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This note presents a simple Bayesian filtering scheme, using variational
calculus, for inference on the hidden states of dynamic systems.
Variational filtering is a stochastic scheme that propagates particles
over a changing variational energy landscape, such that their sample
density approximates the conditional density of hidden and states and
inputs. The key innovation, on which variational filtering rests, is a
formulation in generalised coordinates of motion. This renders the
scheme much simpler and more versatile than existing approaches,
such as those based on particle filtering. We demonstrate variational
filtering using simulated and real data from hemodynamic systems
studied in neuroimaging and provide comparative evaluations using
particle filtering and the fixed-form homologue of variational filtering,
namely dynamic expectation maximisation.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Recently, we introduced a generic scheme for inverting dynamic
causal models of systems with random fluctuations on exogenous
inputs and hidden states (Friston et al., 2008). This scheme was
called dynamic expectation maximisation (DEM) and assumed that
the conditional densities on the system's states and parameters were
Gaussian. This assumption is know as the Laplace approximation
and imposes a fixed form on the conditional density. In this note, we
present the corresponding free-form scheme, which allows the
conditional density to take any form. This scheme is stochastic and
propagates particles over a free-energy landscape to approximate the
conditional density with their sample density. Both the ensuing
variational filtering and DEM are formulated in generalised
coordinates of motion, which finesses many issues that attend the
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inversion of dynamic models and furnishes a novel approach to
Bayesian filtering.

The novel contribution of this work is to formulate the Bayesian
inversion of dynamic causal or state-space models in generalised
coordinates of motion. Furthermore, we show how the resulting
inversion scheme can be applied to hierarchical dynamical models
to disclose both the hidden states and unknown inputs, driving a
cascade of nonlinear dynamical processes.

This paper comprises four sections. The first reviews variational
approaches to ensemble learning, starting with static models and
generalising to dynamic systems. We introduce the notion of
generalised coordinates and the ensemble dynamics they entail.
The ensuing time-varying ensemble density corresponds to a
conditional density on the paths or trajectory of hidden states. In
the second section, we look at a generic hierarchical dynamic
model and its inversion with variational filtering. In the third
section, we demonstrate inversion of linear and nonlinear dynamic
systems to compare their performance with fixed-form approxima-
tions and standard (particle) filtering techniques. In the final
section, we provide an illustrative application, in an empirical
setting, by deconvolving hemodynamic states and neuronal activity
from fMRI responses observed in the brain.

Notation

To simplify notation we will use fx=∂x f=∂f /∂x to denote the
partial derivative of the function f, with respect to the variable x. We
also use x ̇=∂tx for temporal derivatives. Furthermore, we will be
dealing with variables in generalised coordinates of motion, which
will be denoted by a tilde; x~=[x,x′,x″,…]. This specifies the
position, velocity and higher-order motion of a variable. A point in
generalised coordinates can be regarded as encoding the instanta-
neous trajectory of a variable. However, the motion of this point
does not have to be consistent with the trajectory encoded; in other
words, the rate of change of position ẋ is not necessarily the motion
encoded by x′ (although it will be under Hamilton's principle of
stationary action, as we will see later). Much of what follows
recapitulates the material in Friston et al. (2008) so that interested
readers can see how the Laplace assumption builds on the basics
used in this paper.
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1 A set of subsets in which each parameter belongs to one, and only one,
subset.
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Variational Bayes and ensemble learning

This section reprises Friston et al. (2008), with a special focus
on ensemble dynamics that form the basis of variational filtering.
Variational Bayes or ensemble learning (Feynman, 1972; Hinton
and von Cramp, 1993; MacKay, 1995; Attias, 2000) is a generic
approach to model inversion that approximates the conditional
density p(ϑ|y,m) on some model parameters, ϑ, given a model m
and data y. We will call the approximating conditional density, q(ϑ)
a variational or ensemble density. Variational Bayes also provides a
lower-bound on the evidence (marginal or integrated likelihood)
p(y|m) of the model itself. These two quantities are used for
inference on parameter and model-space respectively. In what
follows, we review variational approaches to inference on static
models and their connection to the dynamics of an ensemble of
solutions for the model parameters. We then generalise the approach
for dynamic systems that are formulated in generalised coordinates
of motion. In generalised coordinates, a solution encodes a
trajectory; this means inference is on the paths or trajectories of a
system's hidden states.

Archambeau et al. (2007) motivate the importance of inference
on paths for models based on stochastic differential equations and
present a clever approach based on Gaussian process approxima-
tions. In the current work, the use of generalised motion makes
inference on paths relatively straightforward, because they are
represented explicitly (Friston et al., 2008). From the point of view
of dynamical systems, inference is on the temporal derivatives of a
system's hidden states, which are the bases of the functionals of the
free-flow manifold (Gary Green — personal communication).

Other recent developments in this area include extensions of
conventional Kalman filtering; for example, Särkkä (2007)
considers the application of the unscented Kalman filter to
continuous-time filtering problems, where both the state and
measurement processes are modelled as stochastic differential
equations. In this instance a continuous-discrete filter is derived as
a special case of the continuous-time filter. Eyink et al. (2004)
consider the problem of data assimilation into nonlinear stochastic
dynamic equations using a variational formulation that reduces the
approximate calculation of conditional statistics to the minimiza-
tion of ‘effective action'. In what follows, we will show that
effective action is a special case of a variational action that can be
treated in generalised coordinates.

Variational Bayes

The log-evidence for any parametric model can be expressed in
terms of a free-energy and divergence term

lnp yjmð Þ ¼ F þ D q #ð Þjjp #jy;mð Þð Þ
F ¼ Gþ H

G yð Þ ¼ hlnp y; #ð Þiq
H #ð Þ ¼ �hlnq #ð Þiq

ð1Þ

The free-energy comprises, G(y), which is the internal energy,
U(y,ϑ)= lnp(y,ϑ) expected under the ensemble density and the
entropy, H(ϑ)q which is a measure on that density. In this paper,
energies are the negative of the corresponding quantities in
physics; this ensures the free-energy increases with log-evidence.
Eq. (1) indicates that F(y,q) is a lower-bound on the log-evidence
because the Kullback-Leibler cross-entropy or divergence term,
D(q(ϑ)||p(ϑ|y,m)) is always positive. In other words, if the ap-
proximating density equals the true posterior density, the diver-
gence is zero and the free-energy is exactly the log-evidence.

The objective is to compute q(ϑ) for each model by maximising
the free-energy and then use F≈ ln p(y|m) as a lower-bound ap-
proximation to the log-evidence for model comparison (e.g., Penny
et al., 2004) or averaging (e.g., Trujillo-Barreto et al., 2004).
Maximising the free-energy minimises the divergence, rendering
the variational density q(ϑ)≈p(ϑ|y,m) an approximate posterior,
which is exact for simple (e.g., linear) systems. This can then be
used for inference on the parameters of the model selected.

Invoking q(ϑ) effectively converts a difficult integration problem,
inherent in marginalising p(y,ϑ|m) over the unknown parameters to
compute the evidence, into an easier optimisation problem. This rests
on inducing a bound that can be optimised with respect to q(ϑ). To
finesse optimisation (e.g., to obtain a tractable solution or suppress
computational load), one usually assumes q(ϑ) factorises over a
partition1 of the parameters

q #ð Þ ¼ j
i
q #i
� � ð2Þ

Generally, this factorisation appeals to separation of temporal
scales or some other heuristic that ensures strong correlations are
retained within each subset and discounts weak correlations
between them. Usually, one tries to use the most parsimonious
partition (and if possible, no factorisation at all). We will not
concern ourselves with this partitioning here because our focus on
one set of variables, namely time-dependent states.

In statistical physics this is called a mean-field approxima-
tion. Under this approximation, it is relatively simply to show
that the ensemble density on one parameter set, ϑi is a functional
of the energy, U= ln p(y,ϑ) averaged over the others. When there
is only one set, this density reduces to a simple Boltzmann
distribution.

Lemma 1. (Free-form variational density; see Corduneanu and
Bishop, 2001). The free-energy is maximised with respect to q(ϑi)
when

lnq #ið Þ ¼ V #ið Þ � lnZif

q #ið Þ ¼ 1
Zi

exp V #i
� �� �

V #i
� � ¼ hU #ð Þiq # q ið Þ

ð3Þ

where Zi is a normalisation constant (i.e., partition function).
We will call V(ϑi) the variational energy. ϑ\i denotes parameters
not in the i-th set or, more exactly, its Markov blanket. Note that
the mode of the ensemble density maximises variational energy.

Proof. The Fundamental Lemma of variational calculus states
that F(y,q) is maximised with respect to q(ϑi) when, and only
when

dq #ið ÞF ¼ 0fAq #ið Þf i ¼ 0R
d#if i ¼ F

ð4Þ
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δq(ϑi)F is the variation of the free-energy with respect to q(ϑi).
From Eq. (1)

f i ¼ R
q #ið Þq # qi

� �
U #ð Þd# qi � R

q # ið Þq # qi
� �

lnq #ð Þd# qi

¼ q #ið ÞV #ið Þ � q #ið Þlnq #ið Þ þ q #ið ÞH # qi
� �

Z
Aq #ið Þf i ¼ V #ið Þ � lnq #ið Þ � lnZi

ð5Þ

We have lumped terms that do not depend on ϑi into lnZi. The
extremal condition is met when ∂q(ϑi) f i=0, giving Eq. (3). □

If the analytic form in Eq. (3) was tractable (e.g., through the
use of conjugate priors) it could be used directly (Attias, 2000). See
Beal and Ghahramani (2003) for an excellent treatment of
conjugate-exponential models. An alternative approach to optimis-
ing q(ϑi) is to consider the density over an ensemble of time-
evolving solutions q(ϑi,t) and use its equilibrium solution. This
rests on a formulating the ensemble density in terms of ensemble
dynamics:

Ensemble densities and the Fokker-Planck formulation

This formulation considers an ensemble of solutions or particles
for each parameter set. Each ensemble populates the i-th parameter
space and is subject to two forces; a deterministic force that causes
the particles to drift up the gradients established by the variational
energy, V(ϑi) and a random fluctuation Γ(t) (i.e., a Langevin
force)2 that disperses the particles. This enforces a local diffusion
and exploration of the energy field. The effect of particles in other
ensembles is mediated only through their average effect on the
internal energy, V(ϑi)= 〈U(ϑ)〉q(ϑ\i), hence mean-field. The equa-
tions of motion for each particle are

#
:
i ¼ jV #i

� �þ C tð Þ ð6Þ

where, ▿V(ϑi)= V(ϑi)ϑi is the variational energy gradient. Because
particles are conserved, the density of particles over parameter
space is governed by the free-energy Fokker-Plank equation (also
known as the Kolmogorov forward equation)

:
q #i
� � ¼ j � jq #i

� �� q #i
� �

jV #i
� �� � ð7Þ

This describes the change in local density due to dispersion and
drift of the particles. It is trivial to show that the stationary solution
for q(ϑi,t) is the ensemble density above by substituting

q #ið Þ ¼ 1

Zi
exp V #i

� �� �
Z

jq #ið Þ ¼ q #ið ÞjV #ið ÞZ
:
q #ið Þ ¼ 0

ð8Þ

at which point the ensemble density is at equilibrium. The Fokker-
Planck formulation affords a useful perspective on the variational
results above and shows why the variational density is also referred
to as the ensemble density; it is the stationary solution to a density
on an ensemble of solutions.
2 I.e., a random fluctuation, whose variance scales linearly with time; in
statistical thermodynamics and simulated annealing, this corresponds to a
temperature of one, where, Ω=〈Γ (t)Γ (t)T〉=2I.
Ensemble learning for dynamic systems

In dynamic systems some parameters change with time. We will
call these states and denote them by u(t). The remaining parameters
are time-invariant, creating states and parameters; ϑ→u,ϑ. This
means the ensemble or variational density q=q(u,t)q(ϑ) and asso-
ciated energies become functionals of time. To keep thing as
simple, we will focus on optimising the approximate conditional
density on the states, q(u,t). Once q(u,t) has been optimised it can
be used to optimise q(ϑ) as described in Friston et al. (2008), to
give a variational expectation maximisation (VEM) scheme; this is
implemented in our software by summarising q(u,t) in terms of its
mean and covariance and optimising the remaining sets of param-
eters under the Laplace assumption of a Gaussian form. However,
from now on, we will assume that ϑ are known, which means the
states are the only set of unknowns. In this case, their variational
and internal energy become the same thing; i.e., V(u)=U(u) (see
Eq. (3)).

By analogy with Lagrangian mechanics, time-varying states
have action; the time-integral (or more exactly, anti-derivative) of
energy. We will denote action with a bar over the corresponding
energy; i.e., F̅ U̅ and V̅ for the free, internal and variational
action respectively. The free-action can be expressed as

P
F ¼ R

dthU u; tj#ð Þiq u;tð Þ �
R
dthlnq u; tð Þiq u;tð Þ ð9Þ

Where ∂tF̅ =F and U(u,t|ϑ)= lnp(y(t),u(t)|ϑ) is the instanta-
neous energy given the parameters. The free-action, or henceforth
action, is simply the path-integral of free-energy. Path-integral is
used here in the sense of Whittle (1991), who considers path-
integrals of likelihood functions, in the context of optimal
estimators in time-series analysis. When q(u,t) shrinks to a point
estimator, action reduces to the ‘effective action’ in variational
formulations of optimal estimators for nonlinear state-space models
(Eyink, 1996). Under linear dynamics, the effective action
coincides with the Onsager–Machlup action in statistical physics
(Onsager and Machlup, 1953; Graham, 1978).

The action represents a lower-bound on the integral of log-
evidence over time, which, in the context of uncorrelated noise, is
simply the log-evidence of the time-series. We now seek q(u,t)
which maximises action3. By the fundamental Lemma, action is
maximised with respect to the ensemble density when, and only
when

dq u;tð Þ
P
F ¼ 0fAq u;tð Þ f ¼ 0R

duf ¼ At
P
F ¼ F

ð10Þ

It can be seen that the solution is the same as in the static case
(Eq. (4)); implying that the ensemble density of the states remains a
functional of their variational energy V(u,t)

q u; tð Þ ¼ 1
Z
exp V u; tð Þð Þ ð11Þ

Consider the density of an ensemble that flows on the varia-
tional energy manifold. Because this manifold evolves with time,
3 Subject to the constraint, ∫ q(u,t)du=1.
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the ensemble will deploy itself in a time-varying fashion that
maximises free-energy and action. Unlike the static case, it will not
attain a stationary solution because the manifold is changing.
However, the ensemble density will be stationary in a frame of
reference that moves with the manifold's topology (assuming its
topology does not change too quickly). The equations of motion
subtending this stationarity rest on formulating ensemble dynamics
in generalised coordinates of motion (c.f., position and momentum
in statistical physics):

Ensemble dynamics in generalised coordinates of motion

In a dynamic setting, the ensemble density q(u,t) evolves in a
changing variational energy field, V(u,t), which is generally a func-
tion of the states and their motion4; for example, V(u,t):=V(v,v′,t).
This induces a variational density in generalised coordinates, where
q(u,t):=q(v,v′,t) covers position, v and velocity, v′. The use of
generalised coordinates is important and lends the ensuing
generative models and their inversion useful properties that elude
conventional schemes. Critically, generalised coordinates support
a conditional density on trajectories or paths, as opposed to the
position or state of the generative process. To construct a scheme
based on ensemble dynamics we require the equations of motion for
an ensemble whose variational density is stationary in a frame of
reference that moves with its mode. This can be achieved by
coupling different orders of motion through mean-field effects:

Lemma 2. (Ensemble dynamics in generalised coordinates). The
variational density q u; tð Þ ¼ 1

Z exp V u; tð Þð Þ is the stationary solu-
tion, in a moving frame of reference, for an ensemble whose equa-
tions of motion and ensemble dynamics are

:
v ¼ V u; tð ÞvþAVþ C tð Þ
:
v V¼ V u; tð ÞvVþC tð Þ

:
q u; tð Þ ¼ jv � q uð ÞAVþju � juq uð Þ � q uð ÞjuV u; tð Þ½ �

ð12Þ

Where μ′ is the mean velocity over the ensemble (i.e., a mean-field
effect) and ▿vV(u,t)=V(u,t)v is the variational energy gradient.

Proof. Substituting q u; tð Þ ¼ 1
Z exp V u; tð Þð Þ and its derivatives into

Eq. (12) gives

:
q u; tð Þ ¼ jv � q uð ÞAV ð13Þ

This describes a stationary density in a moving frame of
reference, with velocity, μ′, as seen using the coordinate transform

υ ¼ v� AVt
q υ; vV; tð Þ ¼ q v� AVt; vV; tð Þ
:
q υ; vV; tð Þ ¼ :

q v; vV; tð Þ �jv � q uð ÞAV¼ 0
ð14Þ

Under this coordinate transform, the change in the ensemble
density is zero. □

Heuristically, the motion of the particles is coupled through the
mean of the ensemble's velocity. In this moving frame of reference,
the only forces acting on particles are the deterministic effects
exerted by the gradients of the field, which drive particle towards
its peak and the random forces, which disperse the particles.
4 We will just state this to be the case here; it will become obvious why
the energy of dynamical systems depends on motion in the next section.
Critically, the gradients and peak move with the same velocity and
are stationary in the moving frame of reference. This enables
particles to ‘hit a moving target' because, from the point of view of
particles driven by mean-field effects, the target (i.e., peak) is not
moving.

The conditional mode and the principle of stationary action

In static systems, the peak or mode of the conditional density
maximises variational energy (Lemma 1). Similarly, in dynamic
systems, the trajectory of the conditional mode μ ̃={μ,μ'} maxi-
mises variational action. This can be seen easily by noting the
gradient of the variational energy at the mode is zero

AuV
fA; tð Þ ¼ 0fdu

P
V fAð Þ ¼ 0

At
P
V uð Þ ¼ V u; tð Þ ð15Þ

This means the mode maximises variational action (by the
Fundamental lemma). In other words, changes in variational
action, V̅ (u), with respect to variations of the mode's path are zero
(c.f., Hamilton's principle of stationary action). Intuitively, it means
the evolution of the mode follows the peak of the variational
energy as it evolves over time, such that tiny perturbations to its
path do not change the variational energy. This path has the
greatest variational action (i.e., path-integral of variational energy)
of all possible paths.

Recall that the position of motion in generalised coordinates is
not the same as the motion of the position. This is the counter-
intuitive power of generalised coordinates; they allow the state of
any particle to move freely along variational energy gradients,
irrespective of their generalised motion. Generalised motion only
influences movement through the mean-field terms above; such
that the motion x′ and movement x ̇ are consistent when, and only
when, there are no variational forces (i.e., at the mode of the
variational density, where there are no gradients). At this point the
motion and movement are consistent; i.e., μ̇=μ′ and Hamilton's
principle of stationary action prevails. In summary, coupling the
generalised motion of states and their movement with the mean-
field term μ′ creates a moving cloud of particles that enshroud the
peak, tracking the mode and encoding conditional uncertainty with
its dispersion.

See Fig. 1 for a schematic summary and Kerr and Graham (2000)
for a related example in statistical physics. Kerr and Graham use
ensemble dynamics in generalised coordinates to provide a gen-
eralised phase-space version of Langevin and associated Fokker–
Planck equations. See alsoWeissbach et al. (2002) for an example of
variational perturbation theory for the free-energy.

Variational filtering

Above, we assumed that the variational energy was a function of
position and velocity. We will see later that for most dynamical
systems, the variational density and its energy depend on generalised
motion to much higher orders. In this instance, the formalism above
can be extended to give ensemble dynamics in generalised
coordinates, u= ṽ=(v,v′,v″,…)

:
v ¼ V u; tð ÞvþAVþ C tð Þ
:
v V¼ V u; tð ÞvVþAWþ C tð Þ
:
vW ¼ N

Z

:A ¼ AV
:A V¼ AW ¼ ::A
:AW ¼ N

ð16aÞ



Fig. 1. Schematic illustrating the nature of variational filtering. The left panel shows the evolution of 32 particles over time as they negotiate a changing
variational energy landscape. The peak or mode of this landscape is depicted by the red line. Particles flow deterministically towards this mode but are dispelled
by random fluctuations to form a cloud that is centred on the mode (insert on the right). The dispersion of this cloud reflects the curvature of the landscape and,
through this, the conditional precision of the states. The sample density of the particles in the insert approximates the ensemble or variational density we require.
This example comes from a system that will be analyzed in detail in the next section (see Fig. 3). Here we focus on one state in six generalised coordinates of
motion, three of which are shown in the insert.
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This can be expressed more compactly in terms of a derivative
operator D whose first leading-diagonal contains identity matrices

:
u ¼ V u; tð ÞuþDfA þ C tð Þ

u ¼
v
vV
vW
v

2
664

3
775D ¼

0 I
0 O

O I
0

2
664

3
775

ð16bÞ

Here, the mode μ̃=(μ,μ′,μ″) satisfies V( μ̃,t)u=0 such that the
motion of the mode is the mode of the motion; i.e., μ=̇μ′; this is
only true for the mode. Eq. (16a) is the basis for a stochastic, free-
form approximation to non-stationary ensemble densities. This
entails integrating the path of multiple particles according to the
stochastic differential equations in Eq. (16b) and using their sample
distribution to approximate q(u,t). We refer to this as variational
filtering.
Summary

In this section, we have seen that inference on model param-
eters can proceed by optimising a free-energy bound on the log-
evidence of data, given a model. This bound is a functional of an
ensemble density on a mean-field partition of parameters. Using
variational calculus, the ensemble or variational density can be
expressed in terms of its variational energy. This is simply the
internal energy ln(p(y,ϑ|m) expected under the Markov Blanket of
each set in the partition. When there is only one set, the variational
energy reduces to the internal energy per se. For dynamic systems,
we introduced time-varying states and replaced energies with
actions to create a bound that is a functional of time. In the absence
of closed-form solutions for the variational densities, they can be
approximated using ensemble dynamics that flow on a variational
energy manifold, in generalised coordinates of motion. These par-
ticles are subject to forces exerted by the variational energy field
and mean-field terms from their generalised motion. Free-form
approximations obtain by integrating the paths of an ensemble of
such particles.

To implement this scheme we need the gradients of the
variational energy, which, in the absence of unknown parameters,
is simply the internal energy, V(u,t)=U(u,t|ϑ). This is defined by a
generative model. Next, we consider generative models for
dynamic systems and the variational filtering entailed.

Nonlinear dynamic models

In this section, we apply the theory of the previous section to an
input-state-output model with additive noise. This model has many
conventional models as special cases. Critically, it is formulated in
generalised coordinates, such that the evolution of the states is
subject to empirical priors (Efron and Morris, 1973). This makes
the states accountable to their conditional velocity through
empirical priors on the dynamics (similarly for high-order motion).
Special cases of this generalised model include state-space models
used by Bayesian filtering that ignore high-order motion.

Dynamic causal models

To simplify exposition we will deal with a non-hierarchical
model and generalise to hierarchical models post hoc. A dynamic
causal input-state-output model (DCM) can be written as

y ¼ g x; vð Þ þ z
:
x ¼ f x; vð Þ þ w

ð17Þ

The continuous nonlinear functions f and g of the states are
parameterised by θ⊂ϑ. The states v(t) can be deterministic,
stochastic, or both. They are variously referred to as inputs, sources
or causes. The states x(t) meditate the influence of the input on the
output and endow the system with memory. They are often referred
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to as hidden states because they are not observed directly. We
assume the stochastic innovations (i.e., observation noise) z(t) are
analytic such that the covariance of z ̃=[z,z ̇,z ̈,…]T is well defined;
similarly for the system or state noise,w(t), which represents random
fluctuations on the motion of the hidden states. Note that we eschew
Ito calculus because we are working in generalised coordinates. This
allows us to model innovations that are not limited to Weiner
processes (e.g., Brownian motion and other diffusions, whose inno-
vations do not have well-defined derivatives).

Under local linearity assumptions, the motion of the response y~

is given by

y ¼ g x; vð Þ þ z xV¼ f x; vð Þ þ w
:
y ¼ gxxVþ gvvVþ :

z xW¼ fxxVþ fvvVþ :
w

:
y ¼ gxxWþ gvvWþ ::

z xj ¼ fxxWþ fvvWþ ::
w

v v

ð18Þ

The first (observer) equation shows that the generalised states u=
{ṽ,x ̃}={v,v′,…,x,x′,…} are needed to generate a response trajectory.
This induces a variational density, q(u,t):=q(ṽ, x̃,t) on the generalised
states. The second (state) equations enforce a coupling between the
motions of the hidden states, which confers memory on the dynamics.
The energy functions

The energy function associated with this system; U u; tj#ð Þ ¼
lnp fyju; #ð Þ þ lnp uj#ð Þ comprises a log-likelihood and prior. Gaus-
Fig. 2. Conditional dependencies of dynamic (left) and hierarchical (right) models,
quantities in the model and the responses they generate. The arrows or edges indicat
is provided, both in terms of their state-space formulation (above) and in terms of th
models induces empirical priors, which depend on states in the level above and p
sian assumptions about the random fluctuations p(z̃)=N(0,Σ̃z ) and
p(w̃)=N(0,Σw̃) furnish a likelihood and empirical prior respectively

U u; tj#ð Þ ¼ lnp fyju; #ð Þ þ lnp fxjfv; #ð Þ þ lnp fvð Þ
p fyju; #ð Þ ¼ Nðfy : fg ;

f
R

zÞ
p fxjfv; #ð Þ ¼ NðDfx �f

f : 0;
f
R

wÞ
ð19Þ

This is because these random terms affect the mapping from
prediction to response and the evolution of hidden states
respectively

fy ¼ fg þfz Dfx ¼ f
f þfw

g ¼ g x; vð Þ f ¼ f x; vð Þ
gV¼ gxxVþ gvvV f V¼ fxxVþ fvvV
gW ¼ gxxWþ gvvW f W ¼ fxxWþ fvvW

v v

ð20Þ

Here, g̃ and f ̃ are the predicted response and motion of the
hidden states. To simplify things, we will assume priors on the
generalised causes p(ṽ ) are flat and re-instate informative empirical
priors with hierarchical models below. The covariances of the
fluctuations Σ̃(λ)z and Σ̃(λ)w depend on known hyperparameters,
λ⊂ϑ. We will denote the inverse of these covariances as the
precisions Π̃z and Π̃w.

Fig. 2 (left panel) shows the directed graph depicting the
conditional dependencies implied by this model. Note that in
generalised coordinates there is no explicit temporal dependency
and the only constraints on the hidden states are their empirical
shown as directed Bayesian graphs. The nodes of these graphs correspond to
e conditional dependencies between these quantities. The form of the models
e prior and conditional probabilities (below). The hierarchal structure of these
rovide constraints on the level below.
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priors. Readers who are familiar with conventional treatments of
state-space models may wonder where all these generalised terms
have come from. In fact, they are always present but can be
ignored if the precision of the generalised motion of random
fluctuations is zero. This is the case for Weiner processes, under
which Eq. (18) can be reduced to Eq. (17) with impunity.
However, in biophysical systems this is inappropriate because the
fluctuations are themselves the product of dynamical systems and
are differentiable to high order (this is because the output of a
dynamical system is a generalised convolution or smoothing of its
input). In short, approximating random effects with a Weiner
process is a convenient but specious approximation that precludes
an important source of constraints on the dynamics prescribed by
state-space models.

For these generative models, the internal energy and gradients
are simply (omitting constants)

U tð Þ ¼ � 1
2
fe T fPfe

f
P ¼

f
P

z

f
P

w

� �
fe tð Þ ¼

fe v ¼ fy �fg
fe x ¼ Dfx�f

f

� � ð21Þ

The auxiliary variables ε̃(t) are prediction errors for the
response and the generalised motion of hidden states. The precision
of the predictions is encoded by Π̃, which depends on the
magnitude of the random effects. The gradient of the variational
and internal energy is simply5

V u; tð Þu¼ Uu ¼ �feTu
f
Pfe ð22Þ

Where

u ¼
fv
fx

� �
feu ¼

fe v
v

fevxfexv
fexx

� �
¼ � I � gv I � gx

I � fv I � fx � D

� �

The form of the generative model (Eq. (17)) means that the
partial derivatives of the generalised errors, with respect to the
generalised states, comprise diagonal block matrices formed with
the Kronecker Tensor product, ⊗. Note the derivative matrix
operator in the block encoding ε̃x

x. This comes from the prediction
error of generalised motion Dx ̃− f ̃ and ensures the generalised
motion of the hidden states conforms to the dynamics entailed by
the state equation.

Before describing how these gradients are used to integrate the
path of the particles, we consider an important generalisation that
endows variational filtering with empirical priors on the causes.

Hierarchical nonlinear dynamic models

Hierarchical dynamic models are important because they
subsume many other models. In fact (with the exception of
mixture models), they cover most parametric models one could
conceive of; from independent component analysis to generalised
convolution models. The relationship among these special cases is
itself a large area (see Choudrey and Roberts, 2001), to which we
will devote a subsequent paper. Here, we simply describe the
general form of these models and their inversion. Hierarchical
5 When the states have a Markov blanket (i.e., there are unknown
parameters) the variational energy includes an additional mean-field term,
V(u,t)=U(u,t)+W(u,t) as described in Friston et al (2007, 2008).
models have the following form, which generalises the (m=1)
DCM above

y ¼ g x 1ð Þ; v 1ð Þ� �þ z 1ð Þ
:
x 1ð Þ ¼ f x 1ð Þ; v 1ð Þ� �þ w 1ð Þ

v
v i�1ð Þ ¼ g x ið Þ; v ið Þ� �þ z ið Þ
:
x ið Þ ¼ f x ið Þ; v ið Þ� �þ w ið Þ

v
v mð Þ ¼ gv þ z mþ1ð Þ

ð23Þ

Again, f (i) and g(i) are continuous nonlinear functions of the
states. The innovations z(i) and w(i) are conditionally independent
fluctuations at each level of the hierarchy. These play the role of
observation error or noise at the first level and induce random
fluctuations in the states at higher levels. The causes v(i) link levels,
whereas the hidden states x(i) are intrinsic to each level. The
corresponding directed graphical model, summarising these
conditional dependencies, is shown in Fig. 2 (right panel).

The conditional independence of the fluctuations induces a
Markov property over levels, which simplifies the architecture of
attending inference schemes (Kass and Steffey, 1989). A key
property of hierarchical models is their connection to parametric
empirical Bayes (Efron and Morris, 1973): Consider the energy
function implied by model above

U u; tj#ð Þ ¼ lnp fyju 1ð Þ; #
� 	

þ lnp u 1ð Þju 2ð Þ; #
� 	

þ N þ lnp fv mð Þ� 	
ð24Þ

As with Eq. (19), the first and last terms have the usual
interpretation of log-likelihoods and priors. However, the inter-
mediate terms are ambiguous. One the one hand, they are
components of the prior. On the other, they depend on quantities
that have to be inferred; namely, supraordinate states; hence
empirical Bayes. For example, the prediction g̃(u(i),θ(i)) plays the
role of a prior expectation on ṽ(i–1). In short, a hierarchical form
endows models with the ability to construct their own priors. This
feature is central to many inference and estimation procedures
ranging from mixed-effects analyses in classical covariance
component analysis to automatic relevance detection in machine
learning formulations of related problems (see Friston et al., 2002,
2007 for a fuller discussion of hierarchical models of static data).

The hierarchical forms for the states and predictions are

v ¼
v 1ð Þ

v
v mð Þ

2
4

3
5 x ¼

x 1ð Þ

v
x mð Þ

2
4

3
5 f ¼

f x 1ð Þ; v 1ð Þ� �
v

f x mð Þ; v mð Þ� �
2
4

3
5 g ¼

g x 1ð Þ; v 1ð Þ� �
v

g x mð Þ; v mð Þ� �
2
4

3
5

ð25Þ

The prediction errors now encompass the hierarchical structure
and priors on the causes. This means the prediction error on the
response is supplemented with prediction errors on the causes

ev ¼ y
v

� �
� g

g

� �
ð26Þ

Note that the data y and prior expectations η enter the prediction
error at only the lowest and highest level respectively; at intermediate



6 The number of elements in a local sequence equals the number of
generalised coordinates.
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levels the prediction error v(i–1)−g(x(i),v(i)) mediates empirical priors
on the causes. The forms of the derivatives of the prediction error with
respect to the states are

feu ¼ � I � gv � DTð Þ I � gx
I � fv I � fxð Þ � D

� �
ð27Þ

Comparison with Eq. (22) shows an extra DT in the upper-right
block; this reflects the fact that, in hierarchical models, causes also
affect the prediction error within their own level, as well as the
lower predicted level. We have presented ε̃u in this form to
highlight the role of causes in linking successive hierarchical levels
(the DT matrix) and the role of hidden states in linking successive
temporal derivatives (the D matrix). These constraints on the
structural and dynamic form of the system are specified by the
functions g(x,v) and f(x,v) respectively. The partial derivatives of
these functions are assembled according to the structure of the
model. Their key feature is a block-diagonal form, reflecting the
hierarchical separability of the model

gv¼
g 1ð Þ
v
0 O

O g mð Þ
v
0

2
664

3
775 gx ¼

g 1ð Þ
x
0 O

O g mð Þ
x
0

2
664

3
775

fv ¼
f 1ð Þ
v

O
f mð Þ
v

2
4

3
5 fx ¼

f 1ð Þ
x

O
f mð Þ
x

2
4

3
5

ð28Þ

Note that the partial derivatives of g(x,v) have an extra row to
accommodate the highest level.

The precisions and temporal smoothness

In hierarchical models, the precision at the first level encodes
the precision of observation noise; at the last level, it is simply the
prior precision of the causes, Πv=Π(m+1)z. The intermediate levels
are empirical prior precisions on the causes of dynamics in
subordinate levels. Independence assumptions about the innova-
tions means their precisions have a block-diagonal form

Pz ¼
P 1ð Þz

O
P mð Þz

Pv

2
664

3
775 Pw ¼

P 1ð Þw

O
P mð Þw

2
4

3
5

ð29Þ

In generalised coordinates, precisions are the Kronecker tensor
product of the precision of temporal derivatives, S(γ) and the
precision on each innovation

f
P

z ¼ S gð Þ �Pz ð30Þ
Similarly for Πw. This assumes the precisions can be factorised,

into dynamic and innovation-specific parts. The dynamic part
encodes the temporal dependencies among the innovations and can
be expressed as a function of their autocorrelations

S gð Þ ¼
1 0 q

::
0ð Þ : : :

0 � q
::
0ð Þ 0

q
::
0ð Þ 0

D
q 0ð Þ

v O

2
664

3
775
�1

ð31Þ
Here ρ ̈(0) is the second derivative of the autocorrelation
function of the fluctuations, evaluated at zero. It is a ubiquitous
measure of roughness in the theory of stochastic processes. See
Cox and Miller (1965) for details.

Note that when the innovations are uncorrelated, the curvature
(and higher derivatives) of the autocorrelation ρ ̈(0)→∞ become
large. In this instance, the precisions of the temporal derivatives
fall to zero and the energy is determined by, and only by, the
prediction error on the causes and the motion of the hidden states.
This limiting case is the model assumed by state-space models
used in conventional Bayesian filtering. S(γ) can be evaluated for
any analytic autocorrelation function. For convenience, we assume
that the temporal correlations of all innovations have the same
Gaussian form. This gives

S gð Þ ¼

1 0 � 1
2
g : : :

0
1
2
g 0

� 1
2
g 0

3
4
g2

v O

2
6666664

3
7777775

−1

ð32Þ

Where γ is the precision parameter of a Gaussian ρ(t) and
increases with roughness. Clearly, the conditional density of the
temporal hyperparameter γ⊂ϑ could be estimated. Here, for
simplicity, we assume γ is known. Typically, γN1, which ensures
the precisions of higher-order derivatives converge quickly. This is
important because it enables us to truncate the representation of
generalised coordinates to a relatively low order. This is because
high-order prediction errors have a vanishingly small precision. In
Friston et al. (2008) we established that an embedding order of
n=6 is sufficient in most circumstances (i.e., a representation of
high-order derivatives up to sixth order).

From derivatives to sequences

Up until now we have treated the trajectory of the response ỹ(t)
as a known quantity, as if data were available in generalised
coordinates of motion; however, empirical data are usually
measured discretely, as a sequence, y=[y(t1),…,y(tN)]

T. This
measurement or sampling is part of the generative process, which
has to be accommodated in the first level of the model: A discrete
sequence g=[g(t1),…,g(tN)]

T can be generated from the derivatives
g̃(t) using Taylor’s theorem

g ¼ f
E tð Þfg tð Þ f

E tð Þ ¼ E � I Eij ¼ ti � tð Þ j�1ð Þ

j� 1ð Þ! ð33Þ

Provided E ̃(t) is invertible6, we can use the linear bijective
mapping E ̃(t)ỹ(t)=y to evaluate generalised responses from local
sequences (see Friston et al., 2008 for details).

Integrating the path of particles

Variational filtering integrates the paths of an ensemble of
particles, u[i] according to Eq. (16b), so that their sample density at
any time, approximates the conditional density on the states, q(u,t).
This entails integrating stochastic differential equations for each



Fig. 3. Variational densities on the causal and hidden states of a linear
convolution model. These plots show the trajectories or paths of sixteen
particles tracking the mode of the input or cause (a) and two hidden states
(b). The sample mean of this distribution is shown in blue over the 32 time
bins, during which responses or data were inverted.
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particle, using an augmented system that includes the data and
priors. This ensures that changes in the energy gradients are
accommodated properly in the integration scheme. There are
several ways to integrate these equations; we use a computationally
intensive but accurate scheme (Ozaki, 1992) based on the matrix
exponential of the system’s Jacobian, I(t). Ozaki (1992) shows the
ensuing updates are consistent, coincide with the true trajectory (at
least for linear systems) and retain the qualitative characteristics of
the continuous formulation. For each particle, we update the states,
over a time-step Δt (usually the time between observations) using

Dfy
Du i½ �

Dfg

2
4

3
5 ¼ exp DtIð Þ � Ið ÞI�1

Dfy
V u i½ �; t
� �

uþDfA
Dfg

2
4

3
5þ

0
1
0

2
4

3
5

ð34aÞ

where μ∼ = 〈u[i]〉i is the sample mean over particles. The Jacobian

I ¼
D 0 0
Vuy Vuu Vug

0 0 D

2
4

3
5 ð34bÞ

comprises the curvatures

Vuu ¼ �feTu
f
Pfeu

Vuy ¼ �feTu
f
Pfey

Vug ¼ �feTu
f
Pfeg

fey ¼ I � evy
0

� �
feg ¼ I � evg

0

� �
evy ¼

I
0

� �
evg ¼ � 0

I

� �

The forms for the error derivatives εy
v and εη

v reflect the fact that
data and priors only affect the prediction error at the first and last
levels respectively. The stochastic term ς in Eq. (34a) is sampled
from a unit normal distribution and scaled by the square root of its
implicit covariance

R1 ¼ h11T i ¼
Z Dt

0
exp tVuuð ÞXexp tVuuð ÞTdt ð35Þ

Where Ω=2I is the covariance of the underlying Langevin
force, which is the same over all states and orders of motion. This
can be computed fairly quickly as described in Appendix A. Note
that when Δt is small, the covariance of the stochastic terms
Σς≈ΩΔt. The form of Eq. (35) is explained in Appendix B.

For each particle and time-step, the prediction errors and ensuing
gradients and curvatures are evaluated and the particle’s position
in generalised coordinates is updated according to Eq. (34a). The
initial positions are drawn from a unit normal distribution. After the
paths have been integrated to the end of the observed time series,
their sample density constitutes an approximation to the time-
varying conditional density on hidden states and causes. In most
cases, one is interested in the marginal density on the values of the
states (e.g., the conditional mean and covariance); however, the
conditional density actually encodes a distribution on generalised
states and implicitly their instantaneous trajectories. Note that unlike
particle filtering or related sampling techniques, particles are not
selected or destroyed. Furthermore, unlike Bayesian smoothing
schemes, there is no need for forward and backward passes.
Variational filtering uses a single pass, while conserving particles.
See Eyink (2001) for a discussion of variational estimators that enjoy
‘mean optimality’. These obtain from forward integration of a
‘perturbed’ Fokker-Planck equation and backward integration of an
adjoint equation, related to the Pardoux–Kushner equation for
optimal smoothing.
This concludes the theoretical background. In the next section,
we examine the operational features of this inversion scheme.

Variational filtering of linear and nonlinear models

In this section, we focus on the functionality of variational filtering
and how it compares with established schemes. This functionality is
quite broad because the conditional density covers not only hidden
states but also the causal states or inputs. This means we can infer on
the inputs to a system. This is precluded in conventional filtering,
which treat the inputs as noise. We consider Bayesian deconvolution
of dynamic systems to estimate hidden and causal states, assuming the
parameters and hyperparameters are known. We start with a simple
linearmodel to outline the basic nature of variational filtering and then
move on to nonlinear dynamic models that have been used previously
for comparative studies of extended Kalman and particle filtering.

A linear convolution model

To compare free and fixed-form schemes, we start with a linear
convolution or state-space model, under which the approximating



Fig. 4. Alternative representation of the sample density shown in the previous figure. This format will be used in subsequent figures and summarizes the
predictions and conditional densities on the states of a hierarchical dynamic model. Each row corresponds to a level, with causes on the left and hidden states on
the right. In this case, the model has just two levels. The first (upper left) panel shows the predicted response and the error on this response (their sum corresponds
to observed data). For the hidden states (upper right) and causes (lower left) the conditional mode is depicted by a coloured line and the 90% conditional
confidence intervals by the grey area. In this case, the confidence tubes were based on the sample density of the ensemble of particles shown in the previous
figure. Finally, the thick grey lines depict the true values used to generate the response.

7 Where scalar precisions scale the appropriate identity matrix.
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conditional densities should be the same. Thismodel can be expressed
as

y ¼ g x; vð Þ þ z 1ð Þ
:x ¼ f x; vð Þ þ w 1ð Þ

v ¼ gþ z 2ð Þ

g x; vð Þ ¼ h1x
f x; vð Þ ¼ h2xþ h3v

ð36Þ

We have omitted superscripts on the states because there is only
one level of hidden states and one level of inputs. In this model,
input perturbs hidden states, which decay exponentially to produce
an output that is a linear mixture of hidden states. Our example
uses a single input, two hidden states and four outputs. This is a
single input-multiple output linear system, where

h1 ¼
0:1250 0:1633
0:1250 0:0676
0:1250 �0:0676
0:1250 �0:1633

2
664

3
775 h2 ¼ �0:25 1:00

�0:50 �0:25

� �
h3 ¼ 1

0

� �
ð37Þ
This model is used to generate data for the examples below. This
entails the integration of stochastic differential equations in generalised
coordinates, which is relatively straightforward (see Appendix B of
Friston et al., 2008). We generated data over 32 time bins, using
innovations sampled from Gaussian densities with the following
precisions7

Linear convolution model
Level
 g(x,v)
 f(x,v)
 ∏z
 ∏w
 η
m=1
 θ1x
 θ2x+θ3v
 e8
 e16
m=2
 1
 0
When generating data, we used a deterministic Gaussian
function v ¼ exp 1

4 t � 12ð Þ2
� 	

centred on t=12. However, when
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inverting the model the cause is unknown and is subject to mildly
informative shrinkage priors with zero mean and unit precision;
p(v)=N(0,1). We will use embeddings of n=6 with temporal
hyperparameters, γ=4 for all simulations. This model specification
enables us to evaluate the variational energy at any point in time
and invert the model given an observed response.

Variational filtering and DEM

DEM approximates the density of an ensemble of solutions
by assuming it has a Gaussian form. This assumption reduces the
problem to finding the path of the mode, which entails integrating an
ordinary differential equation that is identical to Eq. (16a) but with-
out the random terms. The conditional covariance is then evaluated
usingthe curvature of the variational energy at the mode. Variational
filtering relaxes this fixed-form assumption and integrates the
corresponding stochastic differential equations to furnish the paths
of an ensemble and an approximating sample density. Here the
Fig. 5. This is exactly the same as the previous figure, summarising conditional infe
here, we have used a Laplace approximation to the variational density and have int
(blue lines) are indistinguishable from the variational filter modes (Fig. 6). The con
key difference; in DEM the confidence tubes have the same width throughout. Thi
density based on the variational filter shows an initial transient as particles converg
conditional covariance is encoded in the dispersion of particles that
is constrained by the curvature of the variational energy. We can
compare the fixed-form density provided by DEM with the sample
density from variational filtering. Generally, this is non-trivial because
nonlinearities in the likelihood model render the true conditional non-
Gaussian, even under Gaussian assumptions about the priors and
innovations. However, with a linear convolution model in generalised
coordinates, the Gaussian form is exact and we would expect a close
correspondence between variational filtering and DEM.

Fig. 3 shows the trajectories or paths of sixteen particles tracking
the mode of the cause (top) and two hidden states (bottom). The
sample mean of this distribution is shown in blue. An alternative
representation of the sample density is shown in Fig. 4. This format
will be used in subsequent figures and summarizes the predictions
and conditional densities on the states. Each row corresponds to a
level in the model, with causes on the left and hidden states on the
right. The first (upper left) panel shows the predicted response and
the error on this response. For the hidden states (upper right) and
rence on the states of a linear convolution model. The only difference is that
egrated a single trajectory; that of the conditional mode. Note that the modes
ditional variance on the causal and hidden states is very similar but with one
s is because we are dealing with a linear system. In contrast, the conditional
e to the mode, before attaining equilibrium in a moving frame of reference.



Fig. 6. Schematic detailing the nonlinear convolution model in which hidden
states evolve in a double-well potential. (a): Plot of the velocity of states
against states (in the absence of input). This shows how states converge on
two fixed-point attractors in the absence of input or random fluctuations.
These attractors correspond to the minima of the implicit potential field
in (b).
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causes (lower left) the conditional mode is depicted by a coloured
line and the 90% conditional confidence intervals by the grey area.
These are sometimes referred to ‘tubes’. Here, the confidence tubes
are based upon the sample density of the ensemble shown in Fig. 3. It
can be seen that there is a pleasing correspondence between the
sample mean (blue) and veridical states (grey). Furthermore, the true
values lie within the 90% confidence intervals.

We then repeated the inversion using exactly the same model
and response using DEM. The results are shown in Fig. 5 using the
same format as the previous figure. Critically, the ensuing modes
(blue) are indistinguishable from those obtained with variational
filtering (c.f., Fig. 4). The conditional variance on the causal and
hidden states is again very similar but with one key difference; in
DEM the conditional tubes have the same width throughout. This
is because we are dealing with a linear system, where variations in
the state have the same effect in measurement space at all points in
time. In contrast, the conditional density based on the variational
filter shows an initial transient as the particles converge on the
mode, before attaining equilibrium in a moving frame of reference.
The integration time for DEM is an order of magnitude faster than
for the variational filter (about 1 s versus 10) because we only
integrate the path of a single particle (the approximating mode) and
eschew integration of stochastic differential equations.

In summary, there is an expected convergence between variational
filtering and its fixed-form homologue, when the fixed-form assumpt-
ions are correct. In these cases, the fixed-form approximation is
computationallymore efficient. However, fixed-form assumptions are
not always appropriate. In the next example, we consider a nonlinear
system, whose conditional density is bimodal. In this case DEM fails
completely, in relation to filtering.

A nonlinear convolution model

Here, we focus on the effect of nonlinearities with a model that
has been used previously to compare extended Kalman and particle
filtering (c.f., Arulampalam et al., 2002)

Nonlinear (double-well) convolution model
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This is a particularly difficult system to invert for many schemes
because the quadratic form of the observer function renders inference
on the hidden states and their causes inherently ambiguous8. To
make matters more difficult, the hidden states are deployed sym-
metrically about zero in a double-well potential. Transitions from one
well to the other are caused by inputs or high amplitude fluctuations.
Fig. 6 shows the phase-diagram of this system by plotting f(x,0)
against x (top) and the implicit potential (the negative integral of f(x,0);
bottom).

We drove this system with a slow sinusoidal input v tð Þ ¼
8 sin 1

16pt
� �

to generate data and then tried to invert themodel, using
only the response. Again, priors on the input were mildly informative
with zero mean; p(v)=N(0,8).
ss
Comparative evaluations

We generated a 64 time-bin response and inverted it using DEM.
The results are shown in Fig. 7. As in previous figures, the blue lines
represent the conditional estimate of hidden and causal states, while
the grey lines depict the true values. It can be seen immediately that
the inversion has failed to represent the ambiguity about whether
hidden states are positive or negative. The fixed-form solution asserts,
incorrectly, that the states are always positive with deleterious
consequences for the conditional density on the inputs. It is interesting
to note that in this nonlinear system, the confidence tubes on the
hidden states are time-dependent; the conditional uncertainty
increases markedly when the states approach zero (c.f., the fixed-
width confidence intervals under linear deconvolution in Fig. 5). This
is because changes in the states produce smaller changes in the
response, at these low values.

Particle filtering

As demonstrated above, fixed-form schemes such as DEM and
extended Kalman filtering fail to represent non-Gaussian (e.g., multi-



Fig. 7. An example of deconvolution with DEM using the nonlinear double-well convolution model described in the main text. In this case, the response is
always positive. As in previous figures, the blue lines represent the conditional estimates of hidden and causal states, while the thick grey lines depict the true
values.
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modal) conditional densities required for accurate deconvolution. In
this instance, particle filtering and related grid-based approximations
provide solutions that allow for non-Gaussian posteriors on the hidden
states. In these schemes, particles are subject to stochastic perturba-
tions and re-sampling so that they come to approximate the
conditional density. This approximation rests on which particles are
retained and which are eliminated, where selection depends on the
energy of each particle. See Appendix B for a description of particle
filters for state-space models formulated in continuous time.

These sequential Monte-Carlo techniques should not be confused
with the ensemble dynamics of variational filtering. In variational
filtering particles are conserved and experience forces that depend on
energy gradients. In sequential samplingmethods the energy is used to
select and eliminate particles. In relation to variational filtering,
sequential sampling techniques appear unnecessarily complicated.
Furthermore, they rely on some rather ad hoc devices to make them
work (see Appendix B and var der Merwe et al., 2000). For these
reasons, we will not provide any further background on particle
filtering but simply use it as a reference for variational filtering.
Variational filtering

We next inverted the double-well model using variational and
particle filtering. Fig. 8 (top) shows the trajectory of 32 particles
using variational filtering and the true values of the hidden states. It
is seen that the ensemble splits into two, reflecting the ambiguity
about their positive or negative sign. The sample density (lower
left) shows the resulting bimodal distribution nicely and is very
similar to the corresponding density obtained with particle filtering
(lower right). The key difference between variational and particle
filtering is that variational filtering also furnishes an ensemble
density on the inputs, whereas particle filtering does not. Fig. 9
shows q(v,t) in terms of trajectories (top) and the sample density
(bottom). It is evident that inference on the input is not as accurate
as inference on hidden states, because inputs express themselves in
measurement space vicariously though hidden states. However,
there are two key things to note; first, the conditional density is
not symmetric about zero. This reflects that fact that the hidden
states are a nonlinear convolution of the inputs, which breaks the



Fig. 8. (a) Trajectories of 32 particles from variational filtering, using the double-well model. The paths are shown for the hidden states with the true trajectory in
red. (b): The same results but presented as a sample density in the space of hidden states for variational (left) and particle filtering (right).
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symmetry. Second, the most precise conditional densities obtain
when the mode and true inputs coincide (circled region).

Summary

These examples have shown that variational filtering pro-
vides veridical approximations to the conditional density on the
states of dynamic models. When, models have a simple linear
state-space form, DEM and variational filtering give the same
results. For nonlinear models, in which the Laplace assumption of
Gaussian posterior fails, variational filters give the same results as
particle filtering. The principal advantage that variational filtering
has over conventional schemes is that its conditional densities are
on hidden states and their causes; both in generalised coordinates
of motion. In the next section, we exploit inference on causes
to infer the neuronal activity causing observed hemodynamics
responses.

An empirical application

In this, the final section, we illustrate variational filtering by
inverting a hemodynamic model of how neuronal activity in the
brain generates data sequences in functional magnetic resonance
imaging (fMRI). This example has been chosen because inference
about brain states from non-invasive neurophysiologic observa-
tions is an important issue in cognitive neuroscience and functional
imaging (e.g., Friston et al., 2003; Gitelman et al., 2003; Buxton
et al., 2004; Riera et al., 2004; Sotero and Trujillo-Barreto, in
press).

The hemodynamic model

The hemodynamic model has been described extensively in
previous communications (Buxton et al., 1998; Friston, 2002). In
brief, neuronal activity causes an increase in a vasodilatory signal
h1 that is subject to auto-regulatory feedback. Blood flow h2
responds in proportion to this signal and causes changes in blood
volume h3 and deoxyhemoglobin content, h4. The observed signal
is a nonlinear function of volume and deoxyhemoglobin. These
dynamics are modelled by the differential equations

:
h1 ¼ v� j h1 � 1ð Þ � v h2 � 1ð Þ:
h2 ¼ h1 � 1:
h3 ¼ s h2 � F h3ð Þð Þ:
h4 ¼ s h2E h2ð Þ � F h3ð Þh4=h3ð Þ

ð38Þ



Fig. 9. (a) Trajectories of 32 particles from variational filtering using the
double-well model. Here, the paths are shown for the cause or input with the
true trajectory in red. (b): The same results presented as a sample density in
image format. The circled region shows that the sample density is relatively
precise (i.e., a peaked distribution) when and only when, its mode cor-
responds to the true and relatively unambiguous input.

Table 1
Biophysical parameters (state)

Description Value

κ Rate of signal decay 1.2 s−1

χ Rate of flow-dependent elimination 0.31 s−1

τ Transit time 2.14 s
α Grubb's exponent 0.36
φ Resting oxygen extraction fraction 0.36

Biophysical parameters (observer)
V0 Blood volume fraction 0.04
K1 Intravascular coefficient 7φ
K2 Concentration coefficient 2
K3 Extravascular coefficient 2φ–0.2

Fig. 10. Trajectories from variational filtering using real fMRI data and the
hemodynamic model described in the main text. (a) 16 trajectories in the
space of neuronal causes or activity, showing clear onset and offset transients
with each new 10-bin experimental condition. (b) The same trajectories but
now shown over the four hidden hemodynamic states. Each time bin
corresponds to 3.22 s.

761K.J. Friston / NeuroImage 41 (2008) 747–766
In this model, changes in vasodilatory signal h1 are elicited
by neuronal input, v. Relative oxygen extraction E h2ð Þ ¼ 1

u ð1�
1� uð Þ1=h2Þ is a functionofflow,whereφ is restingoxygen extraction
fraction and outflow is a function of volume F(h3)=h3

1/α, through
Grubb's exponent α. A description of the parameters of this model
and their assumed values are provided in Table 1.

All these hemodynamic states are nonnegative quantities. One
can implement this formal constraint with the transformation,
xi=lnhi⇔hi=exp(xi). Under this transformation the differential
equations above can be written as

:
hi ¼ Ahi

Axi

Axi
At

¼ hi
:
xi ¼ fi h; vð Þ ð39Þ
This allows us to formulate the model in terms of the hidden
states xi=lnhi with unbounded support (i.e., the trajectories of
particles can be positive or negative).
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Hemodynamic convolution model
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This model represents a multiple-input, single-output model
with four hidden states. In this example, we assume state noise has
precision, e8 which corresponds to random fluctuations with
amplitudes of about 20% of the evoked changes in hidden states.
The unknown cause has weakly informative shrinkage priors.

Data and pre-processing

Data were acquired from a normal subject at 2-Tesla using a
Magnetom VISION (Siemens, Erlangen) whole body MRI system,
during a visual attention study. Contiguous multi-slice images were
obtained with a gradient echo-planar sequence (TE=40 ms; TR=
ented in te
3.22 s; matrix size=64×64×32, voxel size 3×3×3 mm). Four con-
secutive hundred-scan sessions were acquired, comprising a sequence
of 10-scan blocks under five conditions. The first was a dummy
condition to allow for magnetic saturation effects. In the second,
Fixation, subjects viewed a fixation point at the centre of a screen. In
anAttention condition, subjects viewed 250 dotsmoving radially from
the centre at 4.7°/s andwere asked to detect changes in radial velocity.
In No attention, the subjects were asked simply to view the moving
dots. In another condition, subjects viewed stationary dots. The order
of the conditions alternated between Fixation and visual stimulation.
In all conditions subjects fixated the centre of the screen. No overt
responsewas required in any condition and there were no actual speed
changes. The data were analysed using a conventional SPM analysis
(http://www.fil.ion.ucl.ac.uk/spm). A time-series from extrastriate
cortex was summarised using the principal local eigenvariate of a
region centred on the maximum of a contrast testing for the effect of
visual motion. This regional response was used for deconvolution.

Variational filtering

Using the regional response, we attempted to deconvolve both
the hidden states and neuronal input from the observed time-series.
rms of conditional means and 90% confidence tubes (see Fig. 4 for details).

http://www.fil.ion.ucl.ac.uk/spm
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The trajectories of 16 particles over the first 120 scans are shown in
Fig. 10 for the neuronal input (top) and hidden hemodynamic states
(bottom). It is clear that the conditional density is unimodal. This
means is sensible to display the densities in term of 90% con-
fidence tubes as in Fig. 11. This unimodal density reflects the fact
that the model is only weakly nonlinear and there are no severe
indeterminacies. Indeed, very similar results were obtained under a
fixed-form Laplace assumption using DEM (Fig. 12). This
suggests that the conditional density is roughly Gaussian.

A summary of the hemodynamics is shown in the Fig. 13. This
figure plots the hemodynamic states in terms of the conditional
expectation of hi=exp(xi); instead of xi in Figs. 11 and 12). Each time
bin corresponds to 3.22 s. In the upper panel, the hidden states are
overlaid on periods (grey) of visual motion. These hidden states
correspond to flow-inducing signal, flow, volume and deoxyhemo-
globin (dHb). It can be seen that neuronal activity, shown in the lower
panel, induces a transient burst of signal (blue), which is suppressed
rapidly by the resulting increase in flow (green). The increase in flow
dilates the venous capillary bed to increase volume (red) and dilute
deoxyhemoglobin (cyan). The concentration of deoxyhemoglobin
Fig. 12. The equivalent results for the hemodynamic deconvolution using DEM. T
using variational filtering.
(involving volume and dHb) determines the measured response.
Interestingly, the underlying neuronal activity appears to show an
offset transient that is more pronounced than the onset transient. In
either case, we can be almost certain that changes in visual stimulation
are associated with changes in neuronal activity. The dynamics of
inferred activity, flow and other biophysical states are physiologically
plausible. For example, activity-dependent changes in flow are
around 14%, producing about a 5% change in fMRI signal.

Summary

As noted in Friston et al 2008, “it is perhaps remarkable that so
much conditional information about the underlying neuronal and
hemodynamics can be extracted from a single scalar time-series,
given only the functional form of its generation”. This speaks to
the power of generative modelling, in which constraints on the
form of the model allow one to focus data on inferring hidden
quantities. To date, dynamic causal models of neuronal systems,
measured using fMRI or electroencephalography (EEG) have used
known, deterministic causes and have ignored state-noise (see
hese densities should be compared with those in Fig. 11 that were obtained



Fig. 13. These are the same results shown in Fig. 11 but focussing on the
conditional expectations of the hidden states and neuronal causes. In the
upper panel (a), the hidden states are overlaid on periods (grey bars) of visual
motion. These hidden states correspond to flow-inducing signal, flow,
volume and deoxyhemoglobin (dHb). It can be seen that neuronal activity,
shown in the lower panel (b), induces a transient burst of signal (blue), which
is rapidly suppressed by the resulting increase in flow (green). The increase
in flow dilates the venous capillary bed to increase volume (red) and dilute
deoxyhemoglobin (cyan). The concentration of deoxyhemoglobin (invol-
ving volume and dHb) determines the measured response.
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Riera et al., 2004 and Sotero and Trujillo-Barreto, in press for
important exceptions). One of the motivations for the variational
treatment presented in this paper was to develop an inference
scheme that can deal with state-noise. Variational filtering may find
a useful role in ensuring that fixed-form Laplace-based schemes
are justified when using these nonlinear models.

Conclusion

We have presented a variational treatment of dynamic models
that furnishes the time-dependent free-form conditional densities on
a system's states by maximising their variational action. This action
represents a lower-bound on the model's marginal likelihood or log-
evidence, integrated over time. The approach rests on formulating
the variational or ensemble density in generalised coordinates of
motion. The resulting scheme can be used for online Bayesian
inversion of stochastic dynamic causal models and eschews some
limitations of alternative approaches, such as particle filtering.
Critically, variational filtering provides conditional densities on both
the hidden states and unobserved inputs to a system.

Variational vs. incremental approaches

The variational approach to dynamic systems presented here
differs in several ways from incremental approaches such as extended
Kalman and particle filtering. The first distinction relates to the nature
of the generative models. The variational approach regards the
generative model as mapping between the instantaneous trajectories
of causes and responses. In contradistinction, incremental approaches
consider themapping to be between instantaneous quantities per se. In
this sense, the variational treatment above can be regarded as a
generalisation of model inversion to cover mappings between paths.
Incremental approaches simply treat the response as an ordered
sequence and infer the current state using previous estimates.
However, the underlying causes and responses are analytic functions
of time, which provide constraints on inversion that cannot be
exploited by incremental schemes. For example, most incremental
approaches assume uncorrelated random components (e.g., a Weiner
process for system noise). However, in reality these random
fluctuations are almost universally the product of ensemble dynamics
that are smooth functions of time. The variational approach
accommodates this easily with generalised coordinates of high-order
notion and a parametric form for the associated temporal correlations.

The second key difference between conventional and varia-
tional filtering is the support of the ensemble density itself. In
conventional procedures this covers only the hidden states,
whereas the full variational density should cover both the hidden
and causal states. This has a number of important consequences.
Perhaps the simplest is that particle filtering cannot be used to
deconvolve the inputs to a system (i.e., causes) from its responses.

Variational filtering relies on an ensemble of particles being
drawn towards peaks on the variational energy landscape; so that
their sample density approximates the conditional density we
require. The coupling of high-order motion to lower orders (through
mean-field effects) ensures this distribution is relatively stationary
(in a moving frame of reference). This rests on the assumption that
the variational energy manifold is changing slowly, in relation to the
implicit diffusion of particles. Clearly, if a system changes quickly
(i.e., shows bifurcations or chaotic itinerancy), it may take some time
for equilibrium to be attained on a new variational energy manifold.
This speaks to optimising the rate of ascent of the energy gradients.
In the examples above, this was assumed to be one (i.e., there is no
explicit rate constant in Eq. (6) or Eq. (12)). It may well be the case
that higher values are required for dynamical systems showing
exotic behaviours. This will be a focus of future work.

We envisage that variational filtering will find its principal role
in validating fixed-from approximations to the conditional density
using computationally more efficient approaches like DEM. Indeed
the last section of this note could be used to motivate the Laplace
assumption in the context of hemodynamic models.

Software note

The variational scheme above is implemented in Matlab code and
is available freely from http://www.fil.ion.ucl.ac.uk/spm. A DEM

http://www.fil.ion.ucl.ac.uk/spm
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toolbox provides several demonstrations from a graphical user
interface. These demonstrations reproduce the figures of this paper
(see spm_DFP.m and ancillary routines).
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Appendix A

Covariance of stochastic terms:

An efficient way to compute

R1 ¼
Z Dt

0
exp tVuuð ÞXexp tVuuð ÞTdt ðA1:1Þ

Is to pre-compute A=exp(τVuu) where Nτ=Δt and accumulate
terms as in the Pade approximation

for i=1:N

R1 :¼ R1 þ sBXBT

B :¼ BA
ðA1:2Þ

end
Stating with Σς=0 and B=A and terminating if |BΩBT| falls

below some tolerance.

Appendix B

Particle filtering:

This appendix provides a pseudo-code specification of particle
filtering based on var der Merwe et al. (2000) and formulated for
models of the form:

y ¼ g xð Þ þ z
:
x ¼ f x; vð Þ þ w

ðA2:1Þ

This can be re-written, using local linearisation, as a discrete-time
state-space model. This is the formulation treated in conventional
Bayesian filtering procedures

yt ¼ gxxt þ zt
xt ¼ f xxt�1 þ wt�1

gx ¼ g xtð Þx
f x ¼ exp Dtf xtð Þx

� �
zt ¼ z tð Þ
wt�1 ¼

Z Dt

0
exp fxsð Þ fvv t � sð Þ þ w t � sð Þð Þds

ðA:2:2Þ

The key thing to note here is that process noise wt-1 is simply a
convolution of the exogenous input, v(t) and innovations, w(t).
This is relevant for Kalman filtering and related nonlinear Bayesian
tracking schemes that assume wt− 1 is a well-behaved noise
sequence. We have used the term process noise to distinguish it
from system noise, w(t) in hierarchical dynamic models. This
distinction does not arise in simple state-space models. The
covariance of process noise is

hwtwT
t i ¼

Z Dt

0
exp fxsð ÞXexp fxsð ÞTdscXDt

X ¼ fvRvf Tv þ Rw
ðA2:3Þ

assuming temporal correlations can be discounted and that the
Lyapunov exponents of fx are small relative to the time-step.

In this pseudo-code description, each particle is denoted by its
state xt

[i]. These states are updated stochastically from a proposal
density, using a random variate w[i] and are assigned importance
weights q[i] based on their likelihood. These weights are then used
to re-sample the particles to ensure an efficient representation of
the ensemble density.

for all t
Prediction step: for all i

x i½ �
t ¼ f xx

i½ �
t�1 þ w i½ �

n ¼ y� g x i½ �
t

� 	

q i½ � ¼ exp � 1
2
nTPzn


 �

Normalise importance weights

q i½ � ¼ q i½ �P
i q

i½ �

Selection step: for all i

x i½ �
t px r½ �

t ðA2:4Þ
end.

where w[i] is drawn from a proposal density N(0,Ω) and xt
[i]←xt

[r]

denotes sequential importance re-sampling. The indices r are
selected on the basis of the importance weights. Πz is the precision
of observation noise. In our implementation (spm_pf.m) we use
multinomial re-sampling based on a high-speed Niclas Bergman
Procedure written by Arnaud Doucet and Nando de Freitas.
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