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Abstract

Friston et al. (1995) presented a method for detecting activations in fMRI time-series
based on the general linear model and a heuristic analysis of the e�ective degrees of freedom.
In this communication we present correct results that replace those of the previous paper and

solve the same problem without recourse to heuristic arguments. Speci�cally we introduce
a proper and unbiased estimator for the error terms and provide a more generally correct
expression for the e�ective degrees of freedom. Our previous estimates of error variance were
biased, and in some instances could lead to a 10-20% overestimate of Z values. Although the
previous results are almost correct for the random regressors, that were chosen for validation,

the present results are correct for any covariate or waveform. We comment on some aspects
of experimental design and data analysis, in the light of the theoretical framework discussed
here.

Addresses of corresponding author:
e-mail: keith@zaphod.math.mcgill.ca
ph: 1-514-398-3842

fax: 1-514-398-3899.

1



1 Introduction

In this paper we review the approach considered in Friston et al. (1995) for the analysis of

fMRI time-series. This previous paper had two shortcomings. Firstly the expression for the

variance of the parameter estimates was inappropriate and biased. Secondly the subsequent

analysis, using the e�ective degrees of freedom, was based on heuristic arguments which can,

as we show below, be replaced with proper derivations.

This paper is divided into two parts. The �rst section presents theoretical results that

are required to implement the extension of the general linear model described in Friston et

al. (1995), in a more correct fashion. This section concludes with a re-analysis of the data

presented in Friston et al. (1995) to compare the original and revised approaches.

Secondly we review some issues in experimental design and data analysis that depend

directly on the mathematical theory presented here and on the the theory of Gaussian �elds

that is used in making statistical inferences about activation foci. The latter pertain to
spatial smoothing, statistical power and the size of the underlying physiological activation.
We demonstrate some of our points with further analyses of the data used in previous

sections.

2 Extending the general linear model

2.1 Theory

The aim of Friston et al. (1995) is to estimate the parameter vector � of the linear model

X = G� + e

whereX represents the unsmoothed time-series, and the components of the error vector e are

independent and normally distributed with mean 0 and variance �2 (equation (1), page 46).
X is linearly smoothed by multiplying by a matrixK whose rows represent the hemodynamic
response function, and \...the aim of this work is to extend the general linear model so that

it can be applied to data with a stationary and known autocorrelation..." (page 45).
There is a large literature on this topic, and one of the best early references is Watson

(1955). It can be shown that the optimum estimator of � that \...maximises variance in
the signal frequencies relative to other frequencies" (bottom of page 45) is obtained by de-

convoluting or un-smoothing the data by multiplying by K�1 and applying least squares to

the uncorrelated data X (Gauss-Markov Theorem). Because this inversion is very sensitive
to the correct speci�cation of K, Friston et al. chose to apply least squares to the smoothed

observations instead, to obtain the following estimator of �

b = (G�TG�)�1G�TKX;

whereG� =KG. Although not fully optimal, b is unbiased and the loss in e�ciency is more

than o�set by the gain in robustness (see later). From here the derivation departs from that
presented in Friston et al. (1995) and proceeds as follows:
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� Equation (3), page 47, which gives an expression for the variance of b, should be

Varfbg = �2(G�TG�)�1G�TVG�(G�TG�)�1;

where V = KKT (Watson, 1955, Seber, 1977, page 144).

� This immediately implies that the test statistic for a particular linear compound c of

the e�ects (equation (5), page 47) should read:

T = cb=(c�2(G�TG�)�1G�TVG(G�TG�)�1cT )1=2;

where �2 is an unbiased estimator of �2.

� The estimator of �2 given in equation (6), page 47, is biased, and the correct unbiased

estimator is obtained by dividing the residual sum of squares by its expectation, to
give

�2 = rT r=trace(RV)

where r = RKX is the vector of residuals and R is the residual-forming matrix given
by

R = I�G�(G�TG�)�1G�T

and I is the identity matrix (Seber, 1977, page 146). Note that the \e�ective degrees
of freedom" � de�ned in the next section is not used in this calculation. We shall
see, however, that it does play a role in giving a better approximation to the null

distribution of the T statistic de�ned above.

� Finally, the expression for the e�ective degrees of freedom is incorrect, though it can

serve as a simple approximation. The original result was derived by removing the �t-
ted values from the observations but ignoring the consequent changes in the covariance
structure of the residuals. The correct degrees of freedom, which should replace equa-
tion (9), page 48, can be derived for any covariance structure without using Fourier
methods 1:

Ef�2g = �2; Varf�2g = 2�4trace(RVRV)=trace(RV)2

(Seber, 1977, page 16). The e�ective degrees of freedom is then

� =
2Ef�2g2
Varf�2g =

trace(RV)2

trace(RVRV)
:

Unfortunately, there is no simple expression for � for a Gaussian kernel, and in par-

ticular it cannot be factored into a part depending on the degrees of freedom of the
model, and a part depending on the hemodynamic response function, as in equation

(10), page 48.

1Note that there is a minus sign missing in front of !2

i
in the expression for g(!i) immediately above

equation (10), page 48
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2.2 Implications for the original analysis

In general the variance of the parameter estimates is underestimated by equation (3) but the

estimator of the variance is overestimated by equation (6), so that the two tend to cancel

each other out in the T statistic (5). It can be shown that they do cancel out almost exactly

for the random regressors that were chosen for validating the methods, which explains why

the biases were not obsereved. However for other non-random regressors these e�ects do not

cancel and large discrepancies can occur.

The correct results were applied to the original example used for validation. There were

100 observations with 9 regressors: a constant, a linear trend, a square-wave of 10 values of

+1 (on) followed by 10 values of -1 (o�) repeated 5 times, and 6 random regressors generated

from a standard Gaussian distribution. The same smoothness s =
p
8=3 = 0:94scans was

used 2:

� The standard deviations of the parameter estimates given by Friston et al. divided
by the correct standard deviations were 0.86 for the constant term, 0.84 for the linear
trend, 0.86 for the square wave, and 0.99�0.05 for the 6 random regressors. Thus
the original results give nearly the correct answer (on average) for random regressors.
However the standard deviations for the other terms, in particular the square-wave of

most interest, are underestimated by 14%, so that the SPMfZg is over-estimated by
16%.

� The original e�ective degrees of freedom of �=38.5 is almost correct; the actual value

as calculated above is �=36.2. This is not a serious error since � is only used to de�ne
the null distribution of T , not to actually calculate T .

If we replace the 9 regressors in the previous example by the �rst 9 Fourier components,
that is a constant term and sine and cosine terms of periods 100, 50, 33.3 and 25 scans,
then the original standard deviations are too small by a factor of 0.75�0.01, and the correct

degrees of freedom is reduced from 38.5 to 35.7. At the other extreme, a high frequency
regressor with +1 and -1 for alternate scans gives a standard deviation that is almost twice
as big as the correct value.

In summary, the original results give smaller standard deviations for low frequency re-

gressors and the opposite for high frequency regressors; random regressors, which mix all

frequencies uniformly, lie in between and the original results give almost the correct answer.

2.3 A re-analysis of the data

The data presented in Friston et al. (1995) were re-analysed using the original approach
and the new results presented here. Briey these data were acquired from a single subject

performing one of two word generation tasks (word repetition and word generation). Each
task was alternated in blocks of ten scans, where each scan was acquired every three seconds.

2Note that due to the assumption of a Poisson form for the hemodynamic response function (Friston et al.

1994) the relationship between lag and smoothness is not scale-invariant and requires both to be calculated
in seconds.
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Figures 1a and 1b show the results of these two analyses in standard format. The

SPMfZg is displayed as a maixumu intensity projection on the upper left, after thresholding

at p < 0:01 (uncorrected). The design matrix is shown on the upper right (in image format)

and shows the square-wave reference waveform, linear term, constant and global confounds

used in the analysis. Tabular data on the activation foci are shown in the lower panel.

Regional e�ects are characterized by the volume of each region (k), its signi�cnace based on

patial extent P (nmax > k), the highest Z value (Z), its signi�cance based on P (Zmax > u) and

the location of this primary maximum. We have also included up to three secondary maxima

for each region and their associated signi�cance based on the corrected p-value (P (Zmax > u))

and the uncorrected p-value. We have only shown foci that survive a threshold of p < 0:1

(corrected) based on either peak height or spatial extent.

It can be seen that the highest SPMfZg is reduced (from 4.76 to 4.18) and similarly for all

other Z values. The corrected p-values based on spatial extent show that the right prefrontal

activation can no longer be considered signi�cant (P < 0:099). The corrected p-values based
on peak height are now all greater than 0.05. In short the square wave contrast used in this
analysis highlights the dangers of the inappropriate and biased estimators adopted in Friston
et al. (1995).

It is interesting to note that the p-values based on spatial extent appear to be more

powerful than those based on peak height. We shall return to this point below.

3 Theoretical implications for experimental design and

analysis

3.1 The e�ective degrees of freedom

Note that the e�ective degrees of freedom � is not used to calculate the T statistic, but is used
to give a better approximation to its null distribution. By analogy with the �2 approximation
for quadratic forms (Satterthwaite, 1946), it seems likely that the null distribution of T can
be well approximated by a t-distribution with � degrees of freedom rather than a Gaussian

distribution (Worsley et al., 1995). Signi�cance of peaks in SPMfTg can be assessed directly
from results for t �elds (Worsley et al., 1993), or, if the degrees of freedom is large (� > 40),

SPMfTg can be converted to SPMfZg and the Gaussian theory of Friston et al. (1991),

Worsley et al. (1992) and Friston et al. (1994a) can be used as an approximation. If
other sources of information about the error variance are avaliable, e.g. from other subjects
or other voxels, then provided the underlying variances are equal these can be pooled to

increase the e�ective degrees of freedom, thereby reducing the error in �2 and increasing

sensitivity of the test.

3.2 E�ciency and optimal experimental design

As noted above, the least-squares estimator b is not the most e�cient estimator of �; by this

we mean that it does not have the smallest possible variance amongst all unbiased estimators
of �. However we shall now show that it is almost fully e�cient for most regressors of

interest. A well-known theroem in linear models states that the least-squares estimator is
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fully e�cient if the regeressors are eigenvectors of the variance matrix V, or in this case,

eigenvectors of K (Seber, 1977, page 63). Now eigenvectors of K are time variables that are

unchanged (in shape) by smoothing with K. From signal detection theory we know that

the time variables una�ected by a stationary linear �lter are the Fourier sine and cosine

functions themselves (provided the time interval is long enough). Thus the parameters of

any regression model composed of Fourier sine and cosine functions are estimated with full

e�ciency by b. Now many signals of neurobiological interest are Fourier sines and cosines,

or very nearly so, such as the square-wave used in many on/o� experimental designs. Thus

we expect b to be very nearly fully e�cient. Taking this a bit further, it provides a very

strong argument for designing the experiment so that the signal is a sine or cosine function,

thereby optimising the parameter estimator. The key requirement for this simple optimality

is that the hemodynamic response must be stationary and linear; it can otherwise have any

shape.

For the example in Friston et al. (1995), the loss of e�ciency in using b, as opposed
to de-convoluting the data and applying least-squares, is small for the square-wave (12%),
but not for the random regressors (27�2%). This is to be expected, since the square wave
is almost unchanged by �ltering with the hemodynamic response (see Figure 5, page 52),
whereas the random regressors are, of course, altered considerably. If the random regressors

are omitted, the loss in e�ciency for the square wave is reduced to 5%. If we replace the 9
regressors in the previous example by the �rst 9 Fourier components, that is a constant term
and sine and cosine terms of periods 100, 50, 33.3 and 25 scans, then the loss in e�ciency is
negligible: 0.2�0.2%. This is to be expected since the regressors are now eigenvectors of K.

In summary the periodic presentation of blocked tasks or conditions, that is so prevalent

in the fMRI literature, may well be an optimal experimental design from a purely theoretical
perspective.

3.3 Spatial smoothing and the theory of Gaussian �elds

The question addressed (if not answered) in this section relates to the best smoothing one
should apply to the data before analysis. This is a complex area which involves a number

of themes, some mathematical and some neurobiological. One knows from standard �lter-
ing theory that the `best' smoothing �lter or kernel is one that matches the objects to be
identi�ed. For example if cortical activations had, in general, a spatial extent of 4mm, then

a 4mm smoothing would be chosen. There is however a constraint on the lower limit of

smoothing that can be used: statistical inference in SPMs generally depends on the theory
of Gaussian �elds and implicitly assumes that the data are good lattice representations of

a smooth Gaussian �eld. This only holds when the voxel size is appreciably smaller than
smoothness. As pointed out in Friston et al. (1995) this is not a fundamental limitiation

because the voxel size can always be reduced at acquisition. We recommend that smoothness

should be at least twice voxel size before applying any results from the theory of Gaussian
�elds. If the smoothness approaches voxel size then the corrected p-values based on the

theory of Gaussian �elds will approach those based on a Bonnferroni correction and for very
small values of the smoothness estimator the Gaussian �eld corrections can become more

severe.

The second issue that now arises is whether to use corrected p-values that are based
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on spatial extent or the Z maxima (or equivalently the Euler characteristic). Our previous

theoretical analysis (Friston et al. 1994) suggested that the power of tests based on spatial

extent would increase with resolution or less smoothing (conversely for tests based on the

Z maxima). This e�ect can be seen in Figures 1b, 1c and 1d; where the same data has

been analysed (using the expressions in this paper) using a Gaussian kernel of 4, 8 and

16mm FWHM respectively for smoothing. By following the fate of nearly every activation

focus (e.g. the left extrastriate region at -14, -72, 20mm) one can see that as smoothing is

increased the p-value based on spatial extent decreases and that based on the maximal Z

value increases. This is consistent with our theoretical predictions. It would, of course be

nice to combine extent and height in the estimation of the p-value and this is the subject of

current work.

The �nal issue condidered here is the optimal smoothing to use. If activations in the

brain are highly focal then the best smoothing would be a minimal one. Conversely, if brain

activations are di�use and extend over many millimeters than a high degree of smoothing
should be advised. The problem is that both sorts of activations may be prevalent. Consider
the right prefrontal activation in Figure 1b (4mm smoothing). If we increase the smoothing
to 8mm (Figure 1c) this activation disappears. Conversely the Z value for the extrastriate
region increases when we go from 4mm to 8mm smoothing. Note also that all Z values

decrease when we go from 8mm to 16mm smoothing. This suggests that the right prefrontal
activation is more focal than the extrastriate and that all the activations are closer to 8mm
in spatial extent than 16mm. More generally these anecdotal observations suggest that
activations can be expressed over di�erent scales in the same experiment. In this instance
there is no `best' �lter in any generic sense and one has to accept a priori that the analysis will

be most sensitive to activations with the same size as the smoothing kernel. One intriguing
alternative is to search over smoothing or `scale' space and apply suitable corrections using
Gaussian �eld theory. This is again the subject of recent work (Poline and Mazoyer, 1994,
1995; Siegmund and Worsley, 1995).

Conclusion

In this short paper we have introduced some substantial revisions to earlier work that ad-
dressed the problem of statistical inference in temporally correlated fMRI time-series and

have discussed some important issues and constraints that arise in the theoretical framework

that has been developed to facilitate these inferences.
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Figure Legends

Figure 1. Upper left panel: Statistical parametric map of the T statistic (after transforma-

tion to a Z value) reecting the signi�cance of a compound of e�ects. The SPM is displayed

in a standard format as a maximum intensity projection viewed from the back, the right

hand side and the top of the brain. The anatomical space corresponds to the atlas of Ta-

lairach and Tournoux (1988). The SPM has been thresholded at 2.33 and the color scale is

arbitrary. Upper right panel: Top - the contrast used for this SPM. The contrast is displayed

above the appropriate e�ects (columns of the design matrix). Lower panel: Table of regional

e�ects (activations or regional di�erences) characterized by the volume of each region (k),

its signi�cnace based on patial extent P (nmax > k), the highest Z value (Z), its signi�cance

based on P (Zmax > u) and the location of this primary maximum. We have also included

up to three secondary maxima for each region and their associated signi�cance based on the

corrected and uncorrected p-value.
Figure 1a. Using the original estimators for the error variance and e�ective degees of

freedom as descibed in Friston et al. (1995).
Figure 1b. As for Figure 1a but using the correct estimators described herein.
Figure 1c. As for Figure 1b but increasing the spatial smoothing of the data from 4mm

to 8mm.
Figure 1d. As for Figure 1c but increasing the spatial smoothing of the data from 8mm

to 16mm.

9


