximation of the expected number of local
maxima by the expected Euler characteristic turns out to
be a very good approximation (Adler 1998).

(f) Cluster size tests

One may argue that suprathreshold cluster size tests
are useful when areas of neural activity will give rise to
signal changes in contiguous voxels. In this situation, the
suprathreshold cluster size tests may be more sensitive
than the local maximum statistic, since cluster size tests
do not have localizing power at the voxel level. 1o derive
the approximated distribution for the cluster size above a
given threshold, that is the probability of getting ¢ or
more clusters of size £ or larger, additional assumptions
have to be made (Friston et al. 1994b). First, to derive the
approximate distribution of the suprathreshold cluster
size under the null hypothesis, the occurrence of clusters
is approximated by a Poisson process, with the expected
number of clusters given as the expectation of the Euler
characteristic (Adler 1981, theorem 6.9.3). An approxima-
tion of the distribution of cluster size for high thresholds
was given by Nosko (1969), parameterized to match the
known expected region size. Combining these two results
yields the distribution of the maximal suprathreshold
cluster size. Simulation studies indicate that the empirical
results are well approximated by the theoretical results
(Friston et al. 1994b). Simulations have only been carried
out at one threshold defining the clusters and for relatively
large smoothness values. Since boundary corrections have
so far not been developed in this context, it is important
that the search volume is large compared to the smooth-
ness of the statistical image. However, the results are
likely to be conservative, since if the volume is small then
the boundaries will tend to reduce the size of clusters. The
assumptions for the set level of inference are essentially
the same (Triston et al. 1996).

(1) The bivariate suprathreshold conjoint test
The bivariate conjoint test was designed to detect
signals that are either focal or have a large spatial
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extent. It can be viewed as a way to correct for a two-
tests procedure (maximal intensity and spatial extent).
The derivation of an approximate bivariate distribution
for the maximum value and the suprathreshold spatial
extent of a cluster defined by thresholding require the
additional hypothesis of a Gaussian ACF for the GRF
(Poline et al. 1997). It uses the form of the distribution of
the peak height above a threshold and an approximation
of the shape of the RF around local maxima. Simulation
studies indicate that the derived approximate distri-
bution works reasonably well (Poline et al. 1997). The
Gaussian ACF approximation is expected to perform
well in the vicinity of local maxima; however, its robust-
ness to variability of the assumed kernel shape remains
to be demonstrated.

(g) RFT: a short summary

To summarize, the RIFT has proved versatile in testing
a number of statistics, such as the local intensity
(maximum), the size of regions above a given threshold
or the number of regions larger than a given size. The
approach makes no or little assumption about the shape
of the covariance function but assumes a stationary
multivariate Gaussian distribution for the component
fields, generally assessed on standardized residual
images. Automatic procedures to verify such assumptions
may take the form of multivariate analysis and tests on
the standardized residuals (Poline et al. 1998). The
smooth RFT approach has been extensively validated on
simulated data, which fulfil the assumptions of the
approach and, hence, assess the theoretical approxima-
tions made. Validation using simulated data fulfilling the
assumptions does not indicate the robustness of the
method and it is seldom investigated how well a given
FNI data set fulfils the assumptions of the RFT
approach, the principle problem being the generation of
enough representative real data characterizing a given
null hypothesis. However, empirical studies using real
null data have been reported indicating that the RFT
approach gives reasonably accurate results (Aguirre et al.
1997; Zarahn et al. 1997). In addition, investigations of
the robustness and characterization of inherent limita-
tions of the RFT approach, with respect to the various
assumptions and parameters, have been carried out, for
example degrees of freedom (Worsley et al. 1992),
smoothness estimation (Poline et al. 1995) and variance
heterogeneity (Worsley et al. 19964). Alternatively, non-
parametric methods may be used as benchmarks for
cross-validation of the RFT approach (Nichols &
Holmes 1999).

5. SCALE SPACE APPROACHES

The matched filter theorem indicates that a matching
filter optimizes detection sensitivity (cf. §2(b)). This also
implies that a particular choice of filter biases the detec-
tion sensitivity towards signals of a certain shape and
size. For sufficiently different signals the filter choice will
be suboptimal and reduces detection sensitivity. Note also
that the detection sensitivity of the local maximum
statistic may in general be more sensitive to an optimal
filter choice than, for example, the suprathreshold cluster
size statistic. Empirical studies have indicated that
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filtering or image smoothing may modulate both the
observed effect size and statistical power (Van Horn ef al.
1998), while theoretical work indicates that an inade-
quate filter choice can drastically reduce the detection
sensitivity (Poline & Mazoyer 19944; Worsley et al.
19966). In addition, experimentally induced signals at
different locations of the brain often differ both in size
and shape, precluding the existence of a single optimal
filter. A multifiltering approach has been suggested
(Poline & Mazoyer 1994¢) as a solution to these problems.
The multifiltering approach commonly uses a scale or
parameter family of filters (e.g. isotropic Gaussian kernels
parameterized by FWHM or filter width). This creates a
scale space, that is, a scale dimension is added to the
common Euclidean 3D space and the resulting four-
dimensional scale space is then searched for signals. The
multifiltering approach is less biased with regard to detec-
tion sensitivity than a single-filter approach; it may
increase the overall detection power (unless prior informa-
tion on the signal size or shape is available) and provide
information on the actual signal size. Multifiltering
implies an extended search compared to the single-filter
approach; therefore, the critical thresholds need to be
adjusted to control the false-positive rate appropriately,
accounting for the additional non-independent multiple
comparisons over the scale dimension.

The multifiltering approach of Poline & Mazoyer
(1994¢) depends on the prior selection of a finite number
of filter widths. Poline & Mazoyer (19944,b,c) also
suggested combining the multifiltering with a hierarchical
decomposition technique and a Monte Carlo approach to
statistical inference (cf. §7). An alternative scale space
approach for PET data has been described by Worsley et
al. (1996b6). This approach solves the inference problem for
a smooth stationary GRF, assuming approximately
homogenous voxel variance and using the pooled
variance estimate. In addition, the spatial ACF is initially
approximated as a Gaussian estimate with subsequent
non-Gaussian corrections. Extensions of this approach to
t-fields appear theoretically difficult (Worsley et al. 19974;
Worsley 1999). Worsley et al. (1996b) suggested that a
work around may be to create a t-image at the highest
resolution, Gaussianize by pointwise transformation and
then smooth this {-image to the various resolutions. The
notion is that the smoothed Gaussianized ¢-field may be
adequately approximated by smooth stationary GRFs.
Since the images are supposed to be sampled versions of a
continuous process, an interpolating supersampling
approach may improve the approximation. This latter
approach may be applicable to fMRI data. Since the
extent of the inherent spatial ACF of fMRI data is
commonly limited compared to PET data (Forman ez al.
1995; Frackowiak et al. 1997), the ACF of the smooth
statistical image should be well approximated by a
Gaussian ACF. However, recent developments in RFT
(Worsley 1999) extend the scale space approach to x2-
fields. This approach has applications to fMRI data with
spatially varying haemodynamics (Worsley et al. 1997q)
and offers a parametric alternative to the approach
suggested by Bullmore et al. (1996).

In summary, there may be situations in which the loss
of overall detection sensitivity with the single-filter
approach due to variable signal size may be comparable
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to the cost of testing a range of filters. However, to take
advantage of this requires prior information. When there
is limited prior information on the shape or spatial extent
of the activation, a scale space approach allows a less
biased detection sensitivity and the overall detection
sensitivity can increase (Poline & Mazoyer 1994b,c;
Worsley et al. 1996b). The scale space approaches
suggested so far have used 3D Gaussian convolution
kernels that may not be optimal for all regions of the
brain. Future developments may include nonlinear scale
space approaches, allowing for adaptive or anisotropic
filtering optimized for the anatomical
structure. Different measures in linear scale space have
been suggested, accounting for different anatomies
(Coulon et al. 1997). It should be noted that filtering
increases the detectability at the expense of resolvability,
that is, filtering may slightly dislocate activations or fuse
adjacent activations. However, fused activations may be
detected as bifurcations in scale space (Worsley et al.
19964). Currently, no non-parametric scale space ap-
proaches have been proposed, but in principle could offer
the relaxation of specific assumptions, including Gaussian
ACF and equal voxel variance.

underlying

6. NON-PARAMETRIC APPROACHES

As previously described, statistical hypothesis testing
requires knowing the distribution of the test statistic
under the null hypothesis. There are situations where the
assumptions that justify a specific form or parametric
family of null distributions are untenable or difficult to
verify. In those cases non-parameteric tests are an
important alternative. Instead of assuming a particular
parametric form, non-parametric tests derive the null
distribution empirically. Fisher (1935), arguably the
progenitor of modern statistics, introduced the randomi-
zation test early this century as a fundamental tool of
statistical ~ inference. However, the computational
demands of the randomization test were then too great
for all but the simplest problems and, hence, they enjoyed
little use until recent advances in computing made them
more accessible. In this section we will review non-
parametric tests, the permutation and randomization test
in particular and indicate how the non-parametric
approach has been applied in FNT.

The hypothesis-testing framework is the same as
described above. A statistical model is defined, the
parameters estimated, a null hypothesis defined and a test
statistic calculated. The distinction between parametric
and non-parametric tests lies in calculation of the p-value.
For the parametric test the assumptions provide a
parametric or analytical null distribution, while for the
non-parametric test the null distribution is determined
from the data. The fundamental idea is that of exchange-
ability under the null hypothesis. Data are exchangeable
if permutation of data or its labels does not change the
distribution characterizing the experiment. Specifically, a
set of random variables is exchangeable if (and only if)
their joint distribution is invariant with respect to permu-
tations of the random variables. Thus, if the data are
exchangeable under the null hypothesis, each test statistic
value computed from each permutation of the data is
equally likely. A distribution of equally likely statistical
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values is then used to assess the extremity of the observed
statistic value: the p-value is the proportion of the permu-
tation distribution greater than or equal to the observed
statistic. An important characteristic of randomization or
permutation tests is that they are exact if the assumption
of exchangeability is fulfilled under the null hypothesis.

There are two possible justifications of exchangeability,
either from randomization in the experimental design or
by post hoc assumption. Obviously the former 1is
preferred, but it is not always possible to achieve. When
there is no randomization the test procedure is called a
permutation test. (We will use the term permutation test
from here on unless a distinction is needed.) In some cases
there may be implicit sources of non-exchangeability even
under the null hypothesis. For example, if there is a
temporal trend in the data, the data would not be
exchangeable, even if no experimental effect or activation
is present, since subtracting early data from late data will
create a larger expected activation than a more tempo-
rally balanced subtraction. Another important example
of non-exchangeability under the null hypothesis is the
temporal autocorrelation of fMRI data (Zarahn et al.
1997). It should be noted that, in a design with few repli-
cations or a multisubject analysis with few subjects, there
are few ways to permute the data and, hence, the permu-
tation distribution will be discrete or coarse. For example,
if there are just 20 possible permutations, then the
smallest possible p-value 1s 1/20 =0.05. A practical limita-
tion of the permutation test for PET data is the need for
numerous permutations.

Another key strength of non-parametric methods is
that they allow the use of non-standard test statistics with
unknown parametric forms. Holmes e al. (1996) demon-
strated this with their permutation test for PET data. In
particular, by using the distribution of maximal statistics
their test gave strong control of the image-wide false-
positive rate without any RF assumptions (cf. § 3(b) for a
description of strong control). They also used the
smoothed variance {-statistic, called the pseudo #-statistic.
Since PET data often have rather limited degrees of
freedom, this will result in poor variance estimation,
resulting in a noisy variance image. The noisy variance
image translates into a noisy ¢-image, even if the mean
difference image is smooth. The pseudo ¢-statistic
smoothes the variance image locally, decreasing the
uncertainty of the variance estimates (possibly) at the
cost of increased bias. Whilst there are RFT results for
Gaussian, ¢-, F- and x %-images, there are none available
for the pseudo ¢-image. However, a non-parametric
approach makes it possible to use the pseudo {-statistic
and assess the significance of local maxima in pseudo ¢-
images. Recently, this work has been expanded to encom-
pass more experimental designs, as well as the supra-
threshold cluster size statistic (Nichols & Holmes 1999).

Application of the permutation test to fMRI is
hampered by temporal A possible
approach to temporally correlated data is to model the
temporal autocorrelation appropriately. For example,
Bullmore et al. (1996) used a parametric first-order auto-
regressive model to account for the autocorrelation and
then decorrelated or whitened the data. Since null data
were found to fit known parametric null distributions
poorly, a non-parametric method was

autocorrelation.

used. Since
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whitened data are approximately exchangeable, permuta-
tion distributions were created by permuting the
whitened data. (The whitened data are not perfectly
exchangeable because the temporal autocorrelation para-
meter used to whiten the data is just an estimate, instead
of true, unknown autocorrelation.) In addition, the
assumption that the null distribution is the same for all
voxels was introduced, the results pooled over the whole
search volume and, hence, only ten permutations were
calculated at each voxel. This assumption is questionable,
particularly in the light of more recent work (cited
below). Furthermore, the central problem of multiple
comparisons was not addressed, except to report the
image-wide false-positive rate in pixels. Finally, Bullmore
et al. (1996) presented a means of assessing the pixelwise
power of the method, which is a rare finding in the FNI
literature.

Locascio et al. (1997) suggested time-series analysis in
the time domain in combination with resampling
methods, following an approach similar to Bullmore et al.
(1996). In brief, temporal autocorrelation was estimated
using a parametric model and, based on this estimate, the
data were whitened; the whitened data were then
submitted to a permutation test for statistical inference.
Specifically, the parametric model used was a combina-
tion of the general linear model and an autoregressive
model of arbitrary order; through model selection tech-
niques they found that different autoregressive orders
were necessary in different voxels. In order to handle the
multiple comparisons problem and gain strong control of
the imagewise false-positive rate, they used the maximal
{-statistic and a permutation test.

Finally, it has been noted that exchangeability of the
experimental labels is sufficient for a valid permutation
test. For example, Liu et al. (1998) analysed fMRI data
from an ‘oddball’ paradigm study, where stimuli are
presented rapidly and the target stimuli are presented
infrequently. Since the pattern of target stimuli was
random, exchangeability of the experimental labels of
‘target’ or ‘non-target’ were guaranteed regardless of the
temporal autocorrelation structure. This approach also
applies to block-design fMRI studies when the blocks are
randomized.

In general, non-parametric approaches make minimal
assumptions on data and offer great flexibility in the
choice of test statistics. In fact, any test statistic may be
used; Bullmore e al. (1996) used the experimental
frequency power and a non-parametric approach because
there was no satisfactory parametric form available. Like-
wise, Holmes et al. (1996) used the pseudo t-statistic and a
non-parametric approach because there was no para-
metric form at all. The cost of non-parametric tests is a
computational one, though for PET data this is not exces-
sive (Nichols & Holmes 1999). In addition, since there
may be implicit sources of non-exchangeability even
under the null hypothesis, care has to be taken to ensure
that data are at least approximately exchangeable.

7. MONTE CARLO APPROACHES

In this section the Monte Carlo approach to statistical
inference 1s introduced and some necessary conditions for
this approach to be valid are discussed. Three different
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Monte Carlo methods that have been applied to FNI data
are described. In general, Monte Carlo methods have
changed the field of statistics, taking problems that were
intractable and providing straightforward approximate
and pragmatic solutions. The Monte Carlo or empirical
simulation approach to statistical inference is concep-
tually simple. A test statistic that characterizes the
phenomenon of interest is chosen and the noise distri-
bution, that is, the distribution under the null hypothesis,
1s approximated on the basis of simulated data. This
presupposes that all relevant aspects of noise or null
conditions are captured in the simulations. The simulated
null distribution is then used to determine (estimated)
critical thresholds for hypothesis testing and significance
assessment. In FNT applications of this approach, discrete
statistic images are simulated which are assumed to
approximate the real statistic fields under the null
hypothesis. These simulated realizations are then used to
characterize the (simulated) distribution of the test
statistic by plotting frequency data. Like non-parametric
approaches, this approach offers great flexibility in the
choice of parameter ranges (e.g. degrees of freedom and
smoothness) and test statistics.

In general, Monte Carlo approaches are critically
dependent on accurate characterization and modelling of
null hypothesis conditions. Since the extreme tails of the
simulated probability distributions have to be estimated
with high precision, a large number of simulated realiza-
tions of the null hypothesis conditions are needed. High
precision in the tails is necessary in order to determine
the critical level for the chosen test statistic with sufficient
accuracy. The validity of the Monte Carlo approach to
statistical inference depends crucially on how well the
simulated distributions approximate the real null distri-
butions. In order to yield valid approximations, all the
important sources of variability represented in the
imaging process under null conditions have to be charac-
terized and modelled appropriately. In the case of FNI
this includes physical, physiological and cognitive sources
of variability. The principal problem is thus to charac-
terize the null conditions adequately. The difficulties lie in
determining what are the relevant null conditions and
how to characterize these and measure the relevant
aspects of the null conditions in terms of variability
sources.

The applications of the Monte Carlo approach to FNI
data described have attempted to simulate stationary
discrete statistic images, of which the marginal distribu-
tions and the spatial ACF are assumed to match image
noise or null conditions. In effect, the first two moments
characterizing the random image are matched and the
form of the marginal distributions and the spatial ACF
have either been assumed or estimated from noise images.
In the case of PET, there is often not enough null
condition data to estimate the relevant properties of null
data for a given experiment with a particular set of
subjects reliably. Instead, simplifying assumptions or
approximations become necessary. However, in the case
of fMRI, it may be possible to generate enough null data
under suitable conditions. Furthermore, since data from
different studies are likely to show different character-
istics, new simulations are required for each new experi-
ment or study population, with appropriately matched



1276 K. M. Petersson and others

Signal detection and statistical inference

parameters estimated on null data relevant to the new
experiment or study population. In addition, robustness
issues relevant to the Monte Carlo approaches have so far
not been investigated in any detail.

(a) Suprathreshold cluster statistics, hierarchical
decomposition and multifiltering

One of the first Monte Carlo approaches applied to
PET data used the suprathreshold cluster size as the test
statistic (Poline & Mazoyer 1993, 19944,b,c). Poline &
Mazoyer (1993) obtained the (approximate) distribution
of the maximal suprathreshold cluster size by simulations
using a Poisson approximation for the occurrence of
suprathreshold clusters and assuming a Poisson distribu-
tion for cluster sizes at high thresholds. Other simulation
approaches using the suprathreshold cluster size statistic
have also been described for PET (Roland et al. 1993;
Ledberg et al. 1998) and fMRI data (Forman et al. 1995).
It 1s of course possible to use other test statistics, for
example any interesting characteristic of the supra-
threshold cluster could be used for a suprathreshold
cluster test. An example is the excess mass statistic, that is
the sum of the voxel values of the suprathreshold cluster
(Holmes 1994). In general, when a cluster characteristic C
has been chosen, based on what is deemed a relevant
characteristic of the signal, the straightforward approach
1s to study the maximum of ¢, max[C]. This would auto-
matically handle the multiple comparisons problem and
also reduces the computational load. None of the
proposed Monte Carlo approaches have wused the
max[C]-statistic but have instead simulated the distri-
butions related to C.

One of the drawbacks with the suprathreshold cluster
size statistic is that the magnitude of the signal is not
considered (Poline & Mazoyer 19944,b). With the cluster
size statistic, clusters of the same size will be considered
equally likely independent of the magnitude of the voxel
values making up the clusters. This implies that a low-
intensity cluster of the same size as a high-intensity cluster
will be judged as occurring equally often by chance (i.e.
under the null hypothesis) which in general is not the
case. Instead, high-intensity clusters are generally less
likely to occur by chance than low-intensity clusters. This
problem is addressed, for example, by the excess mass
statistic and was the rationale for introducing the
bivariate suprathreshold cluster statistic (Poline &
Mazoyer 1994a). The rejection region for the bivariate
cluster statistics in the 2D parameter space turns out to
be difficult to estimate. In order to solve this problem the
Poisson approximation is invoked again. This approxi-
mation can only be expected to work well at ‘high’ iso-
cumulative curves (corresponding to high thresholds in
the univariate case), since the Poisson approximation
depends on the assumption of rare events. A simpler
solution, making the Poisson assumption unnecessary, has
been suggested (Holmes 1994, Appendix H, p. 226).

A general problem with any suprathreshold cluster
statistic 1s the fact that an arbitrary choice of threshold
determines what type of activations are possible or most
sensitively detected. For example, in the case of the cluster
size statistic, at low thresholds the critical cluster size will
tend to be large and focal activations are not detected;
likewise at high thresholds low-level activations will be

Phil. Trans. R. Soc. Lond. B (1999)

missed. The maximum excess mass and bivariate supra-
threshold cluster statistics partly solve this problem by
remaining sensitive to focal activations at low thresholds.
However, part of the problem remains, as no activation
can be detected below the chosen threshold. In response
to the fact that the arbitrary choice of threshold
determines which type of activation is most sensitively
detected, Poline & Mazoyer (1994a) suggested the
combined use of an image segmentation method called
hierarchical decomposition and multifiltering (Koenderink
1984; Lifschitz & Pizer 1990; Ter Haar Romeny et al.
1991). The approach is complicated by the fact that the
characteristics of the objects are recursively defined by the
decomposition procedure and are thus not independent
(Holmes 1994) which is also the rational for choosing a
Monte Carlo approach to statistical inference.

Another characteristic of suprathreshold cluster tests is
that they only have strong control over false positives at
the cluster level but not at the voxel level. This implies
that suprathreshold cluster statistics have reduced
localizing power: when a cluster is significantly activated
this does not give information on which voxels of the
cluster are activated. This is particularly problematic
when low thresholds are used, since the clusters will be
larger, that is, localizing power generally decreases with
lower thresholds, but there may be a gain in statistical
power (cf. §3(c)) under certain circumstances. Simula-
tions have indicated that this can be the case with fMRI
data (Iriston ef al. 1996). However, the same study also
indicated that this might not always be the case with PET
data. It is important to note that, in general, the results of
power studies are dependent on the nature of the signal
present in the data and the method used to detect it. The
study of Iriston et al. (1996) assumed a spatially distri-
buted signal with no predilection for any particular
region of the search volume.

(b) The cluster simulation method and spatial

autocorrelation estimation

In addition to the general limitations of the Monte
Carlo approach to statistical inference, the approach of
Roland et al. (1993) has several additional shortcomings
that have been thoroughly reviewed (Frackowiak et al.
1996; Petersson 1998). There seems to be a consensus that
this approach is inadequate and it has recently been
revised (Ledberg et al. 1998). Briefly, in the revised
approach (called the cluster simulation method) the
primary data is smoothed with a 3D isotropic Gaussian
filter and balanced noise images (cf. Ledberg et al. 1998)
are generated from PET data. The one-dimensional
marginal (voxel) distributions are assumed to be
approximately Gaussian and a f-image 1s created from the
balanced noise images. The ¢-image is then transformed
to a Gaussianized f-image (which is called a pseudo-
normal Z-image; cf. Ledberg et al. 1998). This
Gaussianized f-image is assumed to be stationary and the
spatial ACF is estimated directly from this statistical
image under the assumption of approximate stationarity.
The estimated ACF is used to derive a suitable
convolution kernel A. Simulated normal white-noise
Z-images are then convolved with the kernel A and
simulated distributions for the suprathreshold cluster
size statistic are generated. In effect, stationary Gaussian
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KZ-images are simulated and assumed to approximate the
relevant characteristics of the Gaussianized ¢-image.

The estimated kernel K and, hence, the simulated
distributions are affected by bias and variance of the ACF
estimate. The estimator used to estimate the ACF is
asymptotically unbiased and underestimates the spatial
extent of the true ACF on finite samples (Yaglom 1986;
Ledberg et al. 1998). The estimated ACF is truncated at
large lags where the ACF is judged not to be significantly
different from zero (Ledberg et al. 1998). It should be
noted that underestimating the spatial extent of the ACF
when the cluster size statistic is used will tend to under-
estimate the critical levels. If, in addition, the variability
of the ACF is appreciable or if the ACF is not reliably esti-
mated, then the critical levels will be unreliable. There
are some indications that the critical levels depend sensi-
tively on the ACF (Roland et al. 1993; Roland & Gulyas
1996) and how reliable the ACF estimate is in PET data is
an open question. It was suggested that this problem
could be handled by inflating the convolution kernel
(Ledberg et al. 1998). No procedural criteria for these
modifications of the convolution kernel are given and the
effects of these manipulations have not been character-
ized. The variability in the estimation of the ACF is char-
acterized by point estimates of the ACF variance on
simulated data. This approach implicitly assumes that
there are no other variability sources of the ACF than
those that can be well modelled as an interaction between
the convolution kernel and white-noise images. Variability
sources that possibly do not conform sufficiently well to
such a model are structured noise introduced by filtering
back-projected, low-count, Poisson-distributed data and
different physiological variability sources. This implies
that the variability of the ACF estimate on simulated data
may differ from the variability of the ACF estimate on
real null PET data. However, when the cluster simulation
method is compared with simulated reference data, the
estimated probability as a function of cluster size appears
conservative. There may be several reasons for this. First,
the estimated convolution kernel was inflated by adding a
constant at small lags. If this manipulation results in an
overestimated spatial extent of the convolution kernel,
then conservative results are to be expected. Second,
Gaussianized /-fields are fundamentally different from
GRFs (Worsley et al. 1992, 1996a; Worsley 1994; Cao
1999). In principle, this implies that Gaussianized f-fields
cannot be directly simulated by GRFs. Note that the
cluster simulation method simulates discrete GRFs, while
the reference distributions were determined on simulated
discrete Gaussianized ¢-fields. Approximating Gaussian-
1zed t-fields with GRFs without appropriate corrections
will lead to an overestimated false-positive rate of the
suprathreshold cluster size statistic and, therefore, lead to
a conservative test (Cao 1999), in particular for small to
moderate degrees of freedom.

The cluster simulation method was also validated on
real PET data. When applicable, non-parametric
approaches (making minimal assumptions) may be
viewed as benchmark methods for cross-validation of
other methods (Good 1994; Edgington 1995). The cluster
simulation method was compared with the non-
parametric method described by Holmes et al. (1996)
(adapted for the cluster size statistic) on a real PET data
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set. This comparison indicated that the cluster simulation
method tended to underestimate the critical cluster size at
lower thresholds, while it tended to overestimate the
critical cluster size at higher thresholds (Ledberg et al.
1998). Since new simulations have to be performed for
each new data set and these simulations are at least as
computationally intensive as the non-parametric method
of Holmes et al. (1996) and since the non-parametric
approach was used for validation, it seems that the non-
parametric method should be preferred when applicable.
Finally, in order to extend the cluster simulation method
to fMRI data, the method for generating noise images
has to be adapted to the fact that fMRI time-series
commonly show temporal autocorrelation (Weisskoff ez al.
1993; Itiston et al. 1994a; Worsley & Iriston 1995; Zarahn
et al. 1997; Purdon & Weisskoff 1998). If appropriate, null
conditions can be defined, an alternative possibility may
be to generate real fMRI null data (Aguirre et al. 1997;
Zarahn et al. 1997).

(c) A Monte Carlo approach to fMRI data

Forman et al. (1993) described a Monte Carlo method
for analysing fMRI data, both for spatially autocorrelated
and uncorrelated data. Here we comment on the auto-
correlated case, since fMRI data often show some spatial
autocorrelation. Briefly, the spatial autocorrelation is
approximated by a 2D isotropic Gaussian ACF and 2D
1sotropic Gaussian <-images are simulated by convolving
white-noise {-images with a suitable isotropic Gaussian
convolution kernel. In order to connect to real fMRI
data, the filter width of the convolution kernel is
estimated from noise /-images, which are generated
through random pairings within experimental conditions.
Finally, the simulated distribution of the suprathreshold
cluster size statistic under the null hypothesis is generated
based on the simulated data. Signal {-images are
generated through random pairings across experimental
conditions and the observed cluster sizes are compared
with the simulated distribution.

Since the smoothness estimate of Friston et al. (1991)
tends to overestimate the kernel width at low spatial auto-
correlation of the statistic image, Forman et al. (1995)
presented a modified formula to improve the estimation
of filter widths close to or below the pixel dimensions
(cf. §4(b)). It appears that the filter width is estimated
directly from the noise ~image under the assumption that
the t-image 1s sufficiently well approximated as stationary
and isotropic (i.e. the spatial ACF is translational as well
as rotationally invariant). It is unclear whether it is
assumed that the number of effective degrees of freedom
is large enough to approximate the {-image with an
1sotropic Gaussian {-image.

Forman et al. (1995) validated their approach against
real fMRI data by comparison of the cumulative cluster
size distribution from experimental (16 noise f-images in
two subjects) and simulated data. Although there seems
to be a fair agreement between the experimental and the
simulated cumulative distributions, there are apparent
systematic deviations (Forman et al. 1995). Finally,
Forman et al. (1995) emphasized that the approach (as
described) does not distinguish signal from
systematic artefactual sources of signal. Such sources
(e.g. biorhythms and artefacts related to motion) have to

true
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be removed or accounted for by some other means, for
example pre-processing or modelling.

In summary, Monte Carlo approaches to statistical
inference are critically dependent on characterizing and
modelling null data adequately. In order to yield valid
approximations, all significantly contributing variability
sources that are represented in the image process under
null hypothesis conditions must be sufficiently well
modelled (including physical or instrumental, physio-
logical and cognitive sources). This may put limits on the
generalizability of the results from Monte Carlo
approaches, since particular characteristics of the null
data related to the sample will be simulated. Since the
extreme tails of the simulated probability distributions
have to be estimated with high precision, a large number
of simulated realizations of the null hypothesis conditions
are needed. The applications of the Monte Carlo
approach to FNI data described have attempted to simu-
late stationary discrete statistic images, the marginal
distributions and spatial ACF of which are assumed to
match image noise or null conditions. In effect, the first
two moments characterizing the random image are
matched and the form of the marginal distributions and
the spatial ACF have either been assumed or estimated
from noise images. The spatial ACF has either been
estimated in its entirety (Ledberg et al. 1998) or under
the assumption that it belongs to some suitable predefined
class of functions (Poline & Mazoyer 1993; Forman et al.
1995). In particular, when the suprathreshold cluster size
statistic is used, underestimating the spatial extent of
significant autocorrelation or the variability of the ACF
will tend to make the critical levels for the cluster size
statistic artefactually small or unreliable. The robustness
of Monte Carlo approaches in relation to different
assumptions and the characteristics of real data are at
present unknown. In this context, the way null data are
characterized and noise images are generated is of central
importance.

8. CONCLUSION

Functional neuroimaging methods provide experi-
mental access to the living human brain and a framework
of well-described theories and empirically validated
methods is available. The field of FNI methodology has
developed into a mature but evolving area of knowledge
and applications have been extensive. In the companion
paper (Petersson et al., preceding paper) we discuss some
aspects of the complex problem of model selection. In
general, model selection is an important central prelude
to subsequent statistical inference which depends on suffi-
ciently well-fitting models. Assessing model fit and verifi-
cation of assumptions are challenging tasks. The scientific
process has many features in common with the classic
data analytic strategy; there is an intense and fruitful
interaction between exploration, model selection and
critical inference. Progress in a scientific field is depen-
dent on formulating and describing relevant problems as
well as long-term consistency and convergence of
empirical results. In this process, discussion and evalua-
tion of the methods used in a scientific field are of central
importance. In this paper, we have reviewed and
discussed some aspects of signal detection theory and
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statistical inference relevant to the analysis of FNI data.
As in the companion paper (Petersson et al., preceding
paper), the emphasis has been on assumptions and
inherent limitations. Most of the methods described here
generally serve their purposes well when the inherent
assumptions and limitations are taken into account. It
should also be noted that many of the methods presented
yield similar, although not identical, results when applied
to the same data set pre-processed in the same way.
Significant differences in results may be most apparent in
extreme parameter ranges, for example at low effective
degrees of freedom or at small spatial autocorrelation. In
such situations or in situations when assumptions and
approximations are seriously violated, it is of central
importance to choose the most suitable method in order
to obtain valid results. The inferential methods used in
FNI differ in the assumptions and approximations made.
The central issues are how well these are fulfilled by the
data being analysed and how robust the methods are if
assumptions or approximations are not fully met. So far
the emphasis in the analysis of FNI data has been on
statistical methods protecting against false-positive results
and there is a need to develop further effective methods
for characterizing the signal present in data when the null
hypothesis has been rejected.

Future progress in functional neuroimaging is partly
dependent on the further development of the FNI
methods used, at all stages of data processing, that is pre-
processing (e.g. realignment, anatomic normalization,
image segmentation and spatio-temporal filtering) and
model building, as well as descriptive exploratory tools
and methods for statistical inference. For example, if the
cortical (and subcortical structures) can be
extracted from anatomical images (Dale et al. 1999; Fischl
et al. 1999) and well registered to functional images, then
it is natural to process the data and detect activation
signals in relation or restricted to these surfaces instead of
in three dimensions. Spatial filtering of images directly on
the cortical sheet (2D) would not mix data from regions
that are close in the 3D space but far away when
considering the geodesic distance on the cortical surface.
Important for such an endeavour are recent developments
making it possible to analyse locally non-stationary RFs.
If applied to fMRI data, allowing for statistically valid
single-subject results, the distortions between the anato-
mical 7}- and 7 j-weighted functional images have to be
accounted for. Another example is to try to achieve better
characterization of individual subjects and then aggregate
the results with non-image-based methods, including
meta-analytic approaches. More comprehensive models of
the fMRI signal should produce greater specificity of the
BOLD signal, giving higher quality within-subject
images. Models parameterizing the activation foci
(e.g. by size and location) may be introduced and a
hierarchical model could combine these foci across
subjects, incorporating uncertainty in the intersubject
registration.
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