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Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from
measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities
such as the effective strength of synaptic connections among neuronal populations and their context-
dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and
electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis
techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and
interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple
rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.

© 2009 Elsevier Inc. All rights reserved.
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Introduction

Over the last two decades, neuroimaging analyses have become
progressively refined and sophisticated. For example, there has been a
trend away from the analysis of manually defined regions of interest
to whole-brain analyses; from classical frequentist statistics to
Bayesian hypothesis testing; and, most recently, efforts to construct
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mechanistic models of brain function. A representative of the latter is
dynamic causal modeling (DCM), a generic approach for inferring
hidden (unobserved) neuronal states from measured brain activity.
DCM was introduced in 2003 for fMRI data (Friston et al., 2003) and
made available as open-source software within the Statistical
Parametric Mapping (SPM) software. The mathematical basis and
implementation of DCM for fMRI have since been refined and
extended repeatedly (Friston et al., 2007; Kiebel et al., 2007;
Marreiros et al., 2008; Stephan et al., 2008, 2007c). Dynamic causal
models (DCMs)1 have also been implemented for a range of
measurement techniques other than fMRI, including electroenceph-
alography (EEG), magnetoencephalography (MEG), and local field
potentials (LFPs) obtained from invasive recordings in humans or
animals, both in the time domain (Daunizeau et al., 2009b; David et
al., 2006; Kiebel et al., 2006) and frequency domain (Chen et al., 2008;
Moran et al., 2007, 2008, 2009; Penny et al., 2009).

DCMs are generative models of brain responses, which provide
posterior estimates of neurobiologically interpretable quantities such
as the effective strength of synaptic connections among neuronal
populations and their context-dependent modulation. They are
defined by five key features. First, DCMs are dynamic, using (linear
or nonlinear) differential equations for describing (hidden) neuronal
dynamics. Second, they are causal in the sense of control theory, that is,
they describe how dynamics in one neuronal population cause
dynamics in another and how these interactions are modulated by
experimental manipulations or endogenous brain activity. Third,
DCMs strive for neurophysiological interpretability. Fourth, they use
a biophysically motivated and parameterized forward model to link
the modeled neuronal dynamics to specific features of measured data
(for example, regional hemodynamic time series in fMRI or spectral
densities of electrophysiological data). Fifth, DCMs are Bayesian in all
aspects. Each parameter is constrained by a prior distribution, which
reflects empirical knowledge about the range of possible parameter
values, principled considerations (e.g., certain parameters cannot have
negative values) or a conservative attitude (e.g., “shrinkage” priors
that express the assumption that coupling parameters are zero).
Furthermore, Bayesian inversion not only provides posterior densities
for each model parameter but also yields an approximation to the log
model evidence, which is used to compare alternative DCMs of the
same data.

Since their introduction in 2003, DCMs have gradually become
part of mainstream neuroimaging analysis techniques. At the time of
submitting this article (September 2009), the database PubMed listed
more than 100 published papers on DCM. Its applications have
concerned a wide range of domains in cognitive neuroscience,
including language (Allen et al., 2008; Bitan et al., 2005; Leff et al.,
2008; Noppeney et al., 2008; Schofield et al., 2009), motor processes
(Eickhoff et al., 2005; Grefkes et al., 2008; Grol et al., 2007), vision and
visual attention (Fairhall and Ishai, 2007; Haynes et al., 2005; Mechelli
et al., 2003; Sonty et al., 2007), memory (Smith et al., 2006),
perceptual decision making (Stephan et al., 2007b; Summerfield et
al., 2006; Summerfield and Koechlin, 2008), and learning (den Ouden
et al., 2009; Garrido et al., 2008, 2009). Given the relative complexity
of DCM, compared to conventional analyses, many colleagues in the
neuroimaging community have expressed an interest in a tutorial-like
guide that addresses some of the most common questions about the
theoretical foundations and empirical applications of DCM. This article
represents an attempt to provide such a tutorial. It follows a recent
tradition in the neuroimaging literature, inspired by the popular “10
simple rules” series in PLoS Computational Biology (Bourne, 2005),
which has led to tutorial papers on, for example, voxel-based
morphometry (Ridgway et al., 2008) and on reporting results from
mass-univariate analyses (Poldrack et al., 2008).
1 We use the acronym DCM both to refer to the general approach (dynamic causal
modeling) and to refer to the instantiation of a specific dynamic causal model.
In this article, we provide some generic “good practice” recommen-
dations that address key conceptual and methodological issues in
applying DCM to fMRI, EEG, MEG, or LFP measurements. Omitting any
equations, we have tried to keep these recommendations as straight-
forward as possible. The suggestions made in this article should not be
mistaken as dogmatic rules; instead, they are meant to provide
guidelines for those users who are new to dynamic system theory,
Bayesian statistics, andmodel selection procedures. Furthermore, some
of the points below, such as the section on causality, are not concrete
rules but outline the conceptual foundations ofDCM.Weanticipate that
some of these guidelines and their underlying concepts may change
over the forthcoming years, as both the theoretical foundations as well
as the implementation of DCMs are progressively refined.

Know what is “causal” about dynamic causal models

Causality in DCM is based on control theory (Friston, 2009): causal
interactions among hidden state variables2 (e.g., specific aspects of
neuronal population activity) are expressed by differential equations,
which describe (i) how the present state of one neuronal population
causes dynamics (i.e., rate of change) in another via synaptic connections
and (ii) how these interactions change under the influence of external
perturbations (i.e., experimental manipulations) or endogenous brain
activity. The differential equations endow the systemwithmemory such
that future states are influenced by current states; the coupling
parameters (rate constants) determine the speed of these influences.
The ensuing coupling is influenced by where and when the system is
subject to external perturbations; i.e., sensory inputs driving activity in
specific neuronal populations or modulatory inputs that render the
strength of coupling context-sensitive. In other words, causality in DCM
does not only rely on temporal precedence but also takes into account
when and where the system is perturbed by external influences.

An equivalent perspective is to interpret the state equation of a
given DCM as encoding a particular causal structure–function
relationship (Stephan, 2004). This is because the state equation of a
given DCM prescribes explicitly how system dynamics arises from
system structure: it specifies formally how neuronal state changes,
induced by external inputs, propagate both in space (i.e., according to
the system's connectivity structure) and in time (i.e., how current
states influence future states). Therefore, changing the pattern of
external inputs or the connectivity structure in a given DCM leads to
different predictions about the spatiotemporal pattern of measured
system responses. By simulating data from models with specified
causal mechanisms, it is straightforward to assess whether, for a given
level of observation noise, DCM is capable of correctly inferring these
mechanisms. This has been done using both the same neuronal
equations as in DCM (e.g., Stephan et al., 2008) and using
independently designed large-scale biophysical models of spiking
neurons (Lee et al., 2006). Perhaps even more convincingly, several
animal studies using independent techniques such as invasive
recordings andmicrodialysis demonstrated that DCM can successfully
infer neuronal processes from BOLD responses and field potentials,
respectively (David et al., 2008; Moran et al., 2008).

Critically, the hidden neuronal states give rise to noisy observa-
tions through a forward mapping (e.g., neurovascular coupling in
fMRI). This transform is crucial for inferring causal interactions,
particularly when it is nonlinear and may differ across brain regions,
as is the case in fMRI (David et al., 2008; Stephan et al., 2004).
Therefore, in contrast to Granger causality (Granger, 1969), causality
in DCM does not describe interactions among the observations
themselves. Instead, DCM aims to infer interactions among hidden
neuronal states that cause noisy observations through a (possibly
nonlinear and spatially variable) mapping.
2 The term “hidden state variables” refers to time-varying properties of systems that
cannot be observed directly.



Fig. 1. This schematic summarizes the typical sequence of analysis in DCM, depending on the question of interest. Abbreviations: FFX=fixed effects, RFX=random effects,
BMS=Bayesian model selection, BPA=Bayesian parameter averaging, BMA=Bayesian model averaging, ANOVA=analysis of variance.

3101K.E. Stephan et al. / NeuroImage 49 (2010) 3099–3109
It is noteworthy that inferring causal influences among neuronal
populations does not necessarily require information about conduc-
tion delays. While conduction delays are explicitly represented in
(and estimated by) DCMs for electrophysiological data (cf. David et al.,
2006), axonal conduction delays in either inputs or inter-regional
influences do not play a role in DCMs for fMRI. Due to considerable
inter-regional variability in hemodynamic response latencies, fMRI
data do not posses enough temporal information to enable estimation
of inter-regional conduction delays, which are typically in the order of
10–20ms; for simulations investigating such timing issues, see Friston
et al. (2003). Instead, the differential latencies of the hemodynamic
response are accommodated by region-specific biophysical para-
meters in the hemodynamic model (Friston et al., 2000; Stephan et al.,
2004). Nevertheless, because it is not only sensitive to temporal order
in signal but also to the spatiotemporal structure of inputs to the
system, fairly subtle processes can be identified with DCM. For
example, a recent rodent study showed that given fMRI data from a
network of regions with epileptiform activity, DCM can infer where
the seizure originated (David et al., 2008); this inference was verified
by concurrent invasive electrophysiological recordings.

In summary, causality in DCM is embodied by the mathematical
form of the differential state equations and does not just reflect
temporal precedence but also accounts for the effects of external
perturbations. By inverting an explicit forward model,3 DCM infers
causal effects among hidden neuronal states that give rise to noisy
measurements through a mapping that can be nonlinear and variable
across the brain.
3 A forward model describes how a specific hidden state translates into a
measurement. The “inversion” (fitting or solution) of a model describes the opposite
process, i.e., to estimate the hidden state given the measurement.
Know your hypothesis and how to test it

DCM was designed to test hypotheses about the neuronal
mechanisms that underlie experimental measurements of brain
responses. In other words, DCM allows one to specify a generative
model of measured brain data, which is a specific probabilistic
mapping from experimentally controlled manipulations via neuronal
dynamics to observed data.

Importantly, two different types of inference can be obtained with
DCM (Fig. 1). If one is not interested in any specific model parameter
but in some aspect of model structure per se, then inference on model
space is required. For example, one may wish to infer whether a
particular neuronal system has a serial or parallel architecture,
whether context-sensitive modulation of connectivity concerns
forward or backward connections or whether the modulatory
mechanism is linear or nonlinear. In other contexts, one may be
interested in the neurophysiological mechanisms encoded by specific
parameters in a given model; this requires inference on model
parameters. For example, in a given model, one might want to infer
whether a specific connection is more likely to exert an excitatory or
an inhibitory effect on its target region. Prior to conducting a DCM
study, one should clarify the type of inference required for the
question at hand. This choice determines the sequences of data
analysis steps as summarized in Fig. 1. Issues pertaining to inference
on model space and parameters, respectively, are dealt with in more
detail below.

In general, some scientific questions lend themselves more
naturally to an analysis by DCM than others. A key feature of DCM
is its dependence on experimental perturbations. Its state equations
account for the influence of experimental manipulations on the
system's dynamics: experimental conditions enter the model as
inputs that either drive local responses or change connection
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strengths, respectively.4 For this reason, DCMs are usually only
appropriate for explaining brain responses that are the consequence
of specific experimental interventions. In contrast, data sets that were
acquired in the absence of experimental control (e.g., resting state,
sleep, hallucinations) are not suitable for DCM (a notable exception are
DCMs with stochastic terms or inputs; cf. Daunizeau et al., 2009a;
Moran et al. 2008). All other current DCMs with no experimentally
controlled input predict nothing but a flat line. This is because, by
design, they are based on dynamical systems with fixed point
attractors. This can be regarded as a prior on brain dynamics that
precludes exponential explosions of neuronal activity. (It is conceiv-
able, however, that in the future, DCMs may be introduced that
generate autonomous oscillations). This means that any time series
chosen for subsequent DCM should, as a minimal requirement, show
some relation to the experimental design. In fMRI, for example, this
relation is usually established by an initial analysis using conventional
statistical parametric mapping (SPM) on the basis of the general linear
model (GLM). In fact, as is elaborated in more detail in point 8 below,
DCM is typically used to compare different mechanistic explanations
for specific activations detected by SPM. It is not unusual to ask
questions about the interactions of areas with different response
profiles; in this case, the areas included in a DCM are identified by
different statistical contrasts in SPM. A typical example is the analysis of
stimulus-by-task interactions in an area identifiedwith the appropriate
contrast. The response profile of such an area can be explained by task-
dependent modulation of (i) one or several afferent connections from
other areas identifiedby testing for amain effect of stimulus or of (ii) its
self-connectivity (Allen et al., 2008; Stephan et al., 2007a).

Users of DCM (and other models of effective connectivity)
sometimes worry that inference about the structure or parameters of
a particular model may only be believable if the model as a whole
shows a “reasonable” goodness of fit. Strictly speaking, this is an
anecdotal concern, as has been noted by previous authors: “Unfortu-
nately, there seems to be a belief that the ability to make inferences
about changes in effective connectivity is compromised if the overall
model does not fit the data adequately” (Protzner and McIntosh,
2006). These authors performed systematic simulation studies on the
relation between model fit and inference about effective connectivity
in the context of SEM and concluded that “one can detect differences in
effective connectivity with SEM even when the overall model does not
fit the data.” Having said this, it is usually the case that if the fits
(accuracies) of competing models are poor, it is much more difficult to
show that one model has greater evidence than another. In other
words, a large Bayes factor indicates that the models compared fit the
data sufficiently well to enable meaningful model comparison.

Some general points on the issue of model fit are worth
highlighting here. There are many reasons why a perfectly reasonable
model may fit a particular data set poorly, for example, independent
observation noise. On the other hand, it is easy to construct complex
models with excellent or even perfect fit, which are mechanistically
meaningless and do not generalize (“overfitting”). This is why, as
explained in the section entitled Use Bayesian model selection as a
first step below, Bayesian model selection is a mandatory component
of any DCM study: before making inference about any particular
parameter, the model with the best balance between accuracy and
complexity is selected from the set of all plausible alternative models
(see section entitled Use Bayesian model selection as a first step).
Furthermore, decisions on whether a particular model fit is “suffi-
cient” or not depend on the number of data points. For example, the
more data from the same process are available, the more likely it is
that a χ2 test will reject the null hypothesis of no difference between
4 For electrophysiological data, the driving inputs are parameterized themselves
(e.g., in DCM for evoked responses; David et al. 2006) and can include stochastic
inputs (e.g., white and pink noise in DCM for steady-state responses; Moran et al.
2009) that represent neuronal background activity not included in the model.
predicted and observed covariance matrices (Bullmore et al., 2000).
The opposite behavior is found when evaluatingmodel fit on the basis
of the coefficient of determination (R2 or “percent variance
explained”): here, the longer the same process is observed, the
more likely it is that any model will explain a significant amount of
variance in the observed data. In summary, while any inference is
always conditional on the model chosen, the validity of the model
cannot be evaluated on the basis of its fit (cf. Pitt and Myung, 2002).

In contrast, establishing the validity of a given model requires
additional external criteria. For DCM, face validity has been explored
in terms of simulations (e.g., Friston et al., 2003; Stephan et al., 2008),
construct validity has been established in relation to othermodels such
as SEM (Penny et al., 2004b) and large-scale models of spiking
neurons (Lee et al., 2006), and predictive validity has been addressed
by verifying that DCM results fulfill predictions from independent
experimental measures such as microdialysis (Moran et al., 2008) and
invasive electrophysiological recordings (David et al., 2008).

In conclusion, when making statistical inferences about any
particular mechanism underlying the data (as encoded by a combina-
tion of model parameters), model fit does not need to be considered
explicitly; instead, it is an integral part of the model evidence that is
optimized by BMS. The influence of model fit on inference enters
vicariously by determining the precision of the estimates; this effect
dependsonwhichmodel parameters the inference is about (cf. standard
equations for parameter estimates in a general linear model). This issue
is no different for DCM than for standard regressionmodels. In short, we
cannot obtain false inference simply because of “poor” model fit.

Although inference can be about any aspect of model structure or
any parameter in a DCM, the focus of DCM studies is typically on
context-dependent changes in coupling. This corresponds to identi-
fying physiological processes that change connection strengths at fast
time scales ranging frommilliseconds to seconds. DCMwas developed
for investigating these fast modulatory processes because they are
critical for understanding the ubiquitous flexibility and context-
sensitivity of neuronal circuits (Friston, 2002; McIntosh, 2000;
Sherman and Guillery, 1998; Stephan, 2004). If specifying the
anatomical source of these modulatory processes is not relevant for
the scientific question of interest, a bilinear DCM is sufficient (Friston
et al., 2003). Otherwise nonlinear DCM can be used, in which the
strength of any given connection is allowed to depend on activity in
remote neuronal populations (Stephan et al., 2008).5

To avoid erroneous interpretations of DCM results and accurately
qualify the tested hypotheses, it is important to understand the
neurophysiological mechanisms that underlie such fast modulatory
processes. In brief, rapid changes of connection strength can result
either from membrane excitability changes, synaptic plasticity, or a
combination of both. For example, postsynaptic responses of ionotropic
glutamatergic receptors are modulated by metabotropic receptors
(Coutinho and Knopfel, 2002) and by receptors of various neuromo-
dulatory transmitters (McCormick and Williamson, 1989). Alterna-
tively, various forms of short-term synaptic plasticity can lead to fast
changes in synaptic strength, e.g. synaptic depression and facilitation
(Zucker and Regehr, 2002), NMDA- and dopamine-dependent phos-
phorylation of AMPA receptors (Chao et al., 2002;Wang et al., 2005), or
dendritic spine motility (Holtmaat and Svoboda, 2009). All of these
changes in synaptic strength canunfoldwithinmilliseconds to seconds.

In most instances, it is not important for the scientific question of
interest to disambiguate whethermodulatory processes identifiedwith
DCM reflect, at the neuronal level, changes in membrane excitability or
synaptic plasticity. In fact, the two processes are often closely
5 In bilinear DCM, the modulation of effective connectivity results from an
interaction between neuronal activity in one region and experimentally controlled
inputs; this context-dependent change in connectivity is additive. In contrast, in
nonlinear DCM, changes in connectivity result from the interaction of neuronal activity
in two different regions; this modulation is of a multiplicative nature.
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intertwined (Oh et al., 2009). If it is important to evaluate their relative
contributions, it isnecessary to adjustmodel structure andexperimental
design prospectively, using models that can represent both processes
separately (Moran et al., 2008) or using experimental manipulations
that are known to preferentially affect one of the two processes. An in-
depth discussion of model-based inference about neuronal (patho)
physiology with DCM is beyond the scope of the present article but is
presented elsewhere (Stephan et al., in preparation).

In summary, DCM tests competing hypotheses about the neuronal
mechanisms underlying experimental measurements of brain activ-
ity. Inference about putative mechanisms can either concern model
structure or estimates of model parameters. DCMs are most
appropriate for explaining brain responses that are the consequence
of experimental interventions and typically focus on context-
dependent changes in coupling that are mediated by fast changes in
membrane excitability and/or connection strength. DCM is therefore
a potentially useful approach for studying neuromodulation and
synaptic plasticity, respectively, particularly when invasive methods
are precluded for practical or ethical reasons.

Use Bayesian model selection as a first step

As described above, DCM can rely on two different types of
inference, inference on model space and inference on parameter space of
any given model, respectively. Here, we emphasize that even when
one is interested in inference on model parameters, a first step is
usually Bayesian model selection (BMS). BMS is an established
procedure in statistics that rests on computing (an approximation
to) the model evidence p(y|m), i.e., the probability of the data y, given
some model m.6 The model evidence, which can be considered the
“holy grail” of model comparison, quantifies the properties of a good
model; that is, that it explains the data as accurately as possible and, at
the same time, hasminimal complexity. Mathematical explanations of
these properties can be found elsewhere (Friston et al., 2007; MacKay,
1992; Penny et al., 2004a; Stephan et al., 2009a). In BMS, models are
usually compared via their Bayes factor, i.e., the ratio of their
respective evidences (Kass and Raftery, 1995) or, equivalently, their
difference in log-evidence (relative log-evidence).

Importantly, the model evidence is also a measure of generaliz-
ability (Pitt and Myung, 2002), i.e., how well the model generalizes
across different data sets, and can thus be seen as an equivalent (but
computationally more efficient) approach to procedures like cross-
validation (MacKay, 1992). This may be easier to understand by
noting that the model evidence is the likelihood of the data, having
taken into account the natural variability of model parameters or,
more formally, the prediction of data under random sampling from
the prior densities of its parameters.

For inference on model space, BMS is sufficient, but it can be
applied in different ways (Fig. 1). In brief, one can either identify a
single optimal model, or one can choose a model space partitioning
approach and compare sets or families of models that differ in one or
several structural aspects (Penny et al., submitted for publication;
Stephan et al., 2009a). Different options for using BMS, in the context
of DCM, will be discussed in more detail below.

When inferring on model parameters, one needs to evaluate their
estimated posterior densities. Critically, however, these posterior
densities are conditional on the particular model chosen. For this
reason, BMS is usually a requirement even when the hypothesis
concerns values of model parameters and not model structure per se.7
6 For numerical reasons, it is often more convenient to use the log-evidence as an
index of model goodness. This is equivalent because the logarithm is a strictly
monotonic function, i.e., maximizing the log-evidence also maximizes the evidence.

7 In some (albeit rare) instances, one may have very strong a priori knowledge
about the structure of the system of interest and can proceed directly to inference on
parameters.
Usually, one defines all plausible models in a first step, then uses
BMS to select an optimal model from all alternatives, and finally
proceeds to reporting posterior or conditional inferences about the
parameters of this optimal model. This approach has been used by
numerous studies in the recent past (e.g., Acs and Greenlee, 2008;
Leff et al., 2008; Stephan et al., 2007b; Summerfield and Koechlin,
2008). For single-subject analyses, inference about any particular
parameter (or about linear combinations of parameters) is
straightforward; one can simply evaluate the posterior density of
the parameter of interest, quantifying the probability that the value
of the parameter is larger or smaller than some threshold (Friston
et al., 2003). For multi-subject analyses, two options exist
depending on whether one assumes that the parameters of
interest are fixed effects in the population (FFX) or are themselves
probabilistically distributed in the population (random effects,
RFX). These issues are discussed in more depth in the section
entitled Choose an appropriate method for group-level inference
on parameters.

In summary, model selection is an essential component of any
DCM study and is not normally omitted unless there is extremely
strong a priori knowledge about the model. An important distinction
is whether the hypothesis of interest concerns model structure per se
or estimates of particular parameters in an optimal model. In the
former case, BMS alone is sufficient to address the hypothesis,
whereas in the latter case, a hierarchical or sequential procedure is
necessary, where inference about particular parameters follows an
initial model selection procedure.

Motivate model space carefully

For any experimental observation, there exists, in principle, an
infinite number of possible models that could explain the data. At first
glance, this may appear a daunting state of affairs: how can one ever
discover the “true” model, given an infinity of alternatives? It is
helpful to remember that models are never true; by construction, they
are meant to be helpful caricatures of complex phenomena, such that
mechanisms underlying these phenomena can be tested. This insight
is reflected in the well-known statement by Box and Draper (1987):
“Essentially, all models are wrong, but some are useful” (p. 424). The
purpose of model selection is to determine that model, from a set of
plausible alternatives, which is most useful, i.e., represents the best
balance between accuracy and complexity and thus affords maximal
generalizability (Pitt and Myung, 2002).

The critical question in practice is how many plausible model
alternatives exist; in other words, how large is the model space that
must be searched? For small systems (i.e., networks or graphs with a
small number of nodes), it is possible to investigate all possible
connectivity architectures. However, when increasing the number of
regions and inputs, evaluating all possible models becomes practically
impossible very rapidly. Therefore, one of the first decisions, when
conducting a DCM analysis, is to define the relevant model space, i.e.,
the set of models that are plausible, given prior knowledge about the
system. This definition of the relevant model space should be as
transparent and systematic as possible, and it should be described
clearly in any article.

To ensure a clear definition and systematic exploration of model
space, it is helpful to specify the important dimensions in model
space and construct variations of models along these dimensions
systematically. The definition of this space of plausible models could
derive from principled considerations (e.g., combinatorial variations
of a basic model structure) or could be informed by previous
empirical studies using neuroimaging, electrophysiology, TMS, etc.
in humans or animals. One option is to parameterize model space
itself, where these parameters define a grid from which models can
be sampled systematically. For example, models can be defined in
terms of their priors, which could be a mathematical function of



9 At the time of writing this article, family-level inference based on model space
partitioning is not yet available via the graphical user interface in SPM8. Instead, users
can implement it by directly calling the SPM routine spm_compare_families.
10 The VB implementation of the random-effects BMS method is only applicable
when the model families contain an equal numbers of models. When comparing
model families of unequal size, a Monte Carlo Markov Chain (MCMC) method based on
Gibbs sampling must be used instead (Penny et al., submitted for publication).
11 Computational efficiency of model selection procedures is becoming an increas-

3104 K.E. Stephan et al. / NeuroImage 49 (2010) 3099–3109
anatomical connectivity (e.g., tractography measures). Systematically
varying the parameters of this function creates a model space (cf.,
Stephan et al., 2009b). Another approach is to create, under
appropriate constraints, all possible combinations of components;
for example, all possible combinations of modulatory inputs and/or
driving inputs (for examples, see Kumar et al., 2007; Leff et al., 2008;
Stephan et al., 2007b). A final option is to structure model space in a
factorial fashion (Chen et al., 2009; Daunizeau et al., 2009b; Stephan et
al., 2007c). The advantage of this approach is that it suggests a natural
partitioning of model space into equally large subsets or families of
models, which, as described below, can be compared collectively.

It may be useful to note at this stage that the definition of model
space may or may not include variations concerning the regions
contained by the model, depending on whether such variations
change the data that are to be explained. In brief, for EEG/MEG data,
model comparison can be used to decide about the number of regions,
whereas for fMRI data, it cannot (see point 6 for details).

In summary, defining the dimensions ofmodel space carefully is an
important initial step in any DCM study. It prevents the modeler from
getting lost in a space of infinite possibilities; it operationalizes the
thinking about what constitutes plausible alternatives; and it is the
basis for model space partitioning. This allows for powerful inferences
about model structure, as described in the next section.

Choose an appropriate method for group-level inference on
model structure

Several options exist for performing BMS at the group level. As for all
group analyses, a choicemust bemade between fixed-effects (FFX) and
random-effects (RFX) analysis. In the FFX case, one assumes that the
optimal model is the same for each subject in the population. This
assumption is warranted when studying a basic physiological mecha-
nism that is unlikely to vary across the subjects sampled. For example,
FFX approaches to group-level BMS have been used to investigate the
relation between anatomical connection probability and strength of
functional coupling (Stephan et al., 2009b) and asymmetries between
forward and backward connections in the visual system (Chen et al.,
2009). Under the FFX assumption, a useful metric is the group Bayes
factor (GBF, Stephan et al., 2007c), which expresses the evidence for one
model relative to the evidence for anothermodel, considering the group
as a whole. The GBF has a simple definition: because Bayes factors are
probability ratios, which are independent across subjects, the GBF is the
product of individual Bayes factors. When comparing more than two
models, it is more straightforward to report the group log-evidence for
each model, which is just the sum of log-evidences across subjects. In
practice, the simplest and most informative way to report the (group)
log-evidence is to show a bar chart of log-evidences over models, after
subtracting the log-evidence for themodel with the least evidence (e.g.,
Garrido et al., 2009; Stephan et al., 2009b). Readers can then tell at a
glance which model(s) had the greatest evidence and whether the
differences were quantitatively important. Usually, a difference in log-
evidence of three is taken as strong evidence (Kass and Raftery, 1995)
because the corresponding Bayes factor of exp(3) is about twenty (cf.
the pb0.05 criterion often employed in classical inference).

However, assuming that the optimal model structure is a fixed
effect in the population may not be appropriate. For example, when
investigating pathophysiological mechanisms in a spectrum disease
or when dealing with cognitive tasks that can be performed with
various cognitive strategies (and thus implemented neuronally in
different ways), it is more appropriate to adopt a random-effects
(RFX) BMS procedure. An early suggestion for a simple RFX index was
the positive evidence ratio (PER, Stephan et al., 2007c). This is simply
the ratio of how many subjects showed positive evidence8 for one
8 Following the widely used classification by Kass and Raftery (1995), “positive”
evidence for one model versus another exists if the Bayes factor is larger than three.
model relative to another. The PER can be considered a special case of
a general and fully probabilistic RFX procedure for BMS. This
generalized method uses variational Bayes (VB) to estimate the
posterior probabilities of competing models, given data from a
population of subjects (Stephan et al., 2009a). Based on this, one
can compute how likely it is that a specific model generated the data
of a randomly chosen subject (i.e., the expected posterior model
probability) as well as the exceedance probability that one model is
more likely than any other model, given the group data. Evaluations
based on synthetic and empirical data have shown that this method is
accurate and robust; in contrast to FFX analyses, outliers have very
little impact on the results (Stephan et al., 2009a). With the
availability of this method in SPM8, the use of the PER should be
abandoned.

In addition to comparing specific models one can also compare
subsets (families) of models, which result from a partition of model
space. For example, BMS can be used to quantify the probability that
the presence versus the absence of a particular connection improves
model performance, regardless of any other differences among the
models considered. This type of inference rests on comparing two (or
more) subsets of model space, pooling information over models in
each subset. This effectively removes uncertainty about any aspect of
model structure, other than the attribute of interest (which defines
the partition of model space). This approach currently represents the
method of choice when the hypothesis to be tested concerns model
structure and not any specific parameter. This sort of inference is
available for both fixed and random-effects group models (Penny et
al., submitted for publication; Stephan et al., 2009a).9,10

In summary, FFX BMS assumes that the optimal model is identical
across the population and uses the GBF or group log-evidence to
quantify the relative goodness of models. In contrast, RFX BMS
accounts for heterogeneity of model structure across subjects and
yields posterior model probabilities and exceedance probabilities. In
either case, model space partitioning and subsequent comparison of
model families (family-level inference) should be considered when
the hypothesis of interest concerns model structure and not any
particular model parameter.

Know what you can and cannot do with Bayesian model selection

BMS based on (approximations to) the log-evidence is a principled
and computationally efficient method for determining an optimal
model from a set of competing alternatives, given some data.11 For
example, one can compare DCMs that differ in terms of which inputs
affect the system, where these inputs enter, whether mechanisms are
linear or nonlinear, which anatomical connections exist, or which
priors are best (Acs and Greenlee, 2008; Chen et al., 2009; Garrido
et al., 2008; Stephan et al., 2008, 2009b, 2007c). In other neuroima-
ging domains, BMS is not just being used for DCMs but is also
routinely employed to decide between alternative source reconstruc-
tions procedures for EEG/MEG data (e.g., Friston et al., 2008; Henson
et al., 2009; Kiebel et al., 2008). BMS has also been frequently used in
machine learning (Chu et al., 2007; MacKay, 1992; Penny and Roberts,
1999) and neuroeconomics, for example, to distinguish between
ingly important issue since the model space that is explored by standard neuroimaging
studies is continually increasing. For large model sets comprising hundreds or
thousands of models, alternative procedures based on sampling, e.g., cross-validation,
become prohibitively expensive; cf., MacKay (1992).



12 This approach can be used both for single subjects and for groups; see Penny et al.
(submitted for publication). An implementation of this procedure will be available in
forthcoming SPM versions.
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competing models of learning and decision making (Brodersen et al.,
2008; den Ouden et al., submitted for publication; Hampton et al.,
2006). There are, however, some caveats in using BMS and
interpreting its results in the context of DCM that a user should be
aware of.

A mathematically trivial but practically important issue is that the
model evidence is defined with respect to one particular data set. This
means that BMS cannot be applied to models that are fitted to
different data. Specifically, in DCM for fMRI, one cannot compare
models with different numbers of regions, because changing the
regions changes the data (this is a consequence of the data reduction
used in DCM for fMRI, in which only data from regions of interest are
included). In the case of DCM for MEG/EEG, however, the data to
which the model is fitted (i.e., the spatiotemporal distribution of
electric potentials or magnetic fields at the sensor level) is always the
same, regardless of how many regions (sources) are included in the
model. In fact, DCM can be considered a source reconstruction
approach that exploits information about coupling among sources and
can be used to determine the most likely number and deployment of
sources (Kiebel et al., 2006).

A more complicated issue, which frequently occurs in exchanges
with reviewers, is that any measure of model goodness is relative, not
absolute. This is true for any approximation to the model evidence
(e.g., the Akaike and Bayesian information criteria, or free energy) and
the ensuing Bayes factor. It also applies to log-odds ratios and other
frequentist statistics like the classical coefficient of determination
(R2), which, in the context of linear models, is often interpreted as the
proportion of variance explained by the model. Although R2 may
appear, at first glance, like an absolute goodness of fit index, it is
simply the result of a model comparison. Mathematically, this can be
seen easily from the generalized definition of R2 (e.g., Nagelkerke,
1991), which reveals that R2 is always determined relative to an
(implicit) null model. For example, in the context of linear models,
this null model is extremely simple, consisting of a constant (or
intercept) only. See the section entitled Know your hypothesis and
how to test it for a discussion on why measures such as R2 are not
useful for evaluating DCMs.

The relative nature of inference obtained by BMS also pertains to
the RFX BMS procedure described above: here, the posterior model
probabilities are a function of the set of models considered. In other
words, these estimates can changewhen reducing or extendingmodel
space. Although mathematically this behavior is perfectly reasonable
(for details, see Stephan et al., 2009a), it can produce seemingly
counterintuitive results, when sequentially performing BMS on parts
of model space that have a nested or overlapping relationship (Penny
et al., submitted for publication). To prevent problems of interpreta-
tion, such sequential tests should be avoided; instead, one should
perform BMS on the entire space of plausible alternative models in
one step.

In summary, it is important to keep in mind that any result
obtained by BMS, or indeed any other model selection procedure,
expresses a relative statement about model goodness that is
conditional on the model space considered. Again, this highlights
the importance of a careful and principled definition of model space
(cf. section entitled Motivate model space carefully).

Choose an appropriate method for group-level inference on
parameters

When analyzing parameter estimates across the group, the same
decision must be made as for group-level BMS (see section entitled
Motivate model space carefully). That is, the modeler needs to decide
whether the mechanisms encoded by the model parameters of
interest are likely to exist as fixed or random effects in the population.
If they can be considered fixed effects, e.g., when dealing with low-
level physiological properties, several alternative procedures exist.
One commonly employed method is Bayesian parameter averaging
(BPA). This effectively computes a joint posterior density for the
entire group by combining the individual posterior densities, treating
the posterior from one subject as the prior for the next (Garrido et al.,
2007; Neumann and Lohmann, 2003). Themathematical advantage of
this commutative procedure is threefold. First, it accounts for
posterior covariances among the parameters; second, under Gaussian
assumptions about the posterior, it is extremely easy and efficient to
compute; and finally, it produces a single posterior density for the
entire group that can be used for Bayesian inference (cf. (Acs and
Greenlee, 2008)). However, BPA also has some disadvantages (Kasess
et al., 2010). One potential problem is that the posterior covariances
can make the posterior estimates behave in a counterintuitive way,
even when they are mathematically perfectly sensible. This can
become particularly severe for data with a high signal-to-noise ratio
where, in the presence of pronounced posterior covariances, the
Bayesian average can deviate substantially from the mean of the
maximum a posteriori (MAP) estimates across subjects. Other fixed-
effects methods do not suffer from this particular problem, although
they have other restrictions; for details see Kasess et al. (2010). These
alternatives include the univariate variant of BPA and simple temporal
averaging of the subjects' time series as a pre-processing step (which
is only possible if the stimulus timing is identical across subjects).

If a fixed-effects analysis is not appropriate and one thinks that the
parameters are random effects in the population (e.g., task-induced
changes in connection strengths in cognitive paradigms), a simple
solution exists. This approach consists of entering the subject-specific
MAP estimates into a second-level frequentist test (e.g., a t-test or
ANOVA). This procedure is simple and robust and has found
widespread application. It is conceptually identical to the summary
statistic approach used in conventional SPM analyses, only here the
summary statistic is a maximum a posteriori estimate (as opposed to a
maximum likelihood estimate).

An alternative approach is Bayesian model averaging (BMA)
(Hoeting et al., 1999; Penny et al., submitted for publication).12 This
approach abandons the dependence of parameter inference on the
particular model chosen. Instead, it uses the entire model space
considered (or an optimal family of models, Penny et al., submitted for
publication) and computes weighted averages of each model
parameter, where the weighting is given by the posterior probability
for each model. It represents a useful alternative, particularly when
none of the models (or model subspaces) considered clearly outper-
forms all others. In this case, one can take the uncertainty about
model structure into account by pooling information across all models
in a weighted fashion, as described above. BMA is also a promising
method for comparing parameter estimates across groups (e.g.,
patients versus controls) for cases where BMS indicated a group
difference with regard to the optimal model. If one does not wish to
restrict the group comparison to inference on model structure, one
can use BMA to compute the average parameter estimates across all
models and then statistically compare these averages between the
two groups.

Finally, it should be mentioned that testing hypotheses about
multiple parameters requires a correction for multiple comparisons
(unless a single contrast, i.e., linear combination of these parameters,
is examined). A Bonferroni procedure would be the simplest way to
do this, even though this is conservative in the presence of posterior
dependencies among the parameters tested.

In summary, there are two principled approaches to making
group-level inferences about specific model parameters (Fig. 1). The
first approach entails finding an optimal model in an initial BMS



13 This is the time required to obtain one brain volume.
14 TA is usually equivalent to TR (time to repetition) unless the fMRI acquisition
sequence includes a delay between subsequent scans, e.g., in sparse sampling schemes
for auditory tasks. The duration of TR has no impact on DCM, and sparsely sampled
fMRI data pose no difficulty for DCM analyses; c.f., Kumar et al. (2007).
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step and then examining the parameter estimates across the group,
using either FFX or RFX methods. A second possible approach is
BMA that computes a weighted average of each model parameter,
where the weighting is determined by the posterior probability of
each model.

Optimize experimental design and data acquisition

A frequently asked question is what experimental designs and
acquisition techniques are optimal for DCM analyses. The answer may
differ somewhat for hemodynamic and electrophysiological measure-
ments. As a rule of thumb, however, the same optimization strategies
for design and data acquisition that apply to conventional generative
models of brain activity (e.g., the General Linear Model) also apply to
DCM. This is because DCM aims to explain the same phenomena, i.e.,
regional brain responses, as other generative models, and is thus
subject to similar constraints concerning experimental design and
data acquisition. The critical difference lies in the mechanisms the
models have at their disposal to explain observed data. DCM not only
takes into account the direct influence of experimentally controlled
variables on regional activity (as the GLM) but considers interactions
among neuronal populations and how these interactions are
modulated by experimental perturbations. DCM is thus a very generic
model and includes other generative models of brain responses as
special cases. For example, the GLM for fMRI data and source
reconstruction methods for EEG/MEG can be thought of as special
cases of DCMs (for details, see Daunizeau et al., 2009b; Kiebel et al.,
2006; Stephan et al., 2007a). Similarly, conventional models of
effective connectivity, such as Structural Equation Modeling (SEM;
Bullmore et al., 2000; Horwitz et al., 1999; McIntosh and Gonzalez-
Lima, 1994) can be understood as a special case of DCM where states
are assumed to have reached equilibrium at the point of observation
(Friston et al., 2003).

In terms of experimental design, DCM is especially useful for
factorial designs whose levels can be interpreted as inducing driving
effects (such as sensory stimulation) and modulatory effects (such as
learning or attention), respectively. Factorial designs are particularly
attractive because they naturally embody the notion of interactions
among experimental manipulations and thus context-sensitive
neuronal responses, which are the typical explanatory target of a
DCM study (see section entitled Know your hypothesis and how to
test it). For example, if a conventional SPM analysis indicates a
significant interaction between one experimental factor related to
sensory stimulation and another factor of a more “modulatory”
character (e.g., task demands, attention or learning), one may wish to
understand how this interaction or context-sensitive response arises.
This can be modeled straightforwardly using DCM with connections
that convey stimulus-specific information, but are under the control
of modulatory influences. With DCM and BMS one could investigate,
for example, which of themany afferents to the target area are subject
to modulatory inputs, and whether a specific neuronal population
constitutes a likely anatomical source of thesemodulatory inputs (this
requires nonlinear DCM, Stephan et al., 2008). Examples of this can be
found in several papers (e.g., Heim et al., 2009; Stephan et al., 2007a).
Another attractive option for experimental design is to focus on
processes that (i) are known to induce synaptic plasticity, and thus
changes in effective connectivity and (ii) have a known (or assumed)
parametric form. A prototypical example fulfilling both criteria is
learning. Here, DCM and BMS can be used to investigate which of
several competing learning models best explain changes in connec-
tion strength in neuronal circuits involved in learning and which
particular connections exhibit synaptic plasticity and thus contribute
to learning (for examples, see den Ouden et al., 2009, submitted for
publication).

Concerning data acquisition, two issues are worth highlighting in
relation to DCM for fMRI. Due to the multi-slice acquisition of fMRI
data, regional time series are sampled at different times relative to
scan onset, and these timing differences represent a potential
confound. Simulations indicated that timing differences up to about
a second were tolerable and did not lead to significant deviations of
parameter estimates from their true values (because these inaccura-
cies could be explained away by the hemodynamic model; Friston et
al., 2003). As a consequence, a common recommendation used to be
to restrict TA (time to acquisition)13 to 2 s or less and use the middle
slice (in time) as reference for defining the inputs. This limitation was
overcome by extending DCM for fMRI with a model of slice-specific
sampling times (Kiebel et al., 2007). This extendedmodel accounts for
the times at which regional sampled were sampled and adjusts its
predicted hemodynamic output accordingly.14

A second important issue in relation to data acquisition in fMRI
concerns the order of acquired slices. For DCM, and other models of
effective connectivity, a continuous acquisition scheme (with appro-
priate inter-slice gap) is advantageous, when compared to interleaved
acquisition. In the latter scheme, any interpolation across neighboring
slices (e.g., during realignment or spatial normalization) or extraction
of representative time series from voxels across more than one slice,
leads to the mixing of time series that were acquired at different
times. This is suboptimal and should be avoided.

Concerning the application of DCM to EEG/MEG data, it is worth
mentioning that the only strict requirement is to record the electrode
positions on the scalp, as well as the usual positioning landmarks (left
ear, right ear, and nasion fiducials). These are required to model the
spatial expression of neuronal activity as measured electromagnetic
fields at the scalp level. Although it is possible, in principle, to invert a
DCM given data from a single electrode, model inversion is facilitated
by a fine spatial sampling on the scalp.

Beyond data acquisition, it is important to decide which aspects of
the data are of interest, i.e., feature selection. For example, in fMRI
hundreds of thousands of voxel time series are acquired, resulting in a
huge spatiotemporal data matrix. To reduce complexity and allow for
meaningful inference, DCM for fMRI requires that one summarizes the
distributed responses observed across the brain by selecting a few key
regions involved in the process of interest. In defining these regions,
one is implicitly specifying a structuralmodel, which represents a data
reduction or feature selection. From another perspective, this
structural model is a parsimonious representation of other possible
models, e.g., models with additional intermediate or relay regions. To
reduce complexity, it is often possible to analyze a sub-network of key
regions involved in a particular task. This is particularly straightfor-
ward when dealing with sensory “processing streams” where relay
regions can be omitted (cf. Grol et al., 2007) because the coupling
parameters represent the effective connectivity among regions, and
this influence can be mediated polysynaptically (Friston, 1994). Also,
one can replace endogenous inputs from a sub-network one is not
interested in with exogenous (driving) inputs that approximate the
influence from this sub-network. For example, one can replace both
sensory and cognitive sub-networks with inputs representing the
sensory stimuli (Heim et al., 2009; Smith et al., 2006) and the
cognitive process (den Ouden et al., submitted for publication;
Stephan et al., 2008), respectively. In a next step, it is then possible
to optimize this substitute for the omitted sub-network by comparing
different spatial distribution of the exogenous inputs using BMS (cf.,
Leff et al., 2008). Given these possibilities for reduction of model
complexity, it is perhaps not surprising that some of the most
powerful applications of DCM have used networks with as few as two



3107K.E. Stephan et al. / NeuroImage 49 (2010) 3099–3109
or three nodes. Note that, as explained in the section entitled Know
what you can and cannot do with Bayesian model selection, in DCM
for fMRI (but not in DCMs for electrophysiological data) BMS cannot
be used to decide whether a region should be included or excluded
because the model evidence is defined with regard to a specific data
set and changing the regions changes the data.

In DCM for fMRI, once the regions have been selected, it is
necessary to obtain a summary of their activity. For fMRI, this is
usually accessed through the principal eigenvariate of the region of
interest. This is just the first principal component of the local
multivariate time series (over all voxels in the region). This procedure
has advantages over other summary indices like the mean. For
example, when dealing with functionally heterogeneous regions, it
guarantees that positive and negative responses do not cancel in
extracting a summary time series across voxels (Friston et al., 2006).
In group studies, one wants to ensure that the same regional features
are selected from subject to subject. The best way to do this is to
operationally define the region in each subject by functional and
anatomical criteria (see section entitled Use anatomical information
and computational models to refine your DCMs) and then use the
principal eigenvariate centered on each subject-specific region. This
regional definition is usually based on the functional specialization
revealed by a conventional SPM analysis (i.e., a maximum of an SPM
testing for that region's responses).

Note that there is no circularity in using the same data to define
regions by SPM and analyze their interactions with DCM. This is
because, in contrast to SPM, the purpose of DCM is not to test whether
any of these regions shows an experimental effect. Instead, as
explained above, DCM serves to compare different hypotheses about
the mechanisms (in terms of neuronal coupling) that underlie the
regional responses detected in conventional analyses. For example, if
SPM indicates that an experimental manipulation significantly
increases the activity of a particular region, there are numerous
possible explanations, which can be disambiguated by DCM. The
observed increase in activity might (i) reflect the downstream
consequence of a context-sensitive process elsewhere in the network
that is conveyed via endogenous connections in a context-indepen-
dent manner, (ii) result from changes in intra-regional inhibition (i.e.,
a modulation of the self-connection by the experimental factor), or
(iii) arise from a modulation of one or several afferent connections by
the experimental factor. Indeed, it would be nonsensical to ask this
question of regional responses that did not show experimental effects.
Generally, one should use the most revealing t- or F-contrast for each
region, to identify the local maxima in subject-specific SPMs that are
nearest to the maximum in the group SPM. One can then take the
principal eigenvariate in a local region of interest that is centered on
the subject-specific maxima and is ideally informed by additional
anatomical criteria (cf. section entitled Use anatomical information
and computational models to refine your DCMs). Future refinements
of this procedure include augmenting DCMs with an explicit spatial
model of regional responses (Woolrich et al., 2009). Alternative
approaches can be based on anatomically defined regions of interest
where the shape and form of the region depends on the spatial
precision of the data. Irrespective of the method for summarizing
regional activity, it should be described and motivated clearly and
simply (cf. section entitled Report the modeling approach and results
in detail).

Use anatomical information and computational models to refine
your DCMs

Both knowledge about anatomical structure and computational
processes of the system of interest can help to optimize a DCM of that
system. For example, neuroanatomical atlases can provide useful
constraints for defining the regions included in a DCM. This is
particularly relevant for multi-subject studies, which face the
challenge of inter-individual variations in the exact location of a
given brain area. Here, probabilistic cytoarchitectonic atlases, such as
the anatomy toolbox in SPM (Eickhoff et al., 2005), can provide
anatomical constraints that complement functional criteria (see
section entitled Optimize experimental design and data acquisition)
in choosing regional time series; for concrete examples, see Heim et
al. (2009) and Stephan et al. (2007b).

The second useful source of anatomical information concerns the
anatomical connectivity between regions of interest. Many previous
studies of effective connectivity have used information from invasive
tract tracing studies in theMacaquemonkey to inform the structure of
their models. These data are of high resolution and large quantity but
entail potential inter-species differences. Human tractography stud-
ies, based on diffusion weighted imaging, do not suffer from this
problem, but provide less detailed and non-directional information.
Nevertheless, they can provide important structural constraints for
defining DCMs. For example, anatomical connectivity information
from probabilistic tractography studies can be formally integrated
into DCMs in terms of anatomically informed priors (Stephan et al.,
2009b). This approach rests on the fact that the deployment of
anatomical connections constrains effective connectivity but does not
fully determine it because synaptic connections can be expressed
functionally in a dynamic and context-sensitive fashion (Breakspear,
2004; Friston, 2002; McIntosh, 2000; Stephan et al., 2008). A useful
corollary is to define connection-specific priors such that the higher
the likelihood of a given connection existing anatomically, the larger
the prior variance of the corresponding coupling parameter in DCM;
hence making it easier for the parameter to deviate from zero (in
either direction) and represent a strong effective connection.
Incorporating anatomical information in this way can improve the
evidence of DCMs (Stephan et al., 2009b). Therefore, when available,
DCMs can be informed by tractography data; the benefit of such
anatomical constraints can then be assessed using BMS.

Prior knowledge about the nature of the computations involved in
an experimentally induced cognitive process can also help to refine
DCMs. For example, if an established computational model exists that
predicts the temporal evolution of some cognitive variables, then any
trial-by-trial values can enter a DCM, either as driving or as
modulatory inputs that change connection strengths (Stephan,
2004). This is an attractive option in the context of learning, since
this is the paradigmatic experimentalmanipulation to induce synaptic
plasticity and therefore changes in effective connectivity. For
example, several theories of learning agree on the notion that
synaptic plasticity should be a function of prediction error (Friston,
2005; Montague et al., 1996; Schultz and Dickinson, 2000). This
notion can be tested by augmenting DCMs with computational
learning models (such as Rescorla-Wagner, temporal difference
learning or Bayesian learning models), which describe the evolution
of trial-by-trial prediction errors. These trial-wise prediction error
estimates can be used as modulatory inputs in DCM, controlling
changes in connection strength during learning (den Ouden et al.,
2009). In a further step of refinement, nonlinear DCM can be used to
specify the source of these modulatory influences anatomically. For
example, a study of audio-visual associative learning showed that
prediction error activity in the putamen, as modeled by a Bayesian
learner, exerted a nonlinear modulatory influence on visuomotor
connections, thus gating transfer of sensory information about
unexpected stimuli (den Ouden et al., submitted for publication).

In summary, whenever available, a priori information about
anatomy and computation should be used for refining DCMs. When
anatomical or computational quantities are used as described above,
one is effectively performing a form of multimodal integration that
uses functional, anatomical as well as behavioral data. This confluence
of computational and neurophysiological modeling techniques may
prove particularly fruitful for a mechanistic understanding of
neuronal systems.
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Report the modeling approach and results in detail

Although the principles of DCM are generic, understanding the
structure of a specific model (or model space) built by someone else
can be difficult, unless it is communicated very clearly. When
reporting the results of the DCM study, it is helpful to include as
many organizing details as possible; e.g., describe your thinking
behind the construction of model space and why you included some
attributes and not others. It is these choices that define the question
you wish to address. This will help others to understand exactly what
you have done and to replicate your results. The information that is
required concerns all stages of themodeling process. For example, one
should report the following:

– the anatomical and/or functional criteria used to define regions
of interest and their summary time series;
– the resulting coordinates of regions and their consistency across
subjects;
– how model space was motivated by the hypothesis;
– how families of models were defined, when using model space
partitioning;
– the BMS procedure and approximation to the log-evidence used;
– BMS results for all models considered (e.g., by tabulating or
plotting log-evidences, posterior probabilities, or exceedance
probabilities for each model); and
– the parameters of the selected model (or family) in terms of the
MAP estimates, or inference using the classical summary statistic
approach or BPA.

Of course, it is not always necessary (or desirable) to include all of
this information in themain text of an article; some of the information
above can be included in the supplementary material or summarized
in graphs and tables.

Summary

DCM is a generic and powerful method for inferring causal
mechanisms in systems, whose dynamics are observed indirectly.
Following considerable success in its application to many domains of
cognitive neuroscience and neurophysiology, the use of DCM is
becoming increasingly widespread. However, given that DCM is a
nontrivial technique for nonlinear system identification that does not
afford “off the shelf” applications, knowledge of its conceptual and
mathematical foundations is mandatory. This article has outlined
procedures for good practice, focusing on what we perceive as the
most relevant and generic issues. Clearly, there are more methodo-
logical aspects to DCM than can be addressed in a tutorial paper, and
the interested reader is referred to the primary literature we have
referenced. We hope that the ten simple rules described above will be
helpful for the growing community of DCM users.
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