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Abstract

   Statistical parametric maps are spatially extended statistical processes that are used to

test hypotheses about regionally specific effects in neuroimaging data.   The most

established sorts of statistical parametric maps (e.g. Friston et al 1991, Worsley et al

1992) are based on linear models, for example ANCOVA, correlation coefficients and t

tests.  In the sense that these examples are all special cases of the general linear model it

should be possible to implement them (and many others) within a unified framework.

We present here a general approach that accommodates most forms of experimental

layout and ensuing analysis (designed experiments with fixed effects for factors,

covariates and interaction of factors).  This approach brings together two well

established bodies of theory (the general linear model and the theory of Gaussian

Fields) to provide a complete and simple framework for the analysis of imaging data.

   The importance of this framework is twofold:  (i) Conceptual and mathematical

simplicity, in that the small number of operational equations used are the same,

irrespective of the complexity of the experiment or nature of the statistical model and (ii)

the generality of the framework provides for great latitude in experimental design and

analysis.



Introduction

    The aim of this paper is to describe and illustrate an implementation of the general

linear model that facilitates a wide range of hypothesis testing with statistical parametric

maps.  This approach can be used to make statistical comparisons ranging from an

unpaired t test to linear regression in the context of analysis of covariance.  Its

importance lies in (i) expediency; in that a single conceptual and algorithmic framework

can replace the many currently employed; (ii) generality; in that experimental design is

completely unconstrained (in the context of the general linear model) and (iii)

portability;  these linear models can be applied to any method of constructing a

statistical parametric map.

      Functional mapping studies (e.g. activation studies or comparing data from

different groups) are usually analyzed with some form of statistical parametric

mapping.  Statistical parametric mapping refers to the construction of spatially extended

statistical processes to test hypotheses about regionally specific effects.  Statistical

parametric maps (SPMs) are image processes with voxel values that have, under the

null hypothesis, a known distributional approximation (usually Gaussian).

   The power of statistical parametric mapping is largely due to the simplicity of the

underlying idea:  Namely one proceeds by analyzing each voxel using any (univariate)

statistical parametric test.  The resulting statistics are assembled into an image, that is

then interpreted as a spatially extended statistical process.   SPMs are interpreted by

referring to the probabilistic behaviour of stationary Gaussian fields (e.g. Adler 1981).

Stationary fields model not only the univariate (univariate means pertaining to one

variable) probabilistic characteristics of the SPM but also any stationary spatial

covariance structure (stationary means not a function of position).  'Unlikely' regional

excursions of the SPM are interpreted as regionally specific effects (e.g. activations or

differences due to pathophysiology).  In activation studies regional or focal activation is

attributed to the sensorimotor or cognitive process that has been manipulated



experimentally. This characterisation of physiological responses appeals to functional

specialization, or segregation, as the underlying model of brain function.  When

comparing one group of subjects with another, a local excursion is taken as evidence of

regional pathophysiology.  When the physiological and cognitive (or sensorimotor)

deficits are used to infer something about functional anatomy; this inference is usually

based on a lesion-deficit model of brain organization.  One could regard all applications

of statistical parametric mapping as testing some variant of the functional segregation or

lesion-deficit hypothesis.

   The idea behind statistical parametric mapping is, of course, not new.  Statistical

parametric mapping represents the convergence of two earlier ideas; change distribution

analysis and significance probability mapping.   Change distribution analysis was a

pioneering voxel-based assessment of neurophysiological changes developed by the St.

Louis group for PET activation studies (e.g. Fox and Mintun 1989).  This technique

provided a mathematical underpinning for the powerful subtraction paradigm still

employed today.  Significance probability mapping was developed in the analysis of

multichannel electrophysiological (EEG) data and involves the construction of

interpolated pseudomaps of a statistical parameter.  The fact that SPM has the same

initials is not a coincidence, and represents a nod to its electrophysiological counterpart.

   Unlike significance probability maps in electrophysiology, SPMs are well behaved in

the sense they are approximated by stationary, spatially extended stochastic processes

(due to the fact that neuroimaging samples uniformly and that the point spread function

is stationary).  This well behaved and stationary aspect of SPMs (under the null

hypothesis) meant that theoretical advances were made, to a point where this area is

growing rapidly and is an exciting part of applied spatial statistics.  This development

has been in the context of the theory of Gaussian fields (e.g. Friston et al 1991,

Worsley et al 1992, Worsley et al 1993a, Worsley 1994, Friston et al 1994);  in

particular the theory of level-crossings (Friston et al 1991) and differential topology

(Worsley et al 1992).



   SPMs can be as diverse as the experimental design and univariate statistics used in

their construction.   Experimental designs in functional neuroimaging can be broadly

divided into; (i) subtractive, (ii) parametric and (iii) factorial.   Their application can be

either to activation studies (time-series) or to group studies where each individual is

studied once.  Cognitive or sensorimotor subtraction is the best known example of the

subtraction design in activation studies  (e.g colour - Lueck et al 1991, or higher

cognitive function - Frith et al 1992).  Categorical comparisons of different groups

using SPMs represent another common application of statistical parametric mapping

(e.g. depression - Bench et al 1992).  Parametric designs include studies where some

physiological, clinical, cognitive or sensorimotor parameter is correlated with

physiology to produce an SPM of the significance of the correlation or regression.  In

activation studies this may be the time on target during a visuomotor tracking paradigm

(Grafton et al 1993), performance on free recall (Grasby et al 1994).or frequency of

stimulus presentation (Price et al 1993).  In the analysis of different populations the

parameter may reflect symptom severity (Friston et al 1992a) or some simple variable

such as age (Martin et al 1992).  Clearly the parameter being correlated can be

continuous (e.g. time on target) or discrete (e.g. word presentation frequency).  

Factorial designs provide the opportunity to consider an interaction between the

treatments or sorts of condition (two factors interact if the level of one factor affects the

effect of the other.  At its simplest an interaction is a difference in a difference).  In

activation studies this may be the interaction between motor activation (one factor) and

time (the other factor), an interaction that provides information about adaptation

(Friston et al 1992b).  Another example of an interaction is between cognitive activation

and the effects of a centrally acting drug (Friston et al 1992c, Grasby et al 1993).  In

summary there are many ways a hypothesis can be formulated and correspondingly

there are as many sorts of SPMs.  

   All the examples in the previous paragraph used SPMs in conjunction with a test

statistic (usually the t statistic or correlation coefficient) that represented a special case



of the general linear model.  This begs the question 'is there a single general approach

that could accommodate all the above examples (and more)?'  The purpose of this work

was to identify an instantiation of the general linear model that would do this.

   This paper is divided into two sections.  The first section deals with the theory behind

the general linear model, the implementation and making statistical inferences.  This

section includes a brief review of how significant regional excursions (activation foci or

other regionally specific effects) can be characterized and identified.   The second

section illustrates various applications of the approach, ranging from t tests to

interaction terms in analyses of covariance.   The applications are illustrated with an

exemplary data set obtained during a word generation activation study of normal

subjects.



A general approach

The general linear model

    The general linear model for a response variable xij  (such as rCBF) at voxel j  =

1,...,J is:

xij =  gi1ß1j  +  gi2ß2j  +  ......giKßKj    +      eij 1

where i = 1,....,I indexes the observation (e.g. scan).   The general linear model

assumes the errors (eij) are independent and identically distributed normally [N(0,

σj2)].  For example in activation studies this means one is assuming an equal error

variance (σj2) across conditions and subjects (but not from one voxel or brain structure

to the next).  Here the ßkj are K  unknown parameters for each voxel j.

   The coefficients gik are explanatory variables relating to the conditions under which

the observation (e.g. scan) i was made.  These coefficients can be of two sorts: (i) a

covariate (e.g. global CBF, time, plasma prolactin level, ... etc) in which case eqn(1) is

a familiar multivariate regression model or (ii) indicator-type or dummy variables,

taking integer values to indicate the level of a factor (e.g condition, subject, drug ... etc)

under which the response  variable (rCBF) is measured.   Mathematically speaking

there is no distinction between these two sort of variables but we make the distinction

for didactic reasons.  Eqn(1) can be written in matrix form as a multivariate general

linear model;

X = Gß + e 2

Here X  is a rCBF data matrix with elements xij   X  has on column for each voxel j and

one row for each scan.  The matrix G is comprised of the coefficients gik and is called

the design matrix.   The design matrix has one row for every scan and one column for

every effect (factor or covariate) in the model.   ß = [ß1  |   ß2 |  , . . . . ,  |   ßJ]  is the



parameter matrix where ßj is a column vector of parameters for voxel j.   e is a matrix

of normally distributed error terms.  It may be noted that eqn(2) does not have a

constant term.  The constant term can be explicitly removed by mean correcting the data

matrix or implicitly by adding a column of ones to G.  For didactic purposes we

assume the data X  are mean corrected.  Least squares estimates of ß say b, satisfy the

normal equations (Scheffe 1959 p9):

GTG b = GTX

if G is of full rank then GTG is invertible and the least squares estimates are uniquely

given by

b = (GTG)-1GTX

where  E{bj} =  ßj   and Var{bj} = σj2 (GTG)-1 3

If the errors are normally distributed then the least squares estimates are also the

maximum likelihood estimates and are themselves normally distributed (see Scheffe

1959). Var{bj} is the variance-covariance matrix for the parameter estimates

corresponding the jth voxel.

   These simple equations can be used to implement a vast range of statistical analyses.

The issue is therefore not so much the mathematics but the formulation of a design

matrix (G) appropriate to the study design and the inferences that are sought.  This

section describes one general approach that is suited to functional imaging studies.

   The design matrix can contain both covariates and indicator variables reflecting the

experimental design.   Each column of G has an associated unknown parameter in the

vectors ßj.  Some of these parameters will be of interest [e.g. the effect of particular

sensorimotor or cognitive condition or the regression coefficient of rCBF (the response

variable) on reaction time (covariate)].  The remaining parameters will be of no interest



and pertain to confounding effects (e.g the effect of being a particular subject or the

regression slope of voxel activity on global activity).  Confounding here is used to

denote an uninteresting effect that could confound the estimation of interesting effects

(e.g. the confounding effect of global changes on regional activations).  The two levels

(indicator vs covariate and interesting vs not interesting) suggest that G (and ß) can be

split twice into four partitions  G  = [ Gl | Gc | Hl | Hc ]  and similarly ß  = [ßlT | ßcT |

lT | cT]T  with estimators  b = [blT | bcT | g lT | gcT]T.   Here effects of interest are

denoted by the G partitions and confounding effects of no interest by H partitions.  The

subscripts l or c refers to the nature of the effect (level within a factor or a covariate).

There is a fundamental distinction between effects that are interesting and those that are

not, as will be seen below.  The distinction between levels and covariates is not

mathematically important but helps in understanding and describing the nature of the

design matrix.   Although there is no mathematical difference between treating the level

and covariate separately and together, we actually deal with them as separate matrices in

our software implementation.  This helps to clarify things when reading the code and

interacting with the programs.  Each partition of the design matrix has one row for each

scan and one column for each effect modelled by that partition.   Using these partitions

Eqn(2) can be expanded:

X = Gl ßl    +    Gc ßc    +    Hl l    +    Hc c      +       e 4

where Gl represents a matrix of 0s or 1s depending on the level or presence of some

interesting condition or treatment effect (e.g the presence of particular cognitive

component).  The columns of Gc contain  the covariates of interest that might explain

the observed variance in X  (e.g. dose of apomorphine or 'time on target').  Hl

corresponds to a matrix of indicator variables denoting effects that are not of any

interest (e.g. of being a particular subject or block effect).  The columns of Hc contain

covariates of no interest or 'nuisance variables' such as global activity or confounding

time effects   ßl  are effects due to the treatments of interest (e.g. activation due to



verbal fluency).   ßc  are the regression coefficients of interest.   l are the effects of no

interest (e.g. block or subject effects) and c are the regression coefficients for the

nuisance variables or confounding covariates.

   To make this general formulation clear consider the model for an unpaired t test.  In

this instance G = [Gl], where the elements of the column vector Gl are 0 for all rCBF

measurements in one group and 1 for the other group.   A simple regression of reaction

time on rCBF would be implemented by making G = [Gc] where Gc is a column vector

containing the reaction time data.  The randomized block design ANCOVA

implemented by the MRC SPM software corresponds to G = [Gl | Hl | Hc] where Gl

specifies the activation condition, the Hl account for subject (block) effects and Hc is a

column vector of confounding global CBF covariates.   The point to be made here is

that nearly every conventional statistical design is a special case of eqn(4) or in other

words most linear parametric analyses can be implemented with eqn(4) .

  In this paper scaling the images to remove global or whole brain effects is considered

a pre-processing step.  If we tried to incorporate a geometric scaling into the statistical

model we would end up with a model that was more complicated than those considered

here.

Experimental design - the forms for Gl and Hl

   In functional imaging one measures some physiological variable, usually

hemodynamic (e.g. rCBF) in a number of conditions (levels of a factor).   In many

instances the same conditions are measured in a series of blocks; for example in PET,

baseline and activations (conditions or factor levels) are repeated in a number of

subjects (blocks or plots).  In fMRI different conditions are usually repeated serially in

blocks over time.

   The situation gets more complicated if one repeats the activation study under different

conditions or in different subjects.  The designs appropriate for this situation are called

split-plot designs [a good reference for psychology applications is Winer 1971) and see

Worsley et al (1991) for an example in the PET literature using region of interest



analysis].  There are some complications that can arise when using split-plot designs,

however the situation is simplified if the block (or subject) effects are always included

thereby restricting the analysis to within-block effects.  This is the approach taken here.

   An example of this sort of experimental design, in PET, would be two verbal fluency

studies, one in a series of normal subjects and one in a group of schizophrenic patients,

or a psychopharmacological activation study in two groups of normal subjects studied

with and without an appropriate antagonist.  An example in fMRI would be the

repetition of a blocked series of sensorimotor conditions in a different subject.   In these

examples the design is not completely blocked.  In other words all conditions within

and between studies are not repeated in the same block (e.g. subject).  For example one

cannot perform a verbal fluency activation study in a subject, give the subject

schizophrenia, and then repeat the activation study.  This partial blocking problem

suggests the following form for Gl and Hl:   Let the experiment be divided into a series

of studies.  In each of the s  = 1,.....S   studies ns conditions are measured in all of ms

subjects (or more generally blocks).  There is however no requirement for the number

of conditions or subjects (blocks) within each study to be the same.  This design is, we

consider, the most accommodating for functional imaging experiments.  One can think

of this design as allocating ∑ns conditions to ∑ms  blocks in any permutation allowed.  

The column position of the '1' in the ith row of Gl denotes which of the ∑ns conditions

the ith scan was obtained under and the position of the column with a '1' in the ith row

of Hl denotes the subject (block) in which that measurement was made.

   The suggested terminology, adopted in this paper, divides the experiment into

studies.   Each study comprises one or more scans on one or more subjects (more

generally bocks).  Each subject in scanned in one or more conditions.   Conditions can

be variously classified and indeed may include several treatments [e.g. entreating

subjects to perform a series of psychological tasks (cognitive treatments) with and

without a drug (pharmacological treatments)].  A single level of any cognitive or

sensorimotor treatment is a task and may be repeated in a number of conditions; but

note that the first time a task is administered is one condition and the second time is



another condition.  The design matrix depends only on studies, subjects and

conditions.  The effects of a specific task  are assessed by comparing one set of

conditions with another using contrasts, as discussed in later sections.

   This one-way layout does not explicitly model interaction terms or effects due to

study.  This simplicity is deliberate and allows the investigator to test for the [simple]

main effects of condition and interactions between condition effects and study post hoc

(by testing for the appropriate effects on the ∑ns condition specific parameters ßl).  

The alternative would be to model these effects explicitly in G.   The problem with this

approach is that the effect of interest would only be assessed in an omnibus sense.  For

example imagine a pharmacological activation (with P scans or conditions) performed

in three groups, a normal, a schizophrenic and a depressed group.  The interaction

between condition and study (i.e. a regionally specific differential response to the drug

challenge, across the three diagnostic groups) could be assessed using the ratio of

variances (see below) but there would be no information about which group differed

from which, or about the nature of the effect (augmented or blunted response).  All

these pairwise, direction-specific comparisons could be made post hoc if the experiment

was treated as 3P (∑ns) distinct conditions.   The proposed layout does exactly this.

   A note of caution here:  The multiple study (or split-plot) approach is proposed

primarily for the analysis of interactions between condition and studies (and main

effects of condition).   Testing for the main effects of study is not so straightforward.

This is because the estimates of the error terms are based on a within-block analysis and

may not be appropriate for comparing between-block effects such as those due to study

(See Winer 1971).

   The solution implicit in eqn(3) requires that G be of full rank or non-singular.  This is

guarantied for the covariates, assuming all the covariates are linearly independent;

however it is sometimes the case that the Gl and Hl are not linearly independent.  This

is dealt with by applying constraints to the design matrix.   In the current context this is

effected by constraining all the block effects (effects not of interest) to sum to zero.



This is equivalent to treating the uninteresting effects as residuals about the effects of

interest.

Adjusting for the confounding effects of no interest

   It is often wise to report physiological changes from a particular voxel in order to

indicate the size of the physiological effect.  This is best demonstrated by reporting the

data (e.g. rCBF) after adjusting for the confounding effects of nuisance variables (e.g.

global activity) and other spurious effects (e.g. block effects).  After estimating ß the

adjusted data X* are given by discounting the effects of no interest (i.e. in mean

corrected form):

X* = X     -    [Hl | Hc].[ g lT | gcT]T

5

[Hl | Hc] represents the uninteresting or confounding parts of the design matrix

(obtained by stacking the uninteresting factor level partition and the uninteresting

covariates partitions side by side).  [ g lT | gcT]T represents the corresponding parameter

estimates.  The g l and gc are linear estimators of l and ch, the uninteresting

components of ß.  The adjusted mean condition affects are given by the elements of bl

and the regression coefficients by bc.

Statistical inference - Omnibus or overall effects at each voxel

   In this section we address statistical inferences about the effects of interest  (condition

and covariates of interest).  We also clarify the relationship between statistical

parametric mapping (i.e. massive univariate testing) and multivariate analysis.

  The omnibus significance is assessed by testing the null hypothesis that including the

effects of interest does not significantly reduce the error variance.  This is equivalent to

testing the null hypothesis that ßl and ßc are zero.    In the sense that this inference does

not address any specific condition (or covariate) it is referred to as an omnibus test.



Note that in contradistinction to the use of 'omnibus' in reference to tests that pertain to

the whole image (e.g. the gamma-2 of Fox et al 1988) 'omnibus' is used here in a

univariate sense for a particular voxel  [this use of omnibus is preferred because

detecting a significant regional effect (see below) is also an implicit confirmation that an

effect exists somewhere in the image; i.e. in the old omnibus sense].  

   The null hypothesis that the effects embodied in Gl and Gc are not significant can be

tested in the following way.  The sum of squares and products due to error R(Ω) is

obtained from the difference between the actual and estimated values of X (Ω is the

alternative hypothesis to the null hypothesis and includes the effects of interest):

R(Ω) = (X  - G.b)T(X  - G.b) 6

   The error sum of squares and products under the null hypothesis R(Ω0)  i.e.  after

discounting the effects of interest  (Gl and Gc) are given by:

R(Ω0)      = (X  - [Hl | Hc].[g lT | gcT]T)T.(X  - [Hl | Hc].[g lT | gcT]T)

7

   Clearly if Hl and Hc do not exist this simply reduces to the sum of squares and

products of the response variable (X TX ).  At this point we could (in principle) proceed

in one of two directions.  The first direction would be to test the omnibus significance

of all effects of interest over all voxels.  This would correspond to a multivariate

analysis of variance or covariance (MANOVA or MANCOVA).  Although many

standard texts deal with MANOVA and MANCOVA separately there is no distinction in

the context of the current analysis.  The second approach would be to test for omnibus

significance over effects of interest in a univariate sense at each voxel (c.f. ANOVA or

ANCOVA at each voxel).   The second is employed by statistical parametric mapping

and preserves the regional specificity of the omnibus test at the cost of not being able to



extend the 'omnibusness' to the whole brain (i.e. a multivariate omnibus test).  The

multivariate omnibus significance would be tested with a single statistic, for example:

Λ = | R(Ω) | / | R(Ω0) | 8

where Λ is Wilk's statistic (known as Wilk's Lambda).  A special case of this test is the

Hotelling T2 test (see Chatfield and Collins 1980).  However there is a problem here;

namely  R(Ω) and R(Ω0) are both singular (meaning Λ is undefined).  This is a simple

result of having more voxels than scans.  This is one reason statistical parametric

mapping adopts a mass univariate approach (mass univariate analyses implemented in

parallel at each voxel).  For a single voxel j eqn(8), after appropriate transformations

reduces to the univariate ratio of variances (see Chatfield and Collins 1980 for details):

Fj    = (r/[r0 - r]) . [Rj(Ω0) - Rj(Ω)] / Rj(Ω) 9

where Rj(Ω) corresponds the the jth element on the leading diagonal of R(Ω) and

similarly for Rj(Ω0).   Fj is distributed according to the F distribution with degrees of

freedom r0 - r and r.   Generally r  = I - rank(G) and r0 = I - rank( [Hl Hc] ) where I is

the total number of scans.   If the data have been mean corrected and Hl has not, it is

necessary to remove an extra degree of freedom from r0.  The Fj can be displayed as an

image to create an SPM{F} directly testing the overall significance of all effects

designated 'of interest'.  In practice SPM{F}s are seldom employed as direct tests of

hypotheses but this form of omnibus testing is very useful for selecting subsets of

voxels that are used in some further analysis [e.g. singular value decomposition or

principal component analysis.  See Friston et al (1993)].

Statistical inference  - specific effects at each voxel

   In the previous section the F ratio of variance was used to make some inference about

the effects of all conditions and covariates of interest.  In this section the significance of



specific effects is examined.  This is effected with the t statistic using linear compounds

or contrasts of the parameter estimates bj = [b1j , b2j , ......]T.   For example if we

wanted to test for activation effects between conditions one and two then we would use

the contrast  c = [ -1 1 0 0 ....].   The significance of a particular linear compound of

effects at voxel j is tested with:

tj = c.bj /εj

where the standard error for voxel j  = σ2j is estimated by  εj2 [c.f. eqn(3)]:

εj2 = ( Rj(Ω) / r )  c.(GTG)-1.cT 10

tj has the Student's t distribution with degrees of freedom r.   When displayed as an

image the tj constitute an SPM{t} and represent a spatially extended statistical process

that directly reflects the significance of the profile of effects 'prescribed' by the contrast

c.

Statistical inference - specific effects  -  over the entire SPM

   In this section we address the problem of how to interpret the SPM{t} in terms of

probability levels or p-values.  The problem here is that an extremely large number of

non-independent univariate comparisons have been performed and the probability that

any region of the SPM will exceed an uncorrected threshold by chance is relatively

high.  In recent years advances have been made that have solved this problem.   These

advances have focussed on chosing thresholds that render the chance probability of

finding an activation focus, over the entire SPM, suitably small (e.g. 0.05).  The

threshold can be of two types (i) a critical height that the region has to reach or (ii) a

critical size (above some threshold) that a region must exceed before it is considered

significant.  Another way of looking at these approaches is to consider that a local

excursion of the SPM (a connected or contiguous subset of voxels above some



threshold) can be characterized by its maximal value (Z) or by its size (n - the number

of voxels that constitute the region).   Both these simple characterizations have an

associated probability of occurring by chance over the volume of the SPM.  These two

probabilities form the basis for making a statistical inference about any observed

regional effect:

    The analyses behind the distributional approximations for Z and n derive from the

theory of continuous, strictly stationary, stochastic Gaussian random fields (Gaussian

here refers to the multivariate Gaussian probability distribution of any subset of points,

not to the autocorrelation function).  To simplify the analysis the SPM{t} is

transformed to a SPM{Z} using a probability integral transform or other standard

device.  Strictly speaking this univariate transformation does not make a t-field into a

Gaussian field unless the degrees of freedom of the SPM{t} are very high.  In what

follows we assume that we are dealing with reasonably high degrees of freedom and

that the SPM{Z} is a reasonable lattice representation of an underlying continuous

Gaussian field.  Analytical expressions for the distributional approximations of tmax

(the largest t value) have now been established (Worsley et al 1993,Worsley 1994)

however approximations for nmax (the size of the largest region) have not.

The p-value based on Z, the largest value in the region

      The probability of getting at least one voxel with a Z value of say height u or more,

in a given SPM{Z} of volume S  [PS(Z > u)] is the same as the probability that the

largest Z value is greater than u  [P(Zmax > u)].  This is the same as the probability of

finding at least one region above u.  The central tenet here relies on the fact that the

probability of getting at least one region above u and the expected number of regions

tend to equality (at high values of u).

PS(Z > u) = P(Zmax > u) =       P(m  ≥ 1) ≤    E{m}

11



Where m is the number of regions.  The problem therefore reduces to finding the

expected number of foci at u.  An analysis was presented in Friston et al (1991) that

showed how this expectation could be identified using the theory of Gaussian fields.

This analysis approximated activation foci with suprathreshold ellipsoid regions.

Subsequently the Euler characteristic (the number of blobs minus the number of holes)

has been proposed as an approximation to the number of foci.  The Euler characteristic

was introduced in a key paper by Worsley et al (1992) that also established a formal

link between the theory presented in Friston et al (1991) and earlier work on the

expected number of maxima (see Adler 1981)  [the expressions derived on the basis of

ellipsoid regions (Friston et al 1991) and those based on maxima (Adler 1980) were

shown  to have, asymptotically, the same form but differ by a factor of π/4 at infinitely

high thresholds (Worsley et al 1992)].  The important issue here is that whether one

uses the number of foci, the Euler characteristic or the number of maxima, very

consistent results are obtained.  At high thresholds the number of regions, the number

of maxima and the Euler characteristic all tend to the same value.  The Euler

characteristic is more amenable to mathematical analysis than the earlier formulations

and has led to extensions to SPM{t} and SPM{F}  (Worsley et al 1993a, Worsley

1994).   For simplicity we will work with the number of maxima (Hasofer 1978):

P(Zmax > u) ≤       E{m)    ≈   S (2π)-(D+1)/2  W-D  uD-1   e-u2/2 12

W is a measure of smoothness and is related to the full width at half maximum

(FWHM) of the SPM’s “resolution”.  Equivalently W is inversely related to the number

of  “resolution elements” or Resels (R) that fit into the total volume (S) of the D-

dimensional SPM.  (R = S/FWHMD).   

   In practice W can be determined directly from the effective FWHM if it is known

when W = FWHM/√(4loge2) or estimated post hoc using the measured variance of the

SPM{Z}'s first partial derivatives:



W  =
i

D

=
∏

1

Var{∂SPM{Z}/∂xi  }
-1/(2D) 13

see Friston et al (1991) and Worsley et al (1992) for more details.

The p-value based on n, the size of the region

      The probability of getting one or more regions of say size k or more in a given

SPM{Z} thresholded at u (say SPMu{Z}) of volume S  [PS(n > k)] is the same as the

probability that the largest region consists of k or more voxels [P(nmax > k)].

Expressions for this probability rely on a number of previously known distributional

approximations and a conjecture that n2/D has an exponential distribution (in the limit of

high thresholds) (Nosko 1969, 1970; Adler 1981).  By assuming this form for P(n =

x) to be asymptotically correct we (Friston et al 1994) determined the parameters of the

distribution by reference to its known moments.  It was shown that:

PS(n > k) = P(nmax ≥ k)   = 1   -   exp( -E{m}.e-βk2/D 
)

where β = [Γ(D/2 + 1).E{m}/S.Φ(-u)]2/D 14

    Where Φ(-u) is the error function (integral of the unit Gaussian distribution)

evaluated at the threshold chosen (-u).  Eqn(14) gives an estimate of the probability of

finding at least one region with k or more voxels in an SPMu{Z}.  Notice that u (the

threshold) can be chosen.  The optimum threshold should maximize sensitivity.  In a

previous paper we derived an approximate expression for the sensitivity to a 'random'

signal (Friston et al 1994).  We demonstrated how the sensitivity, or power, depends

on an interplay between the shape of the signal and the threshold used.  Our results

indicated that low thresholds are more powerful for activation foci that are larger than

the FWHM of the imaging device.  In the sense that all signals (that are not subject to

partial volume effects) arise in structures that satisfy this constraint one might anticipate



that low thresholds will be generally the more powerful.  On the other hand, if the

FWHM is bigger than at least some focal activations, the significance based on peak

height may be more powerful.  In what follows we present both characterizations

   It should be born in mind that the results presented here are only good

approximations for large thresholds, so it would seem prudent to keep the thresholds

high enough for the p-values to remain valid.  Simulations suggest that the

approximations hold reasonably well for thresholds as low as 2.4 (see Friston et al

1994).

Applications

    This section describes the data used to illustrate the diversity of ways the expressions

above can be used.  The PET data were obtained from normal subjects during a word

generation activation paradigm.  The results of each analysis will be displayed in the

same format.  This format includes the design matrix, the contrast, the SPM{Z} and a

table of regions that have been characterized in terms of their size and their maximal

height [PS(nmax > k) and PS(Zmax > u)].

The data

   The data were obtained from five subjects scanned 12 times (every eight minutes)

whilst performing one of two verbal tasks.  Scans were obtained with a CTI PET

camera (model 953B CTI Knoxville, TN USA). 15O was administered intravenously as

radiolabelled water infused over two minutes.  Total counts per voxel during the

buildup phase of radioactivity served as an estimate of regional cerebral blood flow

(rCBF) (Fox and Mintun 1989). Subjects performed two tasks in alternation.  One task

involved repeating a letter presented aurally at one per two seconds (word shadowing).

The other was a paced verbal fluency task, where the subjects responded with a word

that began with the letter presented (intrinsic word generation).  To facilitate intersubject

pooling, the data were realigned and spatially [stereotactically] normalized (Friston et al

submitted) and smoothed with an isotropic Gaussian kernel (FWHM of 16mm).



A single subjects analysis

   This example introduces the basic implementation and highlights an equivalence

between various simple statistical tests (e.g. unpaired t-tests and testing for

correlations).  It deals with situations in which there is one subject scanned in many

conditions or (equivalently from a mathematical perspective) many subjects scanned

under the same condition.  This section also covers comparing two groups of scans

with paired and unpaired t tests.  Finally it introduces the notion of removing

confounding effects using linear regression.

    In this the first and simplest example we address the effects of activations due to

intrinsic word generation or, equivalently, deactivations due to word repetition

(extrinsic word generation) in a single subject (one of the five studied).  Following the

philosophy of cognitive subtraction this is effected by subtracting the word shadowing

from the verbal fluency conditions to assess the activations associated with cognitive

components in word generation that are not in word shadowing (e.g. the intrinsic

generation of word representations and the 'working memory' for words already

produced).  In this instance we have one study, one subject and 12 conditions.

(comprising two tasks).   The condition effects of interest are tested using a covariate of

the form Gc = [-1 1 -1 ....1]T  i.e. -1 for word shadowing and 1 for word generation.

Of course we can treat this covariate as levels in a factor and Gc could be renamed Gl.

As stated in the theory section there is no mathematical distinction:  In this instance

there is no difference between regressing rCBF on a series of +1s and -1s or taking the

mean difference between odd and even scans.   To account for the confounding effects

of global differences the global activities were considered as covariates of no interest

Hc.   There are two covariate effects to be estimated (one interesting and the other not).

The analysis can be seen as an example of (i) multiple linear regression, (ii) ANCOVA

(regarding Gc as Gl) or (iii) a simple correlation after partialling out a 'nuisance'



variable or confound.   The important point is that these perspectives are all rather

redundant because they are all exactly the same instantiation of the same linear model.

   The design matrix G =  [Gc | Hc] corresponding to this analysis is seen in Figure 1

(top right).  The resulting SPM{Z} (top left) is seen to identify significant actions in the

left dorsolateral prefrontal cortex (including the opercular portion of Broca's area and

related insula),  left extrastriate areas, right cerebellum, right and left frontal pole and

the precuneus.  Note that the contrast is simply '1' for the covariate effect of interest

and zero elsewhere c = [1 0].   In general the p-values based on spatial extent are less

'significant' than those based on peak height.  This would be expected if the regions

activated were smaller than the FWHM of the SPM [about 18 mm according to

eqn(13)].

   In the above analysis we could have pretended that we had studied 12 individuals in

one of two states; with two studies, each with six subjects scanned in a single

condition.  This has exactly the same degrees of freedom and gives exactly the same

SPM{Z} as above and (if we ignore the confounding covariate) can be seen as an

unpaired t-test at each voxel.  If one had scanned 6 subjects under both tasks there

would be one study, six subjects and 2 conditions.  The degrees of freedom in this

example would be less because one would also be estimating subject-specific (block)

effects and the design matrix would include a subject or block partition Hl  (c.f. a

paired t-test).  In general the degrees of freedom of the t statistic is equal to the number

of scans minus the number of estimated parameters (including a constant term, that may

be explicitly included in Hl or made implicit in the analysis by mean correction of the

data and covariates).

   In the analysis of groups of subjects with scans obtained under the same condition

this design (using one covariate of interest) can be useful in indentifying regionally

specific associations between physiology and some behavioural or symptom score in a

parametric fashion (e.g. Friston et al 1992a).



An activation study using intersubject averaging

   This example introduces the more general ANOVA-like layout and its extension to

ANCOVA, again using covariates to remove the effects of confounding or nuisance

variables.  This removal reveals more clearly the underlying condition-specific effects

of interest and is exactly the same as that implemented in the previous section (i.e. by

linear regression).  Three sorts of analyses are considered (subtractive, parametric and

factorial).  All are implemented at the level of the contrast used in comparing condition-

specific effects.

    In this case there is one study, five subjects and 12 conditions.  We removed the

confounding effects of global activity by designating these as covariates of no interest

Hc.  This example is equivalent to a one way ANCOVA with a completely blocked

design.  There are 12 condition specific effects, five subject effects (block) and a

covariate effect.  The SPM{F} corresponding to this analysis is depicted in Figure 2.

This SPM can be regarded as an image of the [significance of] variance introduced by

the experimental design (or more exactly the sums of squares due to condition effects

relative to error).  The design matrix used in this example is seen in Figure 3 and is

displayed by placing the partitions in the same order as in Eqn(4) i.e. [ Gl | Gc | Hl | Hc

].  Here Gl models the 12 conditions and Gc is empty because there are no covariates

of interest.  Because of the constraint on the design matrix only four subject effects are

estimated directly (see the corresponding design matrix Hl partition).  Hc is seen to be a

column of global activities (on the far left).  The objective of further analysis, using

contrasts, is to test specific hypotheses that particular differences between conditions

account for this variance in physiology:.

 A subtractive approach

  Suppose one wanted to identify significant activation foci associated with word

generation as above by pooling data from all the subjects.  Having estimated the 12

condition-specific effects the effect of verbal fluency vs word shadowing is assessed

using a contrast that is 1 in all the verbal fluency conditions, -1 in the word generation



and 0 elsewhere  c = [1 -1 1 -1 ... -1    0 0 0 0....].   The results of this analysis are

presented in Figure 3 which shows the design matrix, the contrast and the resulting

SPM{Z}.  The results demonstrate significant activations in the left anterior cingulate,

left dorsolateral prefrontal cortex, operculum and related insula, thalamus and left

extrastriate (among others).  The relationship of the left prefrontal and mediodorsal

thalamic activations, to the underlying anatomy is seen in Figure 4 which is the

SPM{Z} sectioned in three orthogonal planes and rendered on an arbitrary structural

MRI scan.  The extent and regional topography of the dorsolateral prefrontal activation

is highlighted in Figure 5 by rendering the SPM onto the cortical surface of the same

structural scan as in the previous figure.

   The correspondence between this group analysis and the single subject analysis can

be seen by comparing the SPM{Z}s in Figures 1 and 3.  The most conspicuous

difference is that unlike the group as a whole, the single subject fails to activate the

thalamus (see below) but overall there is a remarkable similarity.

A parametric approach

  In this example we tested for monotonic and linear time effects using the contrast

depicted in Figure 6.  The results of this analysis identify bilateral foci in the posterior

temporal regions, the precuneus and the left prefrontal and anterior cingulate that show

monotonic decreases in rCBF.  These decreases are task-independent.

   This example is trivial in its conception but is used here to introduce the notion of a

parametric approach to the data.  Parametric approaches avoid many of the

shortcomings of 'cognitive subtraction'; and 'additive factors logic' in testing for

systematic relationships between neurophysiology and sensorimotor, psychophysical,

pharmacologic or cognitive parameters.  These systematic relationships are not

constrained to be linear or additive and may evidence very nonlinear behaviour

reflecting complex interactions at a physiological or cognitive level  (from a statistical

perspective these interactions are linear in the parameters).



  A factorial approach

  This example looks at regionally specific interactions, in this instance between the

activation effect due to intrinsic word generation and time.  The contrast used is

depicted in Figure 7 and shows a typical mirror symmetry.   The design matrix has not

changed but we are now testing for a specific profile of condition effects.  The greatest t

values will obtain when the condition effects (i.e. relative activations) 'match' the

contrast.  As the contrast initially goes up, down, up, down and then switches to

down, up, down up, this contrast will highlight those regions that de-activate early in

the experiment and activate towards the end.  In other words those areas that show a

time-dependent augmentation of their activation.  The areas implicated include left

frontal operculum, insula, thalamus and superior temporal cortex.  Note that these

regional results suggest a true physiological 'adaptation' in the sense that it is the

physiological response (to a task component) that shows a time-dependent change

(contrast this with the task-independent changes of the previous section).

   The SPM{Z} in this analysis is reported in a descriptive way only because no region

was assessed as significant (at p < 0.05).  This means that unless one had made

specific predictions about which regions were going to be involved, no statistical

inference about regional activation could be made on the basis of these results.  

   This example also shows how to do a factorial experiment without explicitly

modeling interaction terms in the design matrix.  This approach has proved powerful in

the demonstration of time-dependent adaptation during motor practice (Friston 1992b)

and in psychopharmacological activation studies crossing cognitive activation and

pharmacological manipulations (Grasby et al 1993).  In the example above we have

described a time-dependent reorganisation of physiological responses to the same task.

It is tempting to call this plasticity, however the term plasticity means many things to

many people and hence the term should be used carefully.  

The adjusted responses



   Recall that adjusted data has been adjusted for uninteresting effects [see Eqn(5)]. As

an example of an adjusted response we have chosen data from a voxel from the left

thalamus.  This region clearly shows a variable and complicated response with time-

dependent changes (see previous section).  The adjusted data for the analysis of all

subjects for a voxel in the left mediodorsal thalamus is shown in Figure 8.  The bars

represent the mean adjusted condition-specific estimates of rCBF and the dots

correspond to individual (adjusted) data.  The regional activation from which this voxel

was selected is seen on orthogonal MRI sections in Figure 4.  This thalamic response is

very interesting with no activation in the first 4 conditions and a profound activation in

the last six.  At some point during the course of this experiment the physiological

changes supporting the cognitive processing elicited by verbal fluency changed

markedly to involve the mediodorsal thalamus and, by reference to figure 7, augment

responsiveness of the opercular cortex and insula.  

The single subject analyses revisited

   This section deals with situations were one wants to compare several activation

studies obtained in different groups.  This sort of design is especially powerful in

looking at the effect of centrally active drugs, pathophysiology, clinical diagnosis etc,

on condition-specific activations, where the conditions may themselves involve several

treatments and the condition-specific effects may themselves be interaction terms (e.g.

the adaptation above).   We take the limiting case of this general situation where there is

only one subject in one of two studies.  This ties in neatly with the single subject

analysis above and allows us to make a number of points; however it should be

remembered that everything in the remainder of this section applies when the two (or

more) studies include more than one subject.

    In this application we want to look at the first subject in the context of the remaining

four in terms of activations due to intrinsic word generation.  Although we might

anecdotally compare the activation profiles for the single subject (Figure 1) and for the

group (Figure 3) the apparent differences may not be the most important (or indeed



significant).  This section addresses the differences between the single subject's

activations and the group's activation in a more formal way.  Here the design matrix

has two studies.  The first study has four subjects and the second study is of the single

subject.  In both studies there are 12 conditions, giving effectively 24 conditions (12 in

the group and 12 for the single subject).  Again global activity was treated as a

confounding covariate.  The differences between the activations constitute an

interaction:

Study x condition interaction

    The difference of interest represents a condition x study interaction and is tested

using the contrast shown in Figure 9 (again note the mirror symmetry).  This contrast

will highlight regions that activate more in the group than the single subject (or de-

activate less).   Because there are effectively 24 conditions effects (two studies with 12

conditions) the contrasts is a vector with 24 elements.  The SPM{Z} in Figure 9 shows

that the most significant differences are in bilateral auditory and periauditory regions.

These are areas that de-activate generally and more profoundly in the single subject

studied.   The condition effect tested here is that due to the difference between the two

tasks, however we could have tested other condition specific effects (e.g. time).   This

analysis directly addresses how the physiological response of a single subject differs

from some normative data.  In other words the activation effects peculiar to this

individual's functional anatomy can be directly assessed using an interaction term.  The

importance of this approach lies in careful characterization of single cases when applied

using a lesion deficit model or in assessing inter-individual variability in functional

anatomy.



Discussion

   We have described a simple framework within the context of the general linear model

that allows for a diverse interrogation of functional imaging data using statistical

parametric maps.  The same implementation and layout can accommodate approaches

that are as simple as an unpaired t test, to ANCOVA with multiple covariates.  This

approach partitions the design matrix at two levels (i) according to whether the effect is

interesting or not and (ii) whether the effect is factor level (an indicator-type variable) or

continuous (a covariate).  The first distinction is fundamental and directly affects

adjustment for confounding effects and the estimation of omnibus significance at each

voxel.  The second distinction is purely conceptual; mathematically there is no

distinction between indicators and covariates.  

  Specific effects modelled in the design matrix are assessed using linear compounds

(contrasts) of the parameter estimates (such as condition-specific mean activity or

regression coefficients).  The resulting statistic's distribution has the Student's t

distribution under the null hypothesis and is used to make statistical inferences.

Inferences about local excursions (peaks) of the SPM{t} (after transformation to a

SPM{Z}) use p-values that are estimated using distributional approximations from the

theory of Gaussian fields.  These p-values are based on the region's highest value and

the number of voxels comprising that region.

   This paper presents the operational expressions required to perform the analysis and

some examples which cover most applications one might envisage.  In particular we

have focussed on comparing activation studies performed in different subjects.  Our

discussion uses a general taxonomy of activation studies that distinguishes between

subtractive (categorical), parametric (dimensional) and factorial (interactions) designs.

Subtractive designs are well established and powerful devices in functional mapping

but are predicated on possibly untenable assumptions about the relationship between

brain dynamics and the functional processes that ensue (and where these assumptions



may be tenable they are not demonstrated to be so).  The main concerns with

subtraction and additive factors logic can be reduced to the relationship between neural

dynamics and cognitive processes.  For example even if, from a functionalist

perspective, a cognitive component can be added without interaction with pre-existing

components the brain's implementation of these processes is almost certainly going to

show profound interactions.  This follows simply from the observation that neural

dynamics are nonlinear (e.g. Aertsen and Preissl 1991).  Indeed nearly all theoretical

and computational neurobiology is based on this observation.  Parametric approaches

avoid many of the philosophical and physiological shortcomings of 'cognitive

subtraction';  in testing for systematic relationships between neurophysiology and

sensorimotor, psychophysical, pharmacologic or cognitive parameters.  These

systematic relationships are not constrained to be linear or additive and may show very

nonlinear behaviour.  The fundamental difference between subtractive and parametric

approaches lies in treating a cognitive process, not as a categorical invariant, but as a

dimension or attribute that can be expressed to a greater or lesser extent.  It is

anticipated that parametric designs of this type will find an increasing role in

psychological and psychophysical activation experiments.   Finally factorial

experiments provide a rich way of assessing the effect of one manipulation on the

effects of another.  They could also be used to establish the validity of subtraction by

assessing the degree of 'interaction' between cognitive processes at a physiological

level.  The assessment of differences in activations between two or more groups

represents a question about regionally specific interactions.  The limiting case of this

example is where one group contains only one subject and we suggest that this is one

way to proceed with single subject analyzes.  We mean this in the sense that the

interesting things about an individual's activation profile are how it relates to some

normal profile or a profile obtained from the same subject in different situations or at a

different time.  These differences in activations are interactions.

 Assumptions and limitations



   The validity and scientific utility of statistical parametric mapping has been established

by its diverse and expert application in many imaging centers over the past years.

Given that the advantages are generally accepted we present here a critical evaluation of

some of the assumptions and limitations of the approach:

(i) Parametric assumptions

   Underlying the general linear model is an assumption that the error terms are normally

distributed.  Recent interest in non parametric approaches (e.g. Holmes et al -

submitted) might be interpreted as a challenge to this assumption (this interpretation is

not correct).  There are a number of reasons for being confident that the data obtained

with imaging devices (particularly PET) conform to Gaussian distributions.  The image

reconstruction process in PET (back projection) can be thought of in terms of

convolving the underlying distribution of radiodecay events with itself many many

times.  The underlying distribution is approximately Poisson and by central limit theory

the univariate distribution of intensity values in the back projected image will be, almost

certainly, Gaussian.  This argument does not however allow for non Gaussian

behaviour of the physiological component in functional images (although there is no

reason to suppose they are not Gaussian);  however one can make a reasonable

argument that the univariate behaviour of the final measurements will be Gaussian.

This is because of explicit and implicit convolutions of the original distributions in the

early parts of data processing [e.g. ramp and Hanning filtering in frequency space (i.e.

convolving in Cartesian space) during reconstruction and Gaussian smoothing of

images as a pre-processing step].  Even if the original physiological measurements

were not Gaussian, after these convolutions they will be (nearly).  

(ii) Homoscedasticity

   Homoscedasticity is term referring to invariant second order behaviour (variance) of

the error term over different conditions.  Although generally accepted in most

applications of the general linear model this constancy is not necessarily always the



case.  If the error variance associated with one condition was very different from that

associated with another then the statistical inferences based on a t value in the SPM{t}

cannot be guarantied.  This is because the distributional approximations may no longer

be valid.  Given that very few observations (usually up to twelve for PET activation

studies) are available it would be very difficult to demonstrate a significant difference in

error variance (or indeed demonstrate that they were not significantly different).  It is

interesting to note that the criticism levelled at approaches that use an estimate of error

variance pooled over voxels (namely, one cannot assume that error variance is region-

independent) can be turned around and applied to statistical parametric mapping

(namely one cannot assume that error variance is condition-independent).  Variance

estimators which accommodate condition-specific changes in error variance are the

subject of some current work (Worsley - personal communication).

(iii) Stationarity

   In statistical parametric mapping weak stationarity is assured under the null

hypothesis since the mean at any voxel is zero and the variance is unity, because the

error variance is estimated separately at each voxel.  However there is another aspect of

stationarity that is assumed; namely a stationary multivariate behaviour, or more simply

the correlations between different parts of the SPM are unchanging  (for Gaussian

fields homogeneous correlation structure, in addition to weak stationarity implies strict

stationarity).   This assumption is implicit in modelling the SPM as a stationary

stochastic process (usually a Gaussian random field).  It is possible that (i) the

smoothness changes from region to region and (ii) long range correlations in error

variance may show a regional specificity.  The first nonstationary behaviour can only

be demonstrated with 'local' estimates of smoothness (W above).  The distributional

approximations for the estimators of W are currently being investigated in order to

address this issue at an empirical level (Poline - personal communication).  It is

expected that this form of nonstationarity will not be significant in the sense that one

can usually assume the same point spread function for all parts of the original data.  The



second sort of regionally specific deviation from stationarity is due to functional

interactions between remote brain areas that are mediated physiologically (i.e. by

functional connectivity).  This sort of nonstationarity can be discounted at one level by

noting that under the null hypothesis there are no systematic physiological interactions.

A deeper analysis however reveals the fundamental distinction between the mass

univariate approach taken by statistical parametric mapping and equivalent multivariate

approaches.  In multivariate approaches one would explicitly use the measured

covariance structure of the error terms in making some statistical inference about the

effects of a treatment on the multivariate measure (i.e. the profile of activity over the

entire brain).  Because these inferences depend on inverting the error variance-

covariance matrix they are not applicable to voxel-based analyses of neuroimaging data

(this is because the matrices are singular due to the great number of voxels relative to

the number of scans).  The solution is therefore to proceed on a univariate basis

(treating each voxel as if it were measured in isolation) and then model the covariances

among voxels using a Gaussian field model.  Note also that the multivariate approach is

rather weak in that it cannot be used to make regionally specific inferences.

(iv) Low degrees of freedom

   SPMs will fail at low degrees of freedom.  The reasons for this failure can be quite

entertaining (see Worsley et al 1993b).  This limitation is however simply the familiar

caution 'statistics are only meaningful when one has enough data' restated in the

context of spatially extended statistical processes.  It is difficult to prescribe a lower

limit for the degrees of freedom that one should use:  Ideally one would like to see at

least 30.  However the practical limitations of PET make this number of scans

prohibitive in the analysis of single subjects and one could be obliged to work with ten

degrees of freedom or less.  Because low degrees of freedom compromise conventional

single subject analyses we consider the suggestions above concerning single subjects

(and their analysis using group data) to be particularly important.   It should be

remembered that the lower the degrees of freedom the less a transformed SPM{t}



conforms to a Gaussian field model.  In this case of very low degrees of freedom (e.g.

10 - 20) non parametric approaches may be more appropriate (e.g. Holmes et al 1994)

or reference to distributional approximations for the SPM{t} (as opposed to the

SPM{Z}) should be considered (Worsley 1994)

   In conclusion we have presented a unified framework using the general linear model

and the theory of Gaussian fields that facilities the analysis of neuroimaging data using

a variety of experimental layouts.  These can range from categorical and factorial

activation studies to parametric designs with many covariates.  This generalization

should increase the latitude of possible experiments available to the imaging

neuroscientist.
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Legends for figures

Figure 1

Results of a single subject analysis.  The format of this Figure is the same as for

Figures 1, 3, 6, 7 and 9:

Top right: Design matrix:  This is an image representation of the design matrix,

because elements of this matrix can take negative values the gray scale is arbitrary and

has been scaled to the minimum and maximum.  The form of the design matrix is the

same as in the text  [condition effects,  covariates of interest, subject effects, covariates

of no interest] = [Gl Gc Hl Hc] where these partitions exist.  Contrast:  This is the

contrast or vector defining the linear compound of parameters tested (c).  The contrast

is displayed over the column of G that corresponds to the effect[s] in question.   Note

that the length of the contrast is the same as the number of columns in the design

matrix, which is the same as the number of parameters one is explicitly estimating.  In

this Figure there are only two parameters to be estimated and these are the regression

coefficients for the covariate testing for the difference between verbal fluency and word

shadowing and the confounding covariate of global activity.

Top left: SPM{Z}:  This is a maximum intensity projection of the SPM{t} following

transformation to the Z score.  The display format is standard and provides three views

of the brain from the front, the back and the right hand side.  The grayscale is arbitrary

and the space conforms to that described in the atlas of Talairach and Tournoux (1988).  

Lower panel:  Tabular data are presented of 'significant' regions (p<0.05 corrected

the volume of the SPM{Z}).  The location of the maximal voxel in each region is given

with the size of the regions (n), and the  peak Z score.  For each region the significance

is assessed in terms of E{m} > P(Zmax > Z) using eqn(11) and P(nmax > n) using

eqn(14).  In this figure there are eight significant regions that are described in the text.

The footnote gives the volume in voxels of 2 x 2 x 4 mm and the degrees of freedom.

Figure 2



SPM{F}:  Maximum intensity projection of the SPM{F} computed according to eqn(9)

for the design matrix in Figure 3.  The design matrix was used to assess the 12

condition effects in all five subjects.   Experimental variance is prominent in bitemporal,

[anterior and posterior] cingulate, thalamic regions and opercular portions of Broca's

area.  The display format is the same as in the previous figure and the gray scale is

arbitrary.  All the F ratios are significant at p < 0.05 (uncorrected).

Figure 3

A subtractive analysis based on intersubject averaging.

The format is the same as for Figure 1.  The design matrix now includes condition and

subject (block) partitions and the contrast can be seen to test for differences in condition

means in the verbal fluency and word shadowing conditions.  The corresponding

profile of activations in seen in the SPM{Z}.  Significant activations are tabulated

below and are described in the main text.

Figure 4

The same data presented in Figure 3 but here the SPM{Z} has been sectioned in three

orthogonal planes and displayed on top of an arbitrary MRI image that has been

spatially normalized to the same anatomical space.  This figure details the functional

anatomy of the left prefrontal and mediodorsal thalamic activations and their

relationship to underlying anatomy.

Figure 5

The same data as in Figure 3, but here the SPM{Z} has been rendered onto the same

MRI image as in the previous figure (Figure 4).  This figure details further the

topography of the left prefrontal activation which can be seen to involve the opercular

portion of Broca's area, inferior frontal gyrus and extend almost to the frontal pole.

This is the largest contiguous region of activations elicited by this comparison (see

Table in Figure 3).



Figure 6

A parametric analysis

The format of this figure is the same as for Figure 1 and shows the results of testing for

a linear monotonic time effect using a contrast of the condition effect estimates

Figure 7

A factorial analysis

The format of this figure is the same as for Figure 1 and shows the results of testing for

an interaction between activations due to verbal fluency and time. The contrast used

detects regions whose response to verbal fluency increases with time.  No region can

be considered significance because the largest region would have been obtained on

8.5% of occasions by chance (see lower panel).  The results of this analysis can only

be reported descriptively and no statistical inference can be made about the regionally

specific effects.

Figure 8

Adjusted regional activity.

Using the results displayed in the previous figure a voxel in the mediodorsal thalamus

was selected and the adjusted activity was plotted for each of the 12 conditions. The

bars represent mean condition-specific estimates and the dots represent individual data

adjusted for confounding effects  Note the time-dependent augmentation of activations

due to verbal fluency.

Figure 9

An interaction analysis comparing a single subject and the remaining subjects.

The design matrix now has 24 condition effects (12 for the group and 12 for the single

subject).  The contrast is testing for a failure to activate (or a greater de-activation) in the



single subject with respect to the group.  The bitemporal areas de-activate more

profoundly than one would have predicted on the basis of the group data.


