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This article is about intersubject variability in the
functional integration of activity in different brain
regions. Previous studies of functional and effective
connectivity have dealt with intersubject variability
by analyzing data from different subjects separately
or pretending the data came from the same subject.
These approaches do not allow one to test for differ-
ences among subjects. The aim of this work was to
illustrate how differences in connectivity among sub-
jects can be addressed explicitly using structural
equation modeling. This is enabled by constructing a
multisubject network that comprises m regions of in-
terest for each of the n subjects studied, resulting in a
total of m � n nodes. Constructing a network of re-
gions from different subjects may seem counterintui-
tive but embodies two key advantages. First, it allows
one to test directly for differences among subjects by
comparing models that do and do not allow a particu-
lar connectivity parameter to vary over subjects. Sec-
ond, a multisubject network provides additional de-
grees of freedom to estimate the model’s free
parameters. Any neurobiological hypothesis normally
addressed by single-subject or group analyses can still
be tested, but with greater sensitivity. The common
influence of experimental variables is modeled by con-
necting a virtual node, whose time course reflects
stimulus onsets, to the sensory or “input” region in all
subjects. Further experimental changes in task or cog-
nitive set enter through modulation of the connec-
tions. This approach allows one to model both endog-
enous (or intrinsic) variance and exogenous effects
induced by experimental design. We present a func-
tional magnetic resonance imaging study that uses a
multisubject network to investigate intersubject vari-
ability in functional integration in the context of sin-
gle word and pseudoword reading. We tested whether
the effect of word type on the reading-related coupling
differed significantly among subjects. Our results
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showed that a number of forward and backward
connections were stronger for reading pseudowords
than words, and, in one case, connectivity showed sig-
nificant intersubject variability. The discussion fo-
cuses on the implications of our findings and on fur-
ther applications of the multisubject network
analysis. © 2002 Elsevier Science (USA)

INTRODUCTION

This article is about intersubject variability in the
functional integration of activity in different brain re-
gions. Differences in functional integration may reflect
varied cognitive strategies adopted to perform a task or
degenerative solutions the brain can adopt to complete
the same strategy. First, we review briefly how previ-
ous neuroimaging studies of functional and effective
connectivity have dealt with differences and common-
alities among subjects. Second, we describe how the
issue of intersubject variability can be addressed di-
rectly and illustrate the approach with empirical data.

Functional integration refers to the interaction
among functionally specialized brain regions and can
be characterized in terms of functional or effective con-
nectivity (e.g., McIntosh et al., 1994; Horwitz and
Sporns, 1994; Friston et al., 1993a,b). Functional con-
nectivity is defined as the temporal correlations among
neurophysiological events in different neural systems,
whereas effective connectivity is defined as the influ-
ence that one neural system exerts over another. Over
the past decade, a number of positron emission tomog-
raphy (PET) and functional magnetic resonance imag-
ing (fMRI) studies have tried to characterize functional
and effective connectivity. While some PET studies
have estimated connectivity by exploiting subject-to-
subject variability (e.g., see Horwitz et al., 1998), most
studies have discounted intersubject variability by
treating data from different subjects as if they came
from the same subject (Iidaka et al., 2001; Bokde et al.,
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et al., 1999). Here estimates of the coupling among
regions of interest are based on item-to-item or block-
to-block variability over subjects. This approach as-
sumes that the pattern of connectivity estimated over
subjects is a good approximation to the underlying
connectivity in all the subjects studied. Treating data
from different subjects in this way allows one to draw
inferences about the group of subjects studied under
the assumption that variations in connectivity from
subject to subject are random, well-behaved, and un-
interesting. It also increases sensitivity by augmenting
the number of data points per voxel. However, this
approach may be problematic when intersubject vari-
ability is pronounced. For example, when there are
subjects with opposite patterns of connectivity, the es-
timated connections may be far from the true values in
any of the subjects studied. This was illustrated by
Gonçalves et al. (2001), who found that the results of
the group analysis did not reflect any of the features
seen in individual analyses. In addition, estimating
connectivity over subjects does not allow one to relate
clinical or demographic measures (e.g., task perfor-
mance or age) to indices of functional integration (e.g.,
correlations among regions) in a subject-specific fash-
ion.

An alternative approach involves analyzing the data
by performing subject-specific analyses (Gonçalves et
al., 2001; Mechelli et al., 2001; Büchel and Friston,
1997, 1998). This method allows one to estimate con-
nectivity independently for each subject. In addition, it
enables one to correlate behavioral measures with in-
dices of functional integration over subjects. However,
this approach indicates apparently inconsistent results
among subjects (Gonçalves et al., 2001; Mechelli et al.,
2001). This raises the question of whether inconsistent
effects correspond to significant differences in connec-
tivity.

In summary, unless the model of the data can accom-
modate subject-specific variations in connectivity, dif-
ferences among subjects cannot be evaluated. The aim
of the present work is to show how individual differ-
ences in connectivity can be addressed directly using
structural equation modeling (SEM) (Bollen, 1989).
SEM of functional imaging data identifies connection
strengths that best predict the variance–covariance
structure of the empirical data (i.e., fMRI time series),
under the constraints of a prespecified anatomical
model. Generally, this is achieved by using iterative
methods such as maximum likelihood or generalized
least squares. Iteration begins by assigning a set of
start values to the free parameters of the prespecified
anatomical model, from which an implied variance–
covariance structure is computed and compared with
the variance–covariance structure of the empirical
data. Iteration continues until the difference between
the implied and the observed variance–covariance
structures cannot be minimized any further. This pro-

duces a single number (i.e., value of the fitting func-
tion) that is a function of the discrepancy between the
two variance–covariance structures. Such discrepancy
is asymptotically distributed as �2. �2 values are de-
rived by multiplying the value of the fitting function by
the sample size minus 1. �2 values are therefore an
index of how “badly” the prespecified anatomical model
fits the data and can be used to compare alternative
models.

The model used in this article is based on a multi-
subject network that comprises m regions of interest
for each of the n subjects studied, resulting in a total of
m � n nodes. Regions pertaining to the same subject
are (reciprocally) connected to allow for coupling be-
tween different areas of the same brain. In contrast,
regions from different subjects are not connected. Dif-
ferences in functional integration across subjects are
tested by comparing a model that allows for intersub-
ject variability with one that does not. This is imple-
mented by setting up a model in which one or more
effects of interest (e.g., the modulation of coupling by
stimulus type) may vary over subjects versus one in
which these effects are held to be equivalent in all
subjects. The best model is the one that explains most
of the observed variance–covariance structure for the
least cost, in terms of the number of model parameters.
This is analogous to testing for subject � condition
interactions in classic ANOVA.

Constructing a network that comprises regions from
different subjects has two key advantages. First, it
allows one to test whether changes in connectivity dif-
fer significantly among subjects. Note that significant
differences among subjects may occur not only when
subject-specific analyses of effective connectivity give
inconsistent inferences, but also when subjects show
the same effect to a different extent. Second, construct-
ing a network that comprises m regions from each of
the n subjects studied provides one with enough non-
redundant elements in the covariance matrix e � 1

2(m �
n) (m � n � 1) to estimate all potential connections
among regions pertaining to the same brain p � n
�(m � (m � 1)) and all residual variances m � n. In
essence, by pretending that all the subjects are
scanned at the same time, a multisubject network can
be formed that ensures a high degree of sparsity. Note
that e � p � 1 is a necessary but not sufficient condi-
tion for a model to be globally identifiable (this is
known as the “t rule”; see Bollen, 1989, p.93). A model
is globally identifiable if it is possible to obtain unique
values for each free parameter (e.g., connection
strength). Global estimability is not always simple to
evaluate in practice, especially when the model con-
tains many free parameters, but can be easily detected
using computer programs for SEM such as LISREL
(Jöreskog and Sörbom, 1990) and EQS (Bentler, 1992).

In contradistinction, when SEM is used to estimate
connectivity averaging over subjects or independently
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for each subject, the number of parameters that can be
estimated e � 1

2 m � (m � 1) is fewer than the maxi-
mum number of connections that can be specified p �
m � (m � 1) and the residual variances (m) that need
to be computed. Usually, the t rule is enforced either by
constraining the number of specified connections or by
assigning a priori arbitrary values to some of them.
However, assuming that one region does not exert an
influence over another may be problematic because
primate anatomical data show that each region is re-
ciprocally interconnected to a large number of other
regions. In addition, assuming a particular a priori
value for the coupling between two regions may be
difficult when data from previous studies are not avail-
able.

The multisubject network approach we used here
also differs from previous applications of SEM to func-
tional imaging data in terms of the type of variance
that is modeled. Most SEM studies in functional neu-
roimaging do not explicitly model the influence of ex-
ogenous or experimental variables. Rather, they as-
sume that the estimated path coefficients reflect
endogenous or intrinsic variance only. However, iden-
tical regions in different subjects are likely to be cor-
related because of the common influence of exogenous
variables. If not accommodated, these induced covari-
ances would compromise the goodness of fit of the
model. The common influence of the exogenous vari-
ables is modeled by connecting a virtual node, whose
time course reflects stimulus onsets, with the first sen-
sory or “input” region in all subjects. Further experi-
mental changes in task or cognitive set enter through
modulation of the connections. Note that the modeling
of both endogenous and exogenous variance is not spe-
cific to the use of a multisubject network but is also
possible in the context of individual subject and group
analysis. It is an important device because it allows
explanatory variables or design variables to explain
the interregional covariance induced. This approach is
particularly essential in multisubject networks if the
subjects are all exposed to the same paradigm.

Below a study is presented that uses a multisubject
network to investigate intersubject variability of func-
tional integration during single word reading. Specifi-
cally, we tested whether the modulatory effect of word
type on the reading-induced coupling was significantly
different among subjects. Neuropsychological data in-
dicate that there are at least two different cognitive
strategies that can be used to read: one that relies on
access to lexical semantic information and one that
involves direct links between spelling (orthography)
and sounds (phonology) (see Patterson and Shewell,
1987 and Seidenberg and McClelland, 1989). Familiar
words with unusual spellings (e.g., CHOIR) rely on
lexical semantic access whereas unfamiliar “pseudo-
words” that have no meaning (e.g., CHOIN) rely on
sublexical spelling-to-sound relationships. Neverthe-

less, functional imaging studies have not shown a clear
double dissociation at a neuroanatomical level for word
and pseudoword reading. Pseudoword reading usually
enhances inferior frontal activation relative to word
reading (Xu et al., 2001; Fiez et al., 1999; Brunswick et
al., 1999; Hagoort et al., 1999; Herbster et al., 1997) but
there are no brain areas that consistently show en-
hanced activation for word reading (Mechelli et al.,
in press). Possible explanations for the functional im-
aging results are that lexical and sublexical reading
“routes” are activated by both word and pseudoword
reading; and reduced activation for word relative
to pseudoword reading reflects familiarity effects
(Hagoort et al., 1999). Studies of effective connectivity
may provide an alternative means for dissociating the
different reading routes (Horwitz et al., 1998). This
approach relies on a priori anatomical models. In the
study below, we use the anatomical model of reading
developed in Price (2000) (see Fig. 1).

This model distinguishes two routes for reading: one
that is shared by objects and involves the left posterior
inferior temporal cortex (the semantic route) and one
that is not activated by object naming and involves the
left posterior superior temporal cortex (Wernicke’s
area). Although both routes may be activated irrespec-
tive of whether words or pseudowords are being read,
the effective connectivity between the inferior and the
superior posterior temporal areas may differ for word
or pseudoword reading. Furthermore, connectivity
changes may depend on individual reading strategies.
For example, reading words with regular spelling may
depend on sublexical processing for some subjects but
lexical processing for other subjects. In the last part of
the article we discuss our findings and further appli-
cations of the multisubject network.

METHODS

The study was approved by the National Hospital for
Neurology and Institute of Neurology Medical Ethics
Committee.

Subjects

Informed consent was obtained from 13 right-
handed volunteers (7 males), aged 20 to 34 (mean age
of 24), with English as their first language.

Design

Each subject was presented with blocks of words or
pseudowords alternating with blocks of fixation (a
cross in the middle of the screen). They were instructed
to read each word/pseudoword silently as soon as it
appeared on the screen. The variables were (i) stimulus
type (words and pseudowords) and (ii) stimulus dura-
tion (e.g., the time that stimuli remained on the screen:
200, 600, and 1000 ms), with each of these experimen-
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tal conditions repeated five times in a counterbalanced
order across subjects. Pseudowords (e.g., lenner) refer
to letter strings that are not real words, do not have
semantic representations, but can be pronounced on
the basis of sublexical spelling-to-sound relationships.
Words were matched for frequency (Kucera and Fran-
cis, 1967), length, and number of syllables between
blocks and were as regular as possible in terms of
spelling-to-sound rule conversion. Presentation rate
was 40 stimuli per minute for a stimulus onset asyn-
chrony of 1500 ms. Each block of 14 stimuli lasted 21 s
and was followed by 16 s fixation. An eye tracker was
used to ensure that the subjects kept their eyes open
and attended to the stimuli.

Data Acquisition

A 2-T Siemens VISION system (Siemens, Erlangen,
Germany) was used to acquire both T1 anatomical vol-
ume images (1 � 1 � 1.5 mm voxels) and T*2-weighted
echo planar images (64 � 64 3 � 3-mm pixels, TE � 40
ms) with BOLD contrast. Each echo planar image com-
prised thirty-five 1.8-mm axial slices with a 1.2-mm
slice interval, giving a resolution of 3 mm. A total of
366 volume images were obtained continuously with
an effective repetition time (TR) of 3.15 s per volume,
the first six volumes in each session being discarded to
allow for T1 equilibration effects. Stimulus presenta-
tion was arranged so that every 90 ms of peristimulus

FIG. 1. Anatomical model of reading developed by Price (2000).
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time was sampled equally over the session (see Price et
al., 1999).

Data Analysis

The regions entering into SEM were defined using a
conventional statistical parametric mapping analysis
(SPM99: Wellcome Department of Imaging Neuro-
science, London, UK. http://www.fil.ion.ucl.ac.uk). All
volumes from each subject were realigned using the
first as a reference and resliced (using sinc interpola-
tion) adjusting for residual motion-related signal
changes. A mean volume was created using the re-
aligned volumes and the anatomical magnetic reso-
nance image was coregistered to it. This ensured that
the functional and structural images were spatially
aligned. The functional images were spatially normal-
ized (Friston et al., 1995a) with respect to the MNI-305
template using nonlinear-basis functions. Functional
data were spatially smoothed with a 6-mm full width
at half-maximum, isotropic Gaussian kernel. A boxcar
waveform convolved with a synthetic hemodynamic
response function (HRF) was used as the reference

waveform for each condition. The data were high-pass
filtered using a set of discrete cosine basis functions
with a cutoff period of 156 s. Each of the six experi-
mental conditions was modeled independently. Param-
eter estimates and variance were derived in a subject-
specific fixed-effect analysis. A statistical parametric
map of the main effect of reading was generated inde-
pendently for each subject. In addition, the contrast
images from each subject were entered into one-sample
t tests to permit inferences at the group level (i.e., a
random effects analysis).

Specification of the Multisubject Network

On the basis of the anatomical model of reading
developed by Price (2000), we selected four left-later-
alized anatomical regions in the left posterior fusiform,
posterior inferior temporal cortex, posterior superior
temporal cortex, and frontal operculum. As predicted
by the model, these areas were activated for reading
relative to fixation in 10 of 13 subjects (P � 0.001
uncorrected) and at the group level (P � 0.05 corrected
for multiple comparisons). The three subjects who

FIG. 2. Subject-specific regions that entered into the SEM. These comprised four left-lateralized regions: posterior fusiform (average
coordinates x � �32, y � �87, z � �13); inferior temporal (x � �48, y � �57, z � �13); superior temporal gyrus (x � �47, y � �51, z �
13); and frontal operculum (x � �45, y � 19, z � �2).
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showed no activation of the inferior temporal gyrus for
reading relative to fixation were excluded from further
analysis. Each region (6-mm radius) was selected spe-
cifically for each subject, to correspond with the most
significant voxel in the categorical comparison. Re-
gional activity was defined as the first eigenvariate of
any region as in Büchel and Friston (1997). All time
series were adjusted for confounds (e.g. global mean,
low frequency components) after applying the general
linear model with condition-specific predictors (Friston
et al., 1995b). Figure 2 shows the positions of the se-
lected regions in the remaining 10 subjects.

We constructed a multisubject structural equation
model that comprised the four regions above and all
potential forward and backward connections among
them within each subject. The resulting multisubject
network contained 10 � 4 � 40 nodes and 10 � 12 �
120 connections. In addition, we connected a virtual
node, whose time course corresponded to stimulus on-
sets, with the posterior fusiform region in all subjects
which resulted in a total of 41 nodes and 130 connec-
tions. This allowed us to model the common influence
of exogenous design variables on the induced interre-
gional covariance in all models tested (see Introduc-
tion).

SEM Analysis

Structural equation modeling was performed using
the SEM Toolbox of SPM99 (Rowe et al., 2002; Maguire
et al., 2000; Coull et al., 1999), which employs an iter-
ative maximum likelihood algorithm (Higham, 1993) to
estimate covariances that best predict the observed
variance–covariance structure of the empirical data.
The maximum likelihood algorithm assumes multinor-
mality in the data, whereas the multisubject network
contained variables such as word type that were not
normally distributed. However, the maximum likeli-
hood algorithm is robust to normality deviations (see
Bollen, 1989, p.126) and the final results should not
differ markedly if distribution-free methods were to be
used. The residual influences were dealt with by fixing
them to unity as in Büchel and Frison (1997) in all
regions/subjects.

Evaluation of the goodness of fit of the multisubject
network. First, we evaluated the goodness of fit of the
multisubject network by performing a �2 test. Here we
set reciprocal connections (e.g., posterior fusiform 3
inferior temporal and inferior temporal 3 posterior
fusiform) to have the same value within each subject to
ensure that the model could be globally identified. In
contrast, no connections were constrained to be the
same over different subjects. This allowed us to see
whether the multisubject network, which allowed for
intersubject variability, accommodated the variance–
covariance structure of the empirical data reasonably
(i.e., was not an implausible model). Since the meaning

of significant path coefficients in a poorly fitting model
is unclear (MacCallum, 1995), we required the multi-
subject network to provide a good fit according to the �2

index (i.e., P value � 0.05).
SEM of word type effects. Second, we tested for the

impact of word type on each connection independently
(e.g., the impact of words versus pseudowords on the
connection posterior fusiform 3 inferior temporal).
Here we allowed the connection of interest to differ
from its reciprocal connection. However, we set the
remaining reciprocal connections to have the same
value within each subject. This allowed the impact of
word type on each specific connection to be tested with-
out compromising the global estimability of the model.

The impact of word type on connectivity was modeled
using a set of virtual nodes whose time course repre-
sented the interaction between source activity and the
appropriate design variable, as described in Büchel
and Friston (1997). These interaction terms were con-
structed by multiplying the mean-centered time series
of the source region by the design variable (in our
analysis a vector that encoded the presentation of
pseudowords versus words). Activity in any “target”
region was characterized in terms of a linear combina-
tion of (i) activity in the source region, (ii) the design
variable, and (iii) the interaction term. The influence of
the interaction term on the “target” area corresponds
to the effect of word type on the coupling between the
“source” and “target” regions, as depicted in Fig. 3. The
interaction terms play exactly the same role as psycho-
physiological interactions (PPIs) in simple regression

FIG. 3. Subject-specific model for the modulatory effect of word
type on connectivity (left) and its implementation in the context of
SEM (right). Activity in the “target” region (i.e., frontal operculum)
was characterized in terms of a linear combination of (i) activity in
the “source” region (i.e., superior temporal); (ii) the design variable
(in our analysis a vector that encoded the presentation of
pseudowords vs words); and (iii) an interaction term constructed by
multiplying the mean-centered time series of the “source” region by
the design variable. The influence of the interaction term on the
“target” region corresponds to the effect of word type on the coupling
between the “source” and “target” regions.
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analyses of interregional coupling (Friston et al.,
1997).

We assessed the significance of the modulation of
connectivity by word type, independently for each con-
nection, by comparing a model in which this stimulus-
specific effect was set to be zero with one in which it
was the same in all subjects. The best model was iden-
tified as the one that explained as much of the observed
variance–covariance structure as possible but required
the fewest number of model parameters. The signifi-
cance of the difference between null and alternative
models was expressed as the difference in �2 goodness
of fit with 1 df (P � 0.05). A total of 12 comparisons

(i.e., one for each connection) were performed to inves-
tigate the impact of word type on connectivity, which
involved 24 models (12 models in which the effect of
word type on a connection of interest was set to be the
same in all subjects and 12 models in which the same
effect was set to be zero in all subjects). The multisub-
ject network used to investigate the effect of word type
on the forward connection between the superior tem-
poral cortex and the frontal operculum is shown graph-
ically in Fig. 4. Similar networks were used to investi-
gate the effects of word type on the remaining
connections. Regional nodes are in white and virtual
nodes are rendered in gray.

FIG. 4. Multisubject network used to look at the effects of word type on the reading-induced coupling between the superior temporal
gyrus and the frontal operculum (similar networks were used to investigate the effects of word type on the remaining connections). The
network was composed of the subject-specific regions in Fig. 2. A virtual node, encoding stimulus presentation, was connected to the posterior
fusiform gyrus in all subjects to account for the common influence of the exogenous design variables. Word type-dependent changes in
connectivity were modeled using a further set of virtual nodes whose time course represented the interaction between source activity and the
appropriate design variable. Anatomical nodes are in white and virtual nodes are in gray.
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It should be noted that, although reciprocal connec-
tions were constrained to be the same, context- or
condition-sensitive changes in connectivity were free to
be asymmetric. This is because the modulations by
word type in each direction were modeled by different
virtual nodes. This is important because, although an-
atomical connections are generally reciprocal, they
show asymmetries in their functional expression, with
backward connections being more modulatory.

Although the overall impact of word type on connec-
tivity would be the same in a model based on covari-
ances over subjects, such a model would not allow one
to estimate subject-specific effects and, most impor-
tantly, to test whether they differ significantly across
subjects. In contrast, the multisubject network used
here allowed us to estimate the overall impact of word
type on connectivity over subjects and to test whether
the effects showed significant variability across sub-
jects.

SEM of intersubject variability. Intersubject vari-
ability of this modulatory effect was assessed indepen-
dently for each connection by comparing a free model
(in which the effect of word type on connectivity was
free to vary across subjects) with a restricted model (in
which the effects of word type on connectivity were set
to be the same in all subjects). Again, the best model
was identified as the one that explained as much as
possible of the empirical correlations with the fewest
number of estimated parameters. In this case, the sig-
nificance of the difference between models was ex-
pressed as the difference in �2 goodness of fit with 9 df
(i.e., number of subjects minus one). A total of 12 com-
parisons (i.e., one for each connection) were performed
to investigate whether the impact of word type on
connectivity varied across subjects. This involved com-
paring the 12 models in which the effect of word type
on a connection of interest was set to be the same in all
subjects with 12 models in which the same effect was
free to vary across subjects.

RESULTS

The goodness of fit of the multisubject network, in
which reciprocal connections were set to be the same
within subject but free to vary among subjects, was
795.58. This corresponded to a P value of 0.12 under an
asymptotic �2 distribution with 750 effective df (com-
puted after correction for autocorrelation in the fMRI
time series; see Worsley and Friston, 1995). The model
was therefore not refuted (i.e., it provided a sufficient
account of the data).

With respect to the modulation of connectivity by
word type, we found that a number of functional con-
nections were stronger when reading pseudowords rel-
ative to words. These included both forward (posterior
fusiform 3 inferior temporal, posterior fusiform 3
frontal operculum, and superior temporal 3 frontal

operculum) and backward (frontal operculum 3 supe-
rior temporal) connections. Significant decreases in
connectivity when reading pseudowords relative to
words were not found. These findings are summarized
in Table 1. The values reported represent the modula-
tion by word type on the coupling between a “source”
region and a “target” region. A value significantly
higher than zero indicates that the coupling between
the two regions is stronger during reading pseudo-
words than words, while a value significantly lower
than zero indicates that the coupling is weaker.

All forward effective connections were better charac-
terized by a model in which changes in connectivity for
pseudowords relative to words were set to be the same
across subjects. In contrast, the backward connection
between the frontal operculum and the superior tem-
poral gyrus showed significant intersubject variability.
In 7 of 10 subjects, this connection was stronger when
reading pseudowords but the size of this effect was
highly variable. The remaining subjects showed either
a decrease in connectivity for reading pseudowords
relative to words or no effect at all. P values of the
difference between the free model (which allowed for
intersubject variability) and the restricted model (in
which effects were set be the same across subjects) are
reported in the last column of Table 1. Results are
represented graphically in Fig. 5.

DISCUSSION

In the present study, we used a multisubject network
to investigate intersubject variability in functional in-
tegration in the context of single word and pseudoword
reading. Within each subject, each region was recipro-
cally connected to the remainder by both forward and
backward connections. This was motivated by the idea
that functional specialization is not an intrinsic prop-
erty of any region, but depends on both forward and
backward connections (Friston and Price, 2001; McIn-
tosh, 2000; Hebb, 1949). To ensure that the model
could be globally identified, we forced reciprocal con-
nections to have the same value. In addition, we mod-
eled exogenous variance to account for the common
influence of experimental effects over subjects. These
influences were encoded (i) by design variables that
entered directly the “input” regions to model sensory
evoked responses and (ii) indirectly through interac-
tions with regional activity to model context-sensitive
changes in connection strength.

First, we evaluated whether the multisubject net-
work which allowed for intersubject variability pro-
vided a good explanation for the variance–covariance
structure of the empirical data. A critical principle in
model specification and evaluation is that, by defini-
tion, all of the models are wrong or incomplete to some
degree. In other words, models at their best can pro-
vide only a close approximation to the observed data,
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rather than an exact fit. In the case of our study, the
neuronal dynamics underlying the reading of words
and pseudowords are likely to involve more regions
(e.g., right hemisphere areas) than those included in
the model. In addition, such dynamics are likely to be
more complex than we can represent using a structural
equation model that embodies only first-order interac-
tions. The finding that our multisubject network fitted
the observed data means only that our model provides
a “plausible” representation of the real neuronal dy-
namics. This enabled us to use the multisubject net-
work to investigate the effect of word type on connec-
tivity.

Our results showed that a number of forward and
backward connections were modulated by word type.

Contrary to our intention, we did not reveal a double
dissociation in the pattern of reading activity for words
and pseudowords because the change in connection
strength was in one direction only—stronger for
pseudowords. In most cases, only the forward connec-
tion was modulated by word type whereas the back-
ward connection was less affected. However, in the
case of the posterior superior temporal region and the
frontal operculum, both the forward and backward con-
nections were stronger during reading pseudowords
than words. Our findings illustrate that differences
between processing words and pseudowords do not
simply lie in the degree of activation in one or more
regions of the language system. Rather, such differ-
ences can be characterized in terms of context-sensi-

TABLE 1

Effects of Reading Pseudowords versus Words on Connectivitya

Free model (allowing for inter-subject variability) Restricted
model

subj.1–10

Free vs
restricted

model,
P value of
differencesubj.1 subj.2 subj.3 subj.4 subj.5 subj.6 subj.7 subj.8 subj.9 subj.10

Forward connections
Post. Fusiform 3 Inf. Temp. 0.22 0.11 0.34 �0.08 0.19 �0.13 0.08 �0.03 0.33 0.25 0.11* 0.15
Post. Fusiform 3 Sup. Temp. 0.24 0.05 0.00 �0.02 0.06 0.00 �0.18 �0.25 �0.15 �0.23 �0.03 0.24
Post. Fusiform 3 Frontal Operc. 0.13 0.05 �0.10 0.08 0.24 �0.05 0.14 0.17 0.15 0.11 0.10* 0.89
Inf. Temporal 3 Sup. Temp. 0.17 0.12 0.22 0.03 0.27 �0.11 �0.05 �0.06 �0.16 �0.24 0.01 0.19
Inf. Temporal 3 Frontal Operc. 0.08 0.06 �0.06 �0.02 �0.06 0.01 0.08 0.01 �0.09 0.05 0.00 0.99
Sup. Temporal 3 Frontal Operc. 0.41 0.09 0.00 0.19 �0.09 0.16 0.24 0.07 0.00 �0.13 0.10* 0.11

Backward connections
Inf. Temp. 3 Post. Fusiform 0.14 0.12 0.18 �0.14 0.06 �0.07 0.08 �0.02 0.28 0.00 0.05 0.61
Sup. Temp. 3 Post. Fusiform 0.15 0.07 0.01 0.01 0.00 �0.01 �0.13 �0.09 �0.08 �0.04 �0.01 0.92
Frontal Operc. 3 Post. Fusiform 0.13 �0.05 0.12 0.04 0.06 �0.08 �0.03 0.08 0.11 �0.11 0.02 0.83
Sup. Temp. 3 Inf. Temp. 0.07 0.06 0.13 0.08 0.19 �0.12 �0.05 �0.01 �0.01 �0.14 0.01 0.67
Front. Operc. 3 Inf. Temp. 0.06 0.03 0.01 0.00 �0.11 0.05 0.10 0.00 �0.18 0.18 0.01 0.68
Front. Operc. 3 Sup. Temp. 0.48 0.11 0.00 0.06 �0.06 0.17 0.23 0.05 0.04 �0.21 0.10* 0.01

a The effect of word type on the coupling between a “source” and a “target” region in the free model (which allows for intersubject
variability) and the restricted model (in which effects are constrained to be the same in all subjects). A value significantly higher than zero
indicates that the coupling between the two regions is stronger during reading pseudowords than words, while a value significantly lower
than zero indicates that the coupling is weaker. The asterisk (�) indicates significant effects of word type on the reading-related covariance,
when changes in connectivity are set to be the same in all subjects (P value � 0.05). The last column refers to the P values of the difference
in goodness of fit between the free and restricted models. It can be seen that, for the backward connection between the frontal operculum and
the superior temporal gyrus, the free model accounts for the data better than the restricted model (i.e., P � 0.05).

FIG. 5. Graphical representation of the SEM results. Solid black lines indicate connections that were modulated by word type but did not
show significant intersubject variability. Broken black lines indicate connections that were significantly modulated by word type and showed
significant intersubject variability. Gray broken lines indicate connections that showed neither a modulation by word type nor significant
intersubject variability.
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tive interactions among brain areas. We found that
connectivity in both semantic and nonsemantic read-
ing routes was stronger for pseudowords. One possibil-
ity for this result is that, if functional connectivity is
a function of task difficulty (Furey et al., 2000),
pseudowords are associated with greater connectivity
than words because they are more difficult to read.

The main aim of the present study was to character-
ize intersubject variability by testing for differences in
connectivity among subjects. We found that the back-
ward connection between the frontal operculum and
the superior temporal gyrus was modulated by word
type differentially across subjects. This illustrates that
a pattern of connectivity, which is estimated over sub-
jects, may not be a good approximation of the underly-
ing patterns of connectivity in all of the subjects stud-
ied. Rather, in some cases a model that allows for
intersubject variability would be preferred to a model
in which one single pattern of connectivity is assumed.
Our results suggest that the subjects may have
adopted different strategies for reading either words or
pseudowords, which influenced the backward connec-
tions between frontal operculum and posterior superior
temporal region. For instance, pseudowords are fairly
ambiguous stimuli that may engage a search for (miss-
ing) semantic and phonological representations in
some subjects but not in others (Fiez and Petersen,
1998; Price et al., 1996). However, our findings should
be considered in the context of the experimental para-
digm adopted in the present study. Silent reading of 40
single words per minute is a relatively undemanding
task which is likely to leave additional attentional
resources that may be directed at other cognitive pro-
cesses. One possibility is that, if subjects performed a
more engaging task, functional integration would have
been more consistent across subjects. Finally, differ-
ences in functional integration may reflect degenera-
tive solutions the brain can adopt to complete the same
strategy.

We have described how the issue of intersubject vari-
ability in functional integration can be addressed di-
rectly and have illustrated the approach with analyses
of experimental data. Another possible application in-
volves comparing changes in connectivity among dif-
ferent groups of subjects. This may be particularly
useful in the context of patient studies, in which one
may want to compare functional integration between
patients and normal subjects (e.g., dyslexic vs normal)
or between different groups of patients (e.g., surface vs
phonological dyslexia). In this case, a multisubject net-
work can be treated as a multigroup network. If the
model, which allows for group differences, accounts for
the empirical data better than a restricted model in
which the group are the same, then the two groups
express differential connectivity. The crucial advan-
tage of using a multigroup network over individual
group analyses is that one can make inferences about

differences among groups in addition to inferences per-
taining to single groups, in the same way classic anal-
ysis of variance allows one to test for group x condition
interactions. Finally, a multisubject network can be
used to address intersubject variability in relation to
behavioral measures. For instance, one can investigate
whether differences in performance correspond to dif-
ferences in functional integration among subjects or
groups. This approach enables one to interpret changes
in connectivity meaningfully by establishing a relation
between changes in connectivity and behavior.
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