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Abstract

   This paper concerns the spatial and intensity transformations that map one image onto another.

We present a general technique that facilitates nonlinear spatial (stereotactic) normalization and

image realignment.  This technique minimizes the sum of squares between two images following

nonlinear spatial deformations and transformations of the voxel (intensity) values.  The spatial and

intensity transformations are obtained simultaneously, and explicitly, using a least squares solution

and a series of linearising devices.  The approach is completely noninteractive (automatic),

nonlinear and noniterative.  It can be applied in any number of dimensions.

   Various applications are considered, including the realignment of functional MRI time-series,

linear (affine) and nonlinear spatial normalization of PET and structural MRI images, the

coregistration of PET to structural MRI and, implicitly, the conjoining of PET and MRI to obtain

high resolution functional images.
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Introduction

   This paper is about the spatial transformation of image processes.  Spatial transformations are

both ubiquitous and important in many aspects of image analysis:  For example in neuroimaging the

realignment of a time-series of scans from the same subject (correcting for movement) is necessary

for voxel based analyses of time-dependent changes.  This issue is of current interest in the analysis

of functional MRI (fMRI) time-series.  Inter-subject averaging, with change distribution analysis or

statistical parametric mapping, requires the images to be transformed into some standard stereotactic

space (e.g. Fox et al 1988; Friston et al 1991a).  Anatomical variability and structural changes due

to pathology can be framed in terms of the transformations required to map the abnormal onto the

normal.  The interpretation of functional mapping studies often refers to some notion of normal

anatomical variability (e.g. Steinmetz and Seitz 1991).  This variability embodies neuroanatomical

information of a probabilistic nature that is the focus of some important new brain mapping

initiatives (e.g Mazziotta et al submitted)

   Spatial transformations can be broadly classified into label based and non-label based.  Label

based techniques identify homologous spatial structures, features or landmarks in two images and

finds the transformation that best superposes the labelled points.  These transformations can be

linear (e.g. Pelizzari et al 1988) or nonlinear [e.g. thin plate splines (Bookstein 1988)].  Non-label

based approaches identify a spatial transformation that minimizes some index of the difference

between an object and a reference image, where both are treated as unlabelled continuous

processes.  Again these can be linear e.g. principal axes (Alpert et al 1990); image realignment

(Woods et al 1992; Collins et al 1994, and see Lange 1994) or nonlinear e.g. plastic transformation

(Friston et al 1991b) with some interesting developments using neural nets (Kosugi et al 1993).
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   In the absence of any constraints it is of course possible to transform any image such that it

matches another exactly.  The issue is therefore less about the nature of the transformation but more

one of defining the constraints under which the transformation is effected.  The validity of the

transformation can usually be reduced to the validity of these constraints.  The first tenet, of the

general approach described here, is that the constraints are explicit, reasonable and operationally

specified.  The reliability of label-based approaches is limited by the reproducibility of the labelling.

Non-label based techniques are generally noninteractive and are therefore completely reliable.  The

second key aspect of our approach is therefore that it is non label-based and automatic.  Many

approaches to spatial transformation use some from of gradient descent or nonlinear minimisation

to find the global minimum of an error surface.  These iterative techniques are flexible but may find

local solutions and are computationally very expensive [e.g. 30 minutes for a simple linear MRI to

MRI matching (Collins et al 1994)].  To avoid these problems we have used an approach with

explicit and unique solutions that can be obtained by solving just one equation.

   In short the aim of this work was to develop an efficient, automatic and general multidimensional

nonlinear spatial transformation technique (rigid body and affine transformations were considered

as special linear cases of this more general approach).  The only automatic nonlinear, and

noniterative technique used widely at present (Friston et al 1991b) is fundamentally limited in the

sense it is only valid for one dimensional images (current implementations apply this one-

dimensional transformation to the radii of transverse slices in a polar space).  

   The paper begins by describing the idea upon which the transformations are based and provides

the general operational equations (a full exposition is provided in an appendix).  This is followed

by a brief description of the fMRI, structural MRI and PET data used in subsequent sections.  The

remaining four sections deal with a range of specific applications and extensions.   The first section

(within modality, within subject) illustrates the simplest application, namely orthogonal (rigid

body) transformations of single slice fMRI data that would be applied to reduce head movement

artifact in fMRI time-series.  The algorithm was tested using simulated head movement and using a
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real time-series of 64 images.  Performance was assessed by comparing the estimated and known

movement parameters.  The estimates were also compared with those obtained with a widely used

image realignment routine (Woods et al 1992).  Using a real time-series the validity of the

realignment was further addressed by looking at its effect on time-dependent functional changes.

The second section (within modality, between subject) deals with general nonlinear three

dimensional transformations of the sort required to map an arbitrary PET image into a standard PET

image conforming to the space described by the atlas of Talairach and Tournoux (1988).  This

spatial normalization transformation is used to (i) introduce a recursive application of the least

squares analysis and (ii) compare it with equivalent nonlinear minimisation.  The section concludes

by introducing a simultaneous solution for the transformation using a series of feature-enhanced

images derived from the primary image pair.  This extension is demonstrated in the context of

matching structural MRI images from different subjects.  The third section (between modality,

within subject) looks at the registration of structural MRI and PET from the same individual.  The

focus here is on the intensity transformation implicit in the overall solution.  This intensity

transformation can be used to create a structural MRI image whose voxel values are functional (e.g.

rCBF-like) in nature.  The final section deals with the most general problem of between modality,

between subject  normalization using structural MRI and functional PET images from different

subjects.

   This paper is methodological, however its main aim is to communicate the basic idea,

mathematical formalism and the variants or extensions that ensue.  The focus is therefore more

conceptual than operational.  Subsequent papers will present more detailed numerical information

on performance, robustness and its application to some simple questions about normal and

abnormal anatomical variability.
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Theory

   The basic idea is to formulate the most general problem of spatial transformation so that a unique

least squares solution exists. This involves linearising a highly nonlinear multidimensional problem

using reasonable constraints. This linearisation starts by acknowledging that the differences

between two images [say Ω(x) and †(x)] have two components:  The first component is due to

voxel value or intensity differences when two images are in perfect anatomical register.  These

differences may be artifactual (e.g. different resolutions, low spatial frequency intensity variations

in MRI images or different methods of rCBF parameter estimation used for PET) or real (e.g.

hypofrontality in PET scans of psychomotor poverty syndromes, differences in global activity, or

experimentally induced physiological activations).  We assume that, at point x, there is some

operator ƒx{.} that transforms voxel values from one image to those of another (assuming perfect

anatomical congruence).

   The second component of the differences between the two images will be due to misalignment or

indeed differences in shape and size of the objects scanned.  This spatial discrepancy between the

two scans is assumed to be characterized by a function of position q(x).  This partitioning of the

difference between one image and another can be expressed as:

ƒx{†(x)} = Ω(q(x))  +  e(x) 1

   Where e(x) is some error.  For simplicity this error term will be omitted in subsequent

expressions.  Eqn(1) expresses the conjecture that two images can be approximated by applying an

intensity transformation ƒx{.}to one and a spatial transformation q(x) to the other.  The next step is

to linearise eqn(1) so that both ƒx{.} and q(x) have explicit least squares solutions.  This can be

effected by low order approximations and by imposing some constraints on the forms of ƒx{.} and

q(x).  The constraints are basically (i) that the operator ƒx{.} can be expressed in terms of a

convolution and a (nonstationary) nonlinear function and (ii) that both ƒx{.} and q(x) change
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slowly with location.  For ƒx{.} this local-stationariness means that the 'operation' that converts

voxel values from one image into the other (the intensity transformation) can change with position

but is similar within a given locale.  In other words the transformation ƒx{.} is locally stationary

but globally unspecified.  Stationariness means that something does not change with position in the

image. The slowly changing nature of q(x) means that the spatial transformation is smooth and that

local contiguity relationships are preserved.  More formally the smooth spatial transformation

ensures a positive Jacobian which preserves important features, including critical points such as

peaks and saddle points (see Amit et al 1991).  Stronger constraints can be imposed on q(x), for

example in realigning scans from the same individual q(x) would represent an orthogonal rigid-

body transformation with six parameters, but would still be smooth.

   In what follows ƒx{.} is taken to be some nonlinear function γx(.) of the original process

convolved with a kernel c(x).  This means that, ignoring misregistration effects, one image can be

converted into another by applying a nonlinear transformation to the voxel values and then [de-

]convolving into the same resolution as the second image. i.e. ƒx{.} = c(x) * γx(.) where * means

convolution.  Note that this form of ƒx{.} requires the nonlinear function to be applied before the

convolution.  In practice one would always want to arrange the images so that the one was

convolving the higher resolution image to match the lower resolution image.  The kernel or

differential point spread function c(x) will be known or can be estimated post hoc using established

and empirical methods of estimating image smoothness (see Friston et al 1991a).   Without loss of

generality one can take some expansion of γx{.}  = ∑ ui(x).ƒi(†(x)) and expand the position-

dependent coefficients ui(x) in terms of some 'smooth' spatial basis functions ßƒj(x) [i.e.  ui(x)  =

∑ uijßƒj(x)].  An expansion is simply expressing a function as the sum of (usually) simpler

functions.   q(x) can be similarly expanded in terms of x and some smooth basis functions ßqk(x).

Smooth basis functions can be thought of as smooth functions of, or profiles in, space that are

(usually) chosen to be independent or orthogonal. Using these expansions  eqn(1) becomes:

c(x) * ∑ { ƒi(†(x)) ∑ uijßƒj(x) } ≈ Ω(x + ∑ qkßqk(x) ) 2
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   Now if Ω(x) is smooth the effects of small distortions qkßqk(x) will not interact to a significant

degree.  In other words if Ω(x) is smooth we can expand the right hand side of eqn(2) using

Taylor's theorem where, ignoring high order terms:

Ω(x + ∑ qkßqk(x) ) ≈ Ω(x)    +    ∑ qk∂Ω(x)/∂qk 3

(see appendix).  Combining eqn(2) and eqn(3) we get:

∑∑ uij [c(x) * ƒi(†(x)) . ßƒj(x)] ≈ Ω(x)    +   ∑ qk∂Ω(x)/∂qk 4

   This approximate equality says that, give or take some residual error, one image can be

approximated to another by (i) applying an intensity transformation to the first image (where the

coefficients of the transformation's expansion can change slowly with position) convolving and (ii)

approximating the distortion of the second image by simply adding the effects of each component

of the distortion (assuming the components are small relative to the image's resolution).  The

components of the distortion are defined by a set of smooth basis functions in space.

   The importance of eqn(4) is that it is linear in the unknown coefficients (uij and qk) and that these

coefficients have a unique least squares solution.  This may be seen more clearly by considering the

matrix equivalent of eqn(4) which is of the form  A.[ u0 u1....   q]T    ≈  Ω:

[c.diag(ƒ0(†)).ßƒ   c.diag(ƒ1(†)).ßƒ...  -diag(∂Ω/∂x).ßq].[ u0 u1....   q]T    ≈  Ω 5

(see the appendix for a fuller explanation and notational details).   The vector [u0 u1 u2....   q] has a

unique least squares solution.  This solution for qk (q) can then be used to implement the spatial

transformation that maps Ω(x) onto †(x) or vice versa. given that q(x) = x + ∑ qkßqk(x) .
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The Data

   This section describes briefly how the data were acquired and stored.  The data were obtained

from [different] male subjects in accord with local and national ethical requirements.

functional MRI

      The data were a time-series of 64 gradient-echo EPI coronal slices (5mm thick, with 64 x 64

voxels) through the calcarine sulcus and extrastriate areas.  Images were obtained every 3 seconds

from a normal male subject using a 4.0T whole body system, fitted with a small (27cm diameter) z-

gradient coil (TE 25ms, acquisition time 41ms).  Photic stimulation (at 16 Hz) was provided by

goggles fitted with 16 light emitting diodes.  The stimulation was off for the first 10 scans (30

seconds), on for the second 10, off for the third, and so on.  The data were interpolated to 128 x

128 voxels.  The image dimensions were 128x128x1.  The voxel size was 1.25x1.25x5mm.  Data

were stored at 8 bit precision.

Structural MRI data

  These data were high resolution structural MRI scans obtained at 1.5T using a standard T1

weighted sequence.  The image dimensions (following reorientation of the saggital acquisition and

resampling)  were 256z256x118.  The voxel size was 0.976 x1.3x1.952mm.  Data were stored at 8

bit precision.

PET data

    The PET images were obtained with a CTI PET camera (model 953B CTI Knoxville, TN USA).

Reconstructed images had a resolution of about 8mm (Townsend et al 1992, Spinks et al 1992).

15O was administered intravenously as radiolabelled water infused over two minutes.  Total counts

per voxel during the buildup phase of radioactivity served as an estimate of rCBF (Fox and Mintun
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1989). The image dimensions (following reconstruction and bilinear interpolation) were

128x128x43.  The voxel size was 2.09x2.09x2.45 mm.   Data were stored at 8 bit precision.

    All the image manipulations and matrix calculations were performed in Matlab (MathWorks Inc.

Sherborn MA, USA) on a SPARC Workstation.  The PET and MRI images were scalp edited (pre-

processing of this sort is not a prerequisite for anything that follows)

APPLICATIONS

Within subject, within modality

   In this section we deal with one of the simpler transformations, namely the registration of

homologous images acquired sequentially from the same subject.  This application is important

because it removes variance from time-series that would otherwise be attributed to error (i.e.

decreasing sensitivity) or to treatment effects (i.e. movement artifacts).  The most important source

of this variance is usually due to movement during the scanning session.  Although important in

PET studies, these effects can seriously confound the analysis of fMRI studies, where the slightest

subvoxel movement may profoundly effect the voxel value.  This section is divided into two parts.

In the first we compare the least squares approach to known (simulated) movement and to that

estimated with a widely used image realignment program (automated image realignment - AIR,

Woods et al 1992).  In the second part the least squares approach is applied to the real fMRI time

series in order to demonstrate that the estimated movement is real and to validate the realignment in

terms of detecting functional changes.  This is achieved by analyzing the fMRI time-series using

singular value decomposition (SVD).  SVD identifies important spatial modes and their time-

dependent activity.
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   The reason realignment can be considered a simple case of the more general spatial transformation

problem is because the form of the spatial transformation q(x) is exactly specified and the intensity

transformation is known ƒx{†(x)} ≈ †(x).  The second equality follows from the fact the same

object is scanned with the same imaging device (we are obviously assuming that time-dependent

physiological changes of interest are small relative to the anatomic profile and that these effects can

be relegated to the error term).   Substituting these simple forms for q(x) and ƒx{.} into eqn(4) one

has (in matrix notation):

 [-diag(∂Ω/∂x).ßq].qT   ≈  [Ω  -  †]

or -∂Ω/∂q.qT  ≈  [Ω  -  †] 6

In this instance the basis functions cover the space of all allowable translations and rotations i.e. ßq

=  [ßo1 ßo2 .......ßo6 ] where the columns ßok  correspond to translations in three dimensions and the

three orthogonal rotations.  In practice it is easier to compute the six columns of ∂Ω/∂q directly [as

implied in the second form of eqn(6)] by simply applying small translations and rotations to Ω(x)

and measuring the changes in voxel values.  The six elements of the row vector q correspond to the

estimated translations and rotations that constitute the movement to be corrected.

Simulated movement

   The first fMRI slice was translated over 64 logarithmically increasing distances (1 µm to 3mm)

and the displacement was estimated for each simulated movement by comparing the moved image

and the first or reference image.  These estimates were computed with least squares according to

eqn(6) and the appropriate AIR algorithm.   Moved images were constructed by adding

uncorrelated Gaussian noise (at 5% of the image mean), to emulate the effects of thermal noise in

the fMRI scans, and translating using bilinear interpolation.  Clearly this is not the same as actually

moving the real object but is a reasonable approximation for small movements.  The data were

saved as 8 bit.  This reduction to 8 bit precision introduces nonlinear noise due to round off errors
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and to some extent simulates digitizing noise during acquisition.  The actual and estimated

translations were compared graphically.  

   Figure 1 presents the results of this analysis.  These results highlight two points.  First both the

AIR and the least squares estimates are generally very good.  This sort of analysis helps establish

the construct validity of both techniques in terms of the other.  Secondly at very large and small

displacements there is a dissociation in the performance of the two techniques.  AIR is better than

the least squares approach when the spatial misalignment approaches the resolution of the images (~

2.5mm).  The upper line (in Figure 1 left) represents the actual movement and the AIR estimates.

The lower line corresponds to the least squares estimates.  This divergence at large translations is

due to a failure of the first order approximation of the Taylor series implicit in eqn(3); more simply

if the displacements are bigger than the image's smoothness then the linearisation in the least

squares approach becomes suspect.   In practice this is not a problem because (i) the images can be

smoothed or (ii) the least squares analysis can be applied recursively (see below).  Conversely the

least squares analysis is better for small displacements.  Figure 1 (right) shows the same data but

on a semilog scale.  The AIR algorithm starts to fail noticeably at about 100 µm whereas the least

squares analysis remains reasonably robust until about 10 µm.  

   The differences between the least squares and AIR estimates should not be over interpreted in the

sense that there are many differences in the two algorithms that were not controlled for.  In general

results obtained from the two analyzes are consistent.  It should be noted however that the least

squares analysis is about an order of magnitude faster that the AIR.  This is because the AIR

approach is iterative.

A real time-series

   It may seem to some that a precision of 100µm or less is rather irrelevant for realignment routines

because this scale of movement is practically undetectable and harmless anyway.  They would be

wrong.  The purpose of this section is to show that (i) movements measured in tens of µm can be
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detected in fMRI time series and that (ii) removal of these effects by realignment can substantially

effect the variance-covariance structure of the data.

  The 64 scan time-series was subject to the least squares analysis using the first scan as a

reference.  The movement parameters reflecting estimated movement suggested translations (solid

lines in the upper panel of Figure 2) in the order of 100µm or less.  These translations will be

referred to as ∆x and ∆y.  The results of this analysis compared well with the equivalent AIR

results (see the lower panel of Figure 2).

   To demonstrate that these estimated movements were due to real movement the time-dependent

hemodynamic variance was partitioned into a series of orthogonal spatial modes (or eigenimages)

using SVD  (the first 4 scans were ignored to avoid magnetic saturation effects).   See Friston et al

(1994) for a discussion of spatial modes and their identification.   In brief these spatially distributed

patterns reflect independent systems that share a common source of variance.  Figure 3 (top right)

shows the first spatial mode (that accounting for the most variance).  This mode has been elicited

by photic stimulation and includes striate and extrastriate regions.  The time-dependent expression

of this mode (the solid line in the top left of Figure 3) matches that predicted by photic stimulation

(the dotted line).  The dynamics predicted by photic stimulation were obtained by convolving the

square wave input with a hemodynamic response function of seven seconds delay and dispersion

(see Friston et al 1994).

   Consider now the third mode - that accounting for the third largest source of variance (the second

mode is not shown in this paper).  Inspection of the third mode immediately suggests that it can be

attributed to movement along a positively inclined diagonal.  Figure 3 (bottom right) shows that the

time-dependent expression of the third mode (solid line) is closely matched by least squares

estimates (∆x and ∆y) of diagonal motion 1.3.∆x + 1.7.∆y  (dotted line).  This concordance

demonstrates that movements estimated by the leasts squares analysis are probably real.

   The relative contribution of the first and third spatial modes can be expressed in terms of the

appropriate 2-norm  (a standard measure of how much a pattern or vector of voxel values

contributes to the variance-covariance structure).  For the original data these 2-norms are the
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eigenvalues associated with the spatial modes and are presented in Figure 4 (left).  The remarkable

observation is that variance due to subject movement (of usually less than 100µm) was about one

seventh of that introduced by the sensory stimulation.  It is pleasing to see that this, and only this,

source of variance (the third mode) was reduced following realignment of the images (Figure 4

right). 

   It may be asked at this point 'why not simply remove this mode from the time-series?'.  Or more

generally 'why not remove any component of all the modes that corresponds to a partial spatial

derivative of the image?'.  In fact this is equivalent to the least squares approach proposed.

Within modality, between subject

    In this section we consider the more general problem of spatial transformation where the same

imaging device has been used but the objects imaged (e.g. subjects' heads) are not exactly the

same.  Spatial or stereotactic normalization belongs to this class of problems when it is solved by

matching an arbitrary image to some ideal image, model or template.  For example in the

intersubject averaging of PET activation studies,  change distribution analysis (Fox et al 1988) and

statistical parametric mapping (Friston et al 1991a) both require mapping into some standard space

[the generally accepted international standard is the space described in the atlas of Talairach and

Tournoux as proposed by Fox et al (1988)].  Friston et al (1991b) suggested that this mapping can

be effected by 'matching' an individual's image with an ideal reference image, model or template,

where the template conforms to the standard space in question.  Clearly there are many other

examples that could have been chosen for this section, but the one presented here is of immediate

relevance for those engaged in functional mapping.  This section also introduces two important

extensions of the least squares approach which involve (i)  a repeated or iterative application [where

the spatially transformed object image Ω(q(x)) is used recursively as a new object image Ω(x)] and

(ii) making two sets of images from the original image pair and simultaneously solving for the

spatial transformation that conjointly maps one set of images onto the other set.
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PET to PET spatial normalization

   The problem in this section is more general than in the previous section because the allowable

transformations are not precisely specified and γx(.) - the functional component of the operator

ƒx{.} is not known.  This case is however not as general as situations considered later:  We know

that the resolution of the image process to be matched are the same (i.e. c = I - the identity matrix)

and consequently eqn(5) reduces to:

    [diag(†).ßƒ  -diag(∂Ω/∂x).ßq].[u1  q]T   ≈  Ω 7

assuming a first order approximation for γx(.).  This first order approximation can be justified given

that the images are of the same modality.  Notice also that the zeroth order term (the constant) has

been omitted as we expect the zero counts in one image should correspond to zero counts in the

other..  The basis functions (ßf and ßq) can be arbitrary as long as they are smooth.  In the present

(and subsequent) example the basis functions for both u1 and q were the same and are shown in

figure 5.  These basis functions correspond to Fourier modes, obtained by incrementing the spatial

frequencies by π/2 and orthogonalising the resulting basis set.  These basis functions can be quite

arbitrary as long as they are smooth and cover the 'space' of distortions in a reasonably

comprehensive way.  The exact nature and number of basis functions would probably vary from

application to application.  For simplicity we use the same set here throughout.

 

Spatial normalization

  The object image Ω(x) was taken from the SPM (MRC Cyclotron Unit, London and see Friston et

al 1991b) library of template images and corresponds to a transverse section lying 12mm above the

intercommissural plane.  The reference image †(x) was the corresponding slice from a normal

subject acquired as described above.  Although we present a spatial normalization of a single slice it

should be noted that this normalization is generally applied in three dimmensions.  
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   In this example we have used the 'template' image as the object image (the image subject to

spatial transformation).  The designation of which image is the object and which the reference is

usually arbitrary:   The spatial transformations from object to reference is given by:

q(x) ≡ x   +   ßq.q

where q(x)-1 is the complementary or inverse transformation from reference to object:

q(x)-1 ≡ x   -    diag(I + ∂ß/∂x.q ) -1  ßq.q 8

   This approximate equality is easy to derive using a first order Taylor expansion.  The spatial and

voxel value transformations were computed according to eqn(7) and the spatial transformations

applied to Ω(x).  The result [i.e. Ω(q(x)] was substituted for Ω(x) in eqn(7) and the second spatial

transformation added to the first.  This process was repeated 3 times (see below).  The results of

this analysis are presented in Figure 6.  Figure 6 shows the individual's transverse image (reference

- top right) and the template PET image (object - top left).  Figure 6 lower left shows the object

image following spatial transformation.  The spatial congruency between the resampled image and

the reference image is seen and is largely a result of a counter-clockwise rotation (particularly of

subcortical structures).  The image on the lower right is also a spatially transformed object image,

but the solution for the resampling was computed in a different way, as described next.

Comparison with nonlinear minimisation

   The iterative solution of eqn(7) can be evaluated in relation to nonlinear minimisation [e.g. the

Levenberg-Marquardt  technique (More 1977)] by examining the trajectory of the paths taken in the

recursive least squares approach and that taken by a nonlinear search in the space of the spatial

transformation coefficients q.  The nonlinear minimisation solution was obtained by minimizing the

square of the 2-norm (over voxel locations x):



1 7

|| †(x) ∑ u1jßƒj(x)    -   Ω( x + ∑ qkßqk(x) ) ||2 9

as a function of [u11 .......u1j  q1.......qj]   ≡  [u1 q] using standard nonlinear minimisation  (as

implemented in Matlab, MathWorks Inc. Sherborn MA, USA).   This solution is equivalent to

solving eqn(7) but without the first order approximation implicit in eqn(3).  The solutions for q

were recorded at each iteration.  The trajectory of these estimates was then compared with the

trajectory traced out by the 4 recursive least squares solutions of eqn(7).  These two trajectories

were plotted in the 2-dimensional subspace of the search space associated with the largest singular

values.  This is simply a device to view the trajectories from a direction that reveals the greatest

excursions. 

   Despite the fact that the spatially transformed images in Figure 6 (lower panels) look very similar

the solutions obtained by least squares and nonlinear minimisation were different.  The results of

this trajectory analysis are presented below and illustrate two key points; (i) the least squares

approach found the global minimum whereas the nonlinear minimisation did not and (ii) the search

strategies differ fundamentally in their nature.

   Figure 7 (top left and right) shows the singular distortions [c.f. principal warps (Bookstein

1988)] or spatial transformations associated with the largest two singular values following SVD of

the sequence of solutions for q (using both the least squares and nonlinear minimisation).  These

distortions are simply a linear combination of the basis functions.  This linear sum is determined by

the singular vectors associated with the largest singular values.  The two distortional modes (Figure

7 top left and right) correspond to the vertical and horizontal dimensions of the search subspace

shown in Figure 7 (lower left panel). The corresponding error surface is depicted in the lower right

panel.  This surface reflects how 'far off' the match is, in terms of the two singular distortions.

The error surface was computed by varying the first two singular distortions, whilst using the final

nonlinear estimate for the other parameters (remaining singular distortions and u1) using eqn(9).   It

is immediately obvious that the two trajectories (least squares - solid and nonlinear minimisation -
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broken) converge to the different solutions.  The nonlinear minimisation found a local minimum.

Furthermore the recursive least squares approach used a handful of steps whereas the nonlinear

minimisation took over twenty iterations to converge.  The number of floating point operations

(flops) per iteration taken by the nonlinear minimisation was 2.7 times the number of flops required

by one least squares solution.  In short the least squares approach will usually be an order of

magnitude more efficient than an iterative nonlinear equivalent.

   It is instructive to contrast the explicit least squares and nonlinear minimisation.  In

anthropomorphic terms both approaches want to find the global minimum in a landscape defined by

eqn(9) (the error surface in Figure 7).  The nonlinear minimisation starts at an arbitrary location

and, with acknowledged ignorance of all but the local landscape, sets of one step at a time always

trying to chose the 'best' path based on local features.  The least squares approach is more

pretentious and makes some (possibly) unwarranted assumptions about the global shape of the

landscape (e.g. it assumes the landscape is parabolic) and, based on local features,  goes straight to

the (anticipated) lowest point.  However because the landscape is not quite as 'well behaved' as the

least squares thinks, it may need to 'home in' on the global minimum; hence the iterative approach

adopted in this section.

MRI to MRI

   The last part of this section deals with a simple extension to the least squares approach.   Here we

deal with MRI to MRI matching and assume, as in the previous section, that c = I and γx{.} has

only a first order term.  In fact in this application we assume ƒx{y} = y.  Now consider some

arbitrary function γi{.} applied to both †(x) and Ω(x) where γi{†(x)} = †i(x)  ≡ †i  and γi{Ω(x)} =

Ωi(x)  ≡ Ωi.  Eqn(7) can be generalized to:

 [diag(†i).ßƒ  -diag(∂Ωi/∂x).ßq].[u1  q]T   ≈  Ωi
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Because we assume ƒx{y} = y. this simplifies to:

 †i   -diag(∂Ω i/∂x).ßq.qT   ≈  Ωi

Because the spatial transformations are the same irrespective of the intensity transformations γi{.}

we can solve for q simultaneously using several γi{.} functions:

†1    -diag(∂Ω1/∂x).ßq .   [u1  q]T   Ω1

†2    -diag(∂Ω2/∂x).ßq ≈  Ω2

†3    -diag(∂Ω3/∂x).ßq  Ω3 10

and so on.  In simple terms this extension means that we can extract any feature from both the

reference and object image and match the resulting images.  Because the spatial transformation is

the same for all possible features we can combine several feature-specific image pairs to estimate

the best spatial transformation.  This extension depends on the fact that the ƒx{.} has a simple

form.  A more general extension of this sort is presented in the discussion.

   The following example is meant to illustrate this idea more clearly.  In matching two homologous

structural (T1 weighted)  MRI images from different subjects one might simply use eqn(7) and

proceed in an analogous way to the PET - PET normalization in the previous section.  However in

so doing one would be implicitly matching white matter to white matter (because in T1 weighted

images white/non-white boundaries dominate).  A useful extension would be to segment the images

into gray matter and white matter and match gray matter to gray matter and white to white.  This can

be effected simultaneously with eqn(10) and is simply implemented by chosing γi{.} to perform a

(crude) segmentation.  In the present example we used:

γi{Ω(x)} = c(x) * exp( - (Ω(x) - vi)2/2σ2 ) 11
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where v1  corresponds to the average gray matter intensity levels (0.52 of the image maximum) and

v2 corresponds to white matter levels (0.86 of the image maximum).  σ  controls the width of the

'segmentation window' (we used 0.3).  c(x) was a convolution kernel of FWHM 4 voxels to

ensure that smoothness constraints were met.  Note that this 'segmentation' is not very rigourous

but is sufficiently good for the current purposes.

    The results of this analysis are shown in figure 8.  The object image (that to be spatially

transformed) is seen in the upper left panel and the reference image is seen in the upper right panel.

The lower panels show the transformed object images (lower left) and the same superimposed on

the reference image (lower right panel).  The reshaping of the object image is particularly

pronounced in the bottom right (occipital) region (Figure 8 lower left).  The two segmentation

functions were applyed to both the spatially normalized object image and the reference MRI images

(omitting the convolution) to reveal the conjoint spatial matching of gray matter (Figure 9 upper

panels - transformed object and reference images) and white matter (lower panels).  Generalization

to three dimensions is only a question of computer resources, however the resources required to

manipulate volumetric high resolution MRI data should not be underestimated.

Between modality, within subjects

   This section is concerned with the problem of cross-modality registration.  The importance of this

problem lies in relating anatomy to functional organization in the brain.  Structure-function

relationships are being elucidated with increasing precision by mapping data from functional time-

series onto an individual's high resolution MRI image.  The problem considered here is to match a

PET image to a transverse high resolution MRI scan obtained from the same subject.  This

problem, once solved (in three dimensions) uniquely specifies the orthogonal transformation which

brings the MRI and PET data into alignment.  

   In this section we concentrate more on the intensity transformation (the expansion of ƒx{.}).   In

previous sections this expansion was trivial because the images were acquired with the same

modality and a simple relationship could be assumed.  In this section there is no simple relationship
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between MRI and PET voxel values even if the images were congruent.  Indeed not only is this

relationship highly nonlinear it is also likely to be highly non-monotonic and nonstationary.  There

are many forms that the expansion of ƒx{.} could take.  We present here an expansion designed

specifically for the current application and which uses the same linearising devise (Taylor's theorem

and a first order approximation) as for the spatial transformation.

   If one accepts the conjecture that the source of the PET signal is predominantly from gray matter

then the intensity transformation that maps an MRI image †(x) onto a PET image Ω(q(x)) would

involve gray matter segmentation sx(†(x),v(x)), nonstationary scaling and convolution into the

resolution of the PET image.  Mathematically one could express this as:

ƒx{†(x)} = c(x) * u0(x).sx(†(x),v(x))

where sx(†(x),v(x)) = exp( -(†(x)  -  {vg + v(x)} )2/2σ2 ) 12

where c(x) is a convolution kernel, u0(x) is a nonstationary but smoothly varying scaling

coefficient, σ is the 'standard deviation' of the segmentation kernel,  vg is the fixed estimate of gray

matter intensity and v(x) is the deviation from this estimate at a particular point in the brain x .

Eqn(12) is not in a form that permits a linear least squares solution for the unknowns  u0(x) and

v(x).  In order to make eqn(12) amenable to a least squares analysis one can adopt the same

approach used for the spatial transformation in eqn(3); namely using a first order approximation of

the Taylor series.  In this case the derivatives are not with respect to spatial distortions but the

derivative of the segmentation function with respect to small deviations in the grey matter intensity

[ ∂s(†(x),0)/∂v(x) ].

ƒx(†(x)) ≈ c(x) * u0(x).{  s(†(x),0)    +    v(x).∂s(†(x),0)/∂v(x)  }

≈ c(x) * { u0(x).s(†(x),0)    +    u1(x).∂s(†(x),0)/∂v(x)  }
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   As usual we can expand the nonstationary coefficients u0 and u1 in terms of basis functions  ui(x)

=  ∑ uijßƒj(x) giving, in matrix notation:

ƒx(†(x)) ≡ [c.diag(†).ßƒ   c.diag(∂s/∂v).ßƒ].[ u0  u1 ]T 13

   The important thing to note here is that the form of the 'segmentation function' ƒx(†(x)) is the

same everywhere but the actual function can vary from place to place.  This is important because

one cannot guarantee exactly the same relationship between MRI and PET voxel values in every

part of the image  (e.g. lesions, focal activations and field heterogenieties will introduce

nonstationariness into the relationship).

   Because this section deals with within subject transformations the spatial component is a rigid

body transformation with six parameters.  The simultaneous solution for both intensity and spatial

transformations is given by the solution of:

[c.diag(†).ßƒ   c.diag(∂s/∂v).ßƒ  -∂Ω/∂q].[ u0 u1  q]T    ≈  Ω 14

for  u0 u1 and q .  ∂Ω/∂q was estimated directly as in the section on realignment of fMRI time

series.  Because the effective resolution of the MRI image is approximated by its voxel dimensions

and that of the PET image was about 8mm we chose c to correspond to a two dimensional

convolution with a Gaussian filter with FWHM 8mm.  vg was set at 0.52 of the MRI image

maximum and σ was 0.3.

   The results of this analysis, for roughly homologous slices, are presented in Figure 10.  Figure

10 shows the object image (best guess transverse slice from the PET volume - top left) and the

reference image (an arbitrary slice from a volume MRI image of the same subject - top right).  The

lower image is the PET slice following spatial transformation.  The congruence is demonstrated on

the lower right were the spatially transformed PET image and the reference MRI image are

superposed.  In fact the registration here was already quite good and the spatial normalization
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involved only a small translation and rotation.  Of greater interest is the solution for the MRI

intensity transformation:

The intensity transformation

   Here we consider the intensity transformation that is implicitly applied to the MRI image in

eqn(14).  Hitherto this component of the solution has not been very interesting but in between-

modality applications the transformation can be considered of primary importance and the spatial

component of secondary interest (see applications section in discussion). The intensity transformed

MRI image that best matches (in a least squares sense) the spatially transformed PET image is given

by eqn(13).  This estimate is shown in Figure 11 (bottom left) and can be thought of as an MRI

image emulating a PET image.  The correspondence with the real PET image (above) is apparent

and remarkable good considering we made the somewhat unreasonable assumption that all the PET

signal came from gray matter.  

   The intensity transformed MRI image obtained before convolution [setting c = I in eqn(13)] is

seen in Figure 11 on the right.  This is the 'best' distribution of functional activity that could

explain the observed PET scan before convolution with the point spread function, where the

distribution is constrained by structural information in the MRI.image.  Equivalently this is a least

squares solution for the distribution of functional activity based on the underlying anatomy.  We

expand on the potential importance of this 'virtual modality' in the discussion.

   The actual solution for ƒx{.} in eqn(13) clearly depends on position in the image.  Two examples

are given in Figure 12 according to the estimates obtained.  The examples come from cortical and

subcortical gray matter voxels indicated by black dots in the left lateral secondary sensory cortex

and the left thalamus.  The corresponding cortical (solid line) and subcortical (broken line)

functionals ƒcortical{.} and ƒsubcortical{.} are shown on the right of Figure 12.  It is immediately

obvious that the cortical gray matter activity is greater than the subcortical estimate.  The fact that

this relative difference in reversed in the PET image is due to partial voluming effects on signals

from the cortical sheet.  More importantly the gray matter intensity values for the cortical MRI



2 4

voxels were lower than for the subcortical voxels.  I.e. the peak of ƒcortical{.} corresponds to a

lower MRI voxel intensity than the ƒsubcortical{.} peak.

   In this section we have presented a simple (but still effective) example of PET to MRI matching.

One could easily generalize the approach to include white matter contributions or indeed make the

form of the segmentation kernel more general using a greater number of parameters.  

Between modality, between subjects

  This final section is included for completeness.  Here we match (†) a transverse MRI slice from

the individual used in the previous sections and (Ω) the corresponding transverse section from the

the MRC library of PET templates used in the section on PET to PET normalization.  This is the

most general problem considered in this paper and requires a solution for the transformation

coefficients with no simplifications.  In this example we have deliberately degraded the MRI data

by resampling to render voxel size the same as the PET data.  Here the spatial transformation is not

constrained to be affine and eqn(14) has to be generalized to

[c.diag(†).ßƒ   c.diag(∂s/∂v).ßƒ   -diag(∂Ω/∂x).ßq].[ u0 u1  q]T    ≈  Ω 15

   The basis functions ( ßƒ  and  ßq ) for intensity and spatial transformations were the same as in

previous sections (Figure 4).  The expansion of ƒx(x) was in terms of a Gaussian segmentation

kernel as in the previous section.  c corresponded to a two dimensional convolution with a

Gaussian kernel of FWHM of 8mm.

   The results of this analysis are presented in Figures 13 and 14 using a similar format as in the

previous section (Figure 10 and 11).  The spatial congruence of the MRI image and transformed

PET image and delimitation of gray matter in the MRI image are evident.  The technique appears to

be fairly resistant to the degradation of the MRI images.
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Discussion

 

    This paper has presented a generic approach to the spatial transformation of image processes.

The approach is automatic (is noninteractive), finds explicit solutions (is noniterative) and solves

general problems (is nonlinear).  The technique depends on partitioning the differences between an

object image and a reference image into two components.  The first component is due to differences

that remain after discounting the effects of image mis-registration or non-congruence.  The second

source of differences results from spatial translations, rotations and distortions.  Both types of

difference are modeled with expansions in terms of basis functions, polynomials, and Taylor series

using low order approximations in such a way as to render the problem linear.  The requisite spatial

and image transformations are then solved for in a least squares sense.

   In this paper we have focussed on the realignment of neuroimaging time-series, spatial

normalization required for voxel-based analysis of activation studies, cross-modality registration

and spatial normalization of images from different modalities.   The nature of the transformation is

defined by the constraints under which the transformation is applied.  These constraints are

embodied in the operational equations described.  The minimal constraints adopted in this work

pertain to the preservation of local contiguities and the local stationariness of operators which map

one modality into another.  These constraints can be framed in terms of smoothness; namely the

spatial transformation represents a smooth mapping and the coefficients of any intensity

transformation (functionals) change slowly with position.  Smoothness is imposed by using

smooth basis functions. 

    We have presented a series of ideas and techniques some of which are fundamental, some of

which are not.  We consider the following points to be important aspects of the approach
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♦      Reliability takes precedence over validity.  This requires a non-label based approach, that,

in this instance, minimizes the sum of squares between two image processes.

♦     The differences between two images can be attributed to (i) non-congruence and (ii)

differences extant when the images are in perfect register.

♦     The transformations which minimize these differences (in a least square sense), namely the

spatial transformation and intensity transformation, are solved for simultaneously.

♦      Both transformations are defined in the space of some basis functions.  The nature of the

basis functions (e.g. smoothness) embody the constraints under which the transformations are

effected.

♦    The minimal constraints on the basis functions relate to preservation of local contiguity

relationships and the local stationariness of the intensity transformation.  This is equivalent to using

smooth basis functions.

♦    The solution for the spatial and voxel value transformations can, if appropriate, be

formulated in linear terms, permitting an explicit least squares solution.  The use of Taylor series

and other expansions are particularly useful in this regard.  If not appropriate standard nonlinear

minimisation or gradient descent techniques can be used.

   Although non-optimal Fourier basis functions are efficient in that they do not require empirical

characterization of the spatial autocovariance functions (c.f. the Karhunen Loeve expansion or

SVD).

Applications

    The applications of spatial and intensity transformations are numerous.  We have demonstrated

applications to the realignment problem and spatial normalization.  Here we consider other

applications and extensions.  Applications can be classified according to the goal of the
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transformation.  The objectives of most transformations fall under three general headings:  (i)

Reducing differences of a specific sort to facilitate comparison among images.  (ii) Characterization

of differences in spatial topography.  (iii)  Image restoration and segmentation.

   The examples in this paper have focussed on the first class of applications in the sense that image

realignment and normalization are usually implemented as a prelude to comparison among scans.

The second class of applications asks 'what are the important modes of anatomical (topographic)

variation?' or 'what are the anatomical differences between one set of scans and another?'.  The

answers to both these questions depend on a complete specification of the spatial topography of

each image.  We propose that this specification could be in terms of the spatial distortion required to

map an arbitrary image onto some reference.  For example the topography of an image can be

characterized in terms of the coefficients corresponding to the spatial basis functions.  This simple

list of coefficients, taken in conjunction with the reference image, is a complete specification of the

topography of the original image (down to the resolution imposed by the basis functions).  The

importance of this observation is that anatomical topography can be characterized by a multivariate

measure (the coefficients) and subject to conventional multivariate statistics.

   Important examples of this characterization could include the normal modes of anatomical

variability defined on a series of MRI scans from normal subjects.   The exciting concept here is

that once normal modes of anatomical variation are established they can then be used as the basis

functions in the transformations.   The charm of this 'bootstrapping' is in constraining the

transformations to lie in the space of normal anatomical variability.  This would increase the face

validity of the transformation and probably reduce the number of basis functions considerably.

This is the subject of current work.  Alternatively important neurodevelopmental modes can be

identified using MRI scans obtained during development (Nick Lange personal communication).

These modes are simply defined by SVD of the spatial transformations (or the coefficients of the

spatial basis functions). 

    The third set of applications was referred to in the first section on PET-MRI matching.  In this

section we solved simultaneously for a spatial transformation and an intensity transformation that
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jointly matched a PET scan and a MRI scan from the same subject.  The intensity transformation,

considered in isolation, assigns functional (PET) values to structural objects in the MRI image.

This transformation can be appreciated from two points of view (i) It is a functional categorisation

of anatomical structures of the sort implied by image segmentation.  Alternatively (ii) the intensity

transformed MRI image represents a least squares solution for the underlying flow distribution seen

in the PET image.  In this sense the transformed MRI image emulates a 'restored' PET image,

where the restoration embodies anatomical information (from the MRI).    This second perspective

suggests it may be possible to analyze single subject functional time-series (e.g. PET activation

studies) using not the original functional data but the transformed MRI images.  This multimodality

application is currently being explored.

Extensions

    There is a potentially important extension to the technique that we did not demonstrate.  This

extension involves solving for the spatial and intensity transformations simultaneously for the

images and the images convolved with any number of convolution kernels.   This is simply effected

by stacking the matrices in eqn(5) on top of each other after premultiplying by the appropriate

convolution matrix.  For example if we take an arbitrary convolution matrix § then from eqn(5)

§.[c.diag(ƒ0(†)).ßƒ   c.diag(ƒ1(†)).ßƒ...  -diag(∂Ω/∂x).ßq].[ u0 u1....   q]T    ≈  §.Ω

so for a series of convolution matrices  §i:

§0.c.diag(ƒ0(†)).ßƒ   §0.c.diag(ƒ1(†)).ßƒ...  -§0.diag(∂Ω/∂x).ßq  .[ u0 u1..  q]T           § 0 . Ω

§1.c.diag(ƒ0(†)).ßƒ   §1.c.diag(ƒ1(†)).ßƒ...  -§1.diag(∂Ω/∂x).ßq         ≈       § 1 . Ω

§2.c.diag(ƒ0(†)).ßƒ   §2.c.diag(ƒ1(†)).ßƒ...  -§2.diag(∂Ω/∂x).ßq                               § 2 . Ω
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and so on. 16

   For example §0 could represent the identify matrix and §1 a differential operator.  In this case the

transformation solutions would simultaneously approximate the original images (Ω and †) and

their first derivatives (dΩ/dx and d†/dx).  The constraints on §i are that it should not make the

first order approximation of the effect of spatial transformations unreasonable.  This means the

result of convolving Ω should still be smooth.

Limitations

   The limitations of the technique described here relate to the 'reasonableness' of the first order

approximation in eqn(3) and any other constraints imposed by expanding in terms of basis

functions, Taylor series or polynomials.  The first order approximation [eqn(3)] is only a good one

when the spatial distortions are small relative to smoothness.  In a sense this is not a fundamental

limitation because (i) the images can always be made sufficiently smooth using the formalism of the

previous section [eqn(16)] or (ii) spatial differences can be successively reduced using the linear

piece-wise approximation to a nonlinear search, as implemented in the recursive application (see

above).  Because the initial mismatch between object and reference should be small (relative to

smoothness), whenever two images are matched the image with the poorer spatial resolution can be

considered as Ω.  Clearly one should start with the 'best guess' registration.

   Missing data appears to be handled in a reasonably graceful fashion as long as the least squares

solution is restricted to voxels at which data exists for both image processes.   This is no problem

in image registration because the affine transformations specified for one part of the image exactly

specify the transformations everywhere.  For nonlinear transformations if one part of the image is

missing no solution can be obtained for the homologous part of the other image.  In this sense it is

advisable to ensure the reference image is more 'complete' than the object image.

   One potentially important limitation of smooth basis functions is that they are not always

necessarily appropriate.   For example at the apposition of the cortices in the inter-hemispheric
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fissure there is spatial proximity but contiguity across the falx cerebri is a biological impossibility.

In this instance basis functions that are smooth over the mid-saggital plane may not be appropriate.

In practice we have never found this to be a problem at the resolutions we commonly work with.  If

it were a problem then the basis functions could be redesigned, or equivalently each hemisphere

could be normalized separately.

   One practical limitation is the amount of working memory available to compute the least squares

solution.  This can severely compromise the volume of data that can be dealt with and the number

basis functions (or the order of other expansions) that can be used.  It should be noted that the

actual software implementation does not adhere to the matrix equations above.  For example one

would never actually construct diag(†) but emulate the required matrix operation with the equivalent

element by element operations (unless one had a software environment that could handle sparse

matrices).  In dealing with nonlinear spatial normalization of large volume data sets we have found

the following strategy useful: (i) three dimensional affine and nonlinear transformations based on

sparse sampling (i.e. subsampling) followed by (ii) two dimensional or piece-wise (e.g. slice)

nonlinear deformations with complete sampling.

Issues of validity

  The criteria for 'good' spatial transformations can be framed in terms of validity, reliability and

computational efficiency.  The validity of a particular transformation device is not easy to define or

measure and indeed varies with the application.  For example an orthogonal transformation may be

perfectly valid for realignment but not for spatial normalization of an arbitrary brain into a standard

stereotactic space.  In general the sorts of validity that are important in spatial transformations can

be divided into (i) Face validity , established by demonstrating the transformation does what it is

supposed to and (ii) Construct validity, assessed by comparison with other techniques or

constructs.  In functional mapping face validity is a complex issue.  At first glance face validity

might be equated with the co-registration of anatomical homologues in two images.  This would be

complete and appropriate if the biological question referred to structural differences or modes of
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variation.  In other circumstances however this definition of face validity is not appropriate.  For

example the purpose of spatial normalization (either within or between subjects) in functional

mapping studies is to maximize the sensitivity to neurophysiological change elicited by

experimental manipulation of sensorimotor or cognitive state.  In this case the better definition of a

valid normalization is that which maximizes condition-dependent effects with respect to error (and

if relevant intersubject) effects.  This will probably be effected when functional anatomy is

congruent.  This may or may not be the same as registering structural anatomy.  

   In the present work we have addressed validity at a number of levels.  In the first section we

established face validity with respect to known simulated movement and construct validity with

respect to another approach (Woods et al 1992).  Another aspect of face validity was addressed by

showing the algorithm removed a component from the functional variance that could be attributed to

movement artifact.  In the second section we examined construct validity in terms of standard

nonlinear minimisation and trajectories on an error surface.

   Finally with reference to the construction of 'virtual modalities' using intensity transformations:

We emphasise that the validity of this 'modality' depends on the validity of the forms of the

relationship, between voxel values in both modalities, that are assumed in the least squares

solution.  

Conclusion

    In conclusion we hope to have presented a reasonable solution to a fairly simple problem:  How

to match one image to another reliably, quickly, automatically and with some degree of validity.

Note
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    Many of the algorithms presented in this paper have been implemented in MATLAB (MathWorks

Inc, Sherborn MA, USA) as part of the SPM (Statistical Parametric Mapping) package.  The spatial

normalization component developed for PET uses a twelve parameter affine-six paramter nonlinear

transformation in three dimensions to match an individual's image to a library template.  Our ASCII

files (which are interpreted by MATLAB) are available from the authors.
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Appendix:

   This appendix contains nothing new for the general reader.  It is included for those who wish to

verify the derivations in detail and/or implement the matrix equations in an application.

   Consider the general problem of spatially transforming one image so that it matches another. The

differences between the object images Ω(x) and the reference image †(x) can can be attributed to (i)

differences in intensity (given the images are spatially congruent) and (ii) differences due to a

spatial distortion of one image relative to the other.  Let the first, generally nonlinear, relationship

between voxel values from the same point (x) in both images be denoted by the operator ƒx{.} and

the distortion by q(x) such that:

ƒx{†(x)} = Ω(q(x))  +  e(x) a.1

where e(x) is a normally distributed error term with zero mean.  For clarity we will omit the error

term and deal with one dimensional images (generalizing to three dimensional images at the end of

the appendix).  Images are assumed to be good lattice representations of the continuous processes

Ω(x) and †(x) in a Euclidean space x.

   The problem of spatial transformation reduces to finding approximate solutions for ƒx{.} and

q(x) subject to reasonable constraints.  The constraint on the operator ƒx{.} is one of local-

stationariness, in the sense that ƒx{.} does not change very much in a local region  [ƒx{.} is

allowed to vary between remote regions of the images].  The minimal constraint on the spatial

transformation q(x) is assumed to be a preservation of local contiguity relationships (i.e. q(x) is a

smooth and the associated Jacobian is positive).   We will deal here with the most general case of

these minimal constraints.

   At first glance a.1 may appear so ill posed as to make any explicit solution impossible:  However

if we assume the images are smooth (or that they can be rendered smooth - see main text) then a
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first order approximation of a.1 can be constructed in which both the operator ƒx{.} and q(x) have

a least squares solution.  The remainder of this section describes how this is done.

  First decompose ƒx{.} into a convolution and a functional:

ƒx{.} = c(x) * γx(.) a.2

where * denotes convolution.  c(x) is a kernel or differential point spread function.   Without loss

of generality one can take some expansion of γx{.}  = ∑ ui(x).ƒi{†(x)} where ƒi{.} could

correspond to terms in a polynomial, a Taylor series, a Fourier series and so on.  The local-

stationariness constraint on ƒx{.} can be implemented by expanding the coefficients of ƒi{.}  [i.e.

ui(x)] in terms of some 'smooth' spatial basis functions ßƒj(x):

ui(x)  =  ∑ uijßƒj(x) a.3

q(x) can be similarly expanded in terms of x and some smooth basis functions ßqk(x):

q(x) = x + ∑ qkßqk(x) a.4

and: ∂q(x)/∂qk = ßqk(x) a.5

Using these expansions  a.1 becomes:

c(x) * ∑ { ƒi(†(x)) ∑ uijßƒj(x) } ≈ Ω(x + ∑ qkßqk(x) ) a.6

If Ω(x) is smooth the effects of small distortions qkßqk(x) will not interact to a significant degree and

we can expand the right hand side of a.6 using Taylor's theorem where, ignoring high order terms:
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Ω(x + ∑ qkßqk(x) ) ≈ Ω(x)    +    ∑ qkßqk(x).∂Ω(x)/∂x a.7

a.7 is asymptotically true for small qk and reasonably true, if Ω(x) is smooth, for larger qk.  The

right hand side of a.7 can be expressed directly in terms of qk by noting that from eqn(5):

ßqk(x) . ∂Ω(x)/∂x = ∂q(x)/∂qk.∂Ω(x)/∂x = ∂Ω(q(x))/∂qk a.8

i.e. Ω(x + ∑ qkßqk(x) ) ≈ Ω(x)    +    ∑ qk∂Ω(q(x))/∂qk a.9

this first order approximation (a.7 or a.9) is substituted into a.6:

c(x) * ∑∑ [ ƒi(†(x)) . uij ßƒj(x) ]  -  ∑ qkßqk(x).∂Ω(x)/∂x     ≈    Ω(x) a.10

Given the 'good lattice' assumption a.10 can be expressed in matrix notation as:

[c.diag(ƒ0(†)).ßƒ  c.diag(ƒ1(†)).ßƒ... -diag(∂Ω/∂x).ßq].[ u0 u1....   q]T   ≈  Ω

or   [c.diag(ƒ0(†)).ßƒ  c.diag(ƒ1(†)).ßƒ... -∂Ω/dq].[ u0 u1....   q]T   ≈  Ω a.11

where c is a Toeplitz matrix of the convolution kernel c(x).  diag(ƒi(†)) represents a diagonal matrix

with leading diagonal elements ƒi(†(x)) at the location of all voxels.  The matrix ßƒ and ßq contain a

basis function in each column and have the same number of rows as voxels analyzed.   ui and q are

row vectors of the unknown coefficients.   Ω and ∂Ω/∂x are column vectors with one element per

voxel.   Let :

A = [c.diag(ƒ0(†)).ßƒ   c.diag(ƒ1(†)).ßƒ...  -diag(∂Ω/∂x).ßq]
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then from a.11 A.[ u0 u1....   q]T    ≈  Ω

and [ u0 u1....   q]T   ≈  (AT.A)-1AT.Ω a.12

a.12 represents the least squares solution of the unknown coefficients [  u0 u 1....   q ]T   The

elements of these vector specify the approximations of ƒx{.} and q(x) in the space defined by the

(generally nonlinear) basis functions.  The corresponding expressions in three dimensions (x, y

and z) are:

A    =

[c.diag(ƒ0(†)).ßƒ  c.diag(ƒ1(†)).ßƒ...  -diag(∂Ω/∂x).ßq  -diag(∂Ω/∂y).ßq  -diag(∂Ω/∂z).ßq]

and [u  v  qx  qy  qz]T    ≈  (AT.A)-1AT.Ω

where (c.f. a.4): q(x) ≡ x    +   ßq . qx a.13

and similarly for q(y) and q(z).  The spatially normalized image Ωn(x,y,z) is simply:

Ωn(x,y,z) = Ω(q(x),q(y),q(z)) a.14
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Table of Symbols: (Could be placed in a Box)

†(x) and † The image designated the template or reference image

Ω(x) and Ω The image designated the object or observed image

ƒx{.}   =    c(x) * γx(.) The operator mapping voxel values from reference to object at x

c(x) and c The convolution kernel or matrix

γx(.)    =    ∑ ui(x).ƒi{.} The nonlinear functional component of ƒx{.} at x

ƒi{.}   The ith function in the expansion of γx(.) 

ui(x)  =    ∑ uijßƒj(x) The ith coefficient of the expansion of γx(.) at x

uij and ui The coefficients of the expansion of ui(x) in space (an unknown)

ßƒj(x) and ßƒ         The spatial basis functions of the expansion of ui(x) in space

q(x)    =    x + ∑ qkßqk(x) The function describing the spatial transformation or movement

ßqk(x) and ßq The spatial basis functions of q(x) - x

qk and q The coefficient of the expansion of q(x) (an unknown)

∂Ω(x)/∂x and ∂Ω/∂x The derivative of the object with respect to x

∂Ω(q(x))/∂qk and ∂Ω/dq The derivative of the object with respect to qk
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Legends for Figures

Figure 1

   Comparison of the least squares technique with known (simulated) movement parameters and

parameter estimates using AIR (Woods et al 1992).  Left: y translation expressed in mm over the

different simulated movements.  The two solid lines correspond to the actual and least squares

estimates of movement.  The least squares estimate deviates on the extreme right (lower curve)

from actual movement.  The AIR estimates (broken line) are largely superimposed on the actual

movement curve.  Right:  The same data plotted on a semi-log scale. Straight line - actual,  solid

line - least squares and broken line - AIR.

Figure 2

   Estimated movement from a real time series of 64 coronal fMRI slices through visual cortex.

Upper x and y translation (solid lines) and rotation (broken line) as estimated by the least squares

approach.  Lower:  x translation estimated using AIR regressed on least squares estimates.

Figure 3

   SVD analysis of the fMRI time series referred to in the previous figure.  Left:  first (top) and third

(lower) spatial modes or eigenimages following SVD.  The grayscale is arbitrary and the images

have been normalized to their maximum.  Right:  Time dependent expression of the spatial modes.

Right top:  the periodic expression of the first mode due to photic stimulation (solid line) and that

predicted by convolving the stimulation waveform with the hemodynamic response function,

assuming a delay and dispersion of seven seconds (broken line).  See Friston et al (1994) for a full

exposition.  Right lower: time-dependent expression of the third spatial mode due to movement

artefact (solid line).  The broken line corresponds to estimated diagonal movement using on the data

in the previous Figure (Figure 3).
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Figure 4

   Singular (squared) or eigenvalue spectrums following an SVD analysis of the fMRI time series

before and after spatial transformation (realignment).  The key difference is a decrease in the

amount of variance attributable to the third spatial mode.  This can be interpreted as a removal of

movement artefacts

Figure 5

   The basis functions used in subsequent nonlinear spatial transformations and intensity

transformation expansions.  The gray scales are arbitrary and each function has been normalized to

its maximum.

Figure 6

  Spatial normalization of PET images effected by spatial normalization of one PET image to

another.  The object image (top left) is presented after spatial normalization (lower left) and shows a

greater degree of correspondence with the reference image (top right).   The equivalent spatial

transformation of the object image estimated using nonlinear minimisation is shown on the lower

right.  All images have been scaled to their image maximum and are displayed on the proportional

grid used by the atlas of Talairach and Tournoux (1988).

Figure 7

   Comparison of the least squares approach and nonlinear minimisation in terms of searches over

an error surface.  Top:  singular warps or distortions defined by a SVD of the search trajectories in

the space of the basis functions.  These two singular warps correspond to the axes in the lower

panels.  The two warps accounted for the greatest excursions of the search trajectories and are

orthogonal.  Each singular warp has been applied to the object image (Figure 6 - top left).
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Lower left.  Search trajectory in the space defined by the singular warps.  solid line - least squares,

broken line - nonlinear minimisation.  Lower right:  The corresponding error surface computed as a

two dimensional subspace of the search space.  This subspace includes the final solution of the

nonlinear minimisation algorithm.

Figure 8

   Matching MRI to MRI.  Left: The object images before (upper) and after (lower) spatial

transformation.  The reference image that has been spatially approximated in shown on the upper

right.  The spatially transformed object and reference images have been superimposed to illustrate

the coregistration (lower right).  All images have been scaled to their maximum.

Figure 9

   The efficacy of the spatial transformation in terms of the (crudely) segmented MRI images.  Top:

gray matter segmented images following spatial normalization of the object image (left) and the

reference image (right).  Lower:  equivalent images segmented for white matter.  All images have

been scaled to their maximum.

Figure 10

   Cross modality spatial transformations.  Left: transverse PET slices before (top) and after (lower)

spatial normalization to a reference MRI image (top left).  The coregistration is illustrated in the

lower right panel.  All images have been scaled to their maximum.

Figure 11

  Cross modality intensity transformations.  Upper left: spatially transformed PET image (as in

Figure 10 lower left).  Right:  The intensity transformed MRI image without convolution.  After

convolution (lower left) this image approximates the PET image in a least squares sense.  All

images have been scaled to their maximum.
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Figure 12

  The transformation functions for two gray matter voxels in the MRI image.  Left: the position of

the two voxels in cortical and subcortical regions (black dots).  Right: the corresponding intensity

transformation functions  solid line - cortical voxel,  broken line - subcortical voxel.

Figure 13

   As for Figure 10 but in this instance the PET and MRI images are subject to nonlinear spatial

transformations because they did not derive from the same subject.  All images have been scaled to

their maximum.

Figure 14

  As for Figure 11 but in this instance the PET and MRI images are subject to nonlinear spatial

transformations because they did not derive from the same subject and the original MRI image is

shown on the top left.


