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Even after realignment there is residual movement-
related variance present in fMRI time-series, causing
loss of sensitivity and, potentially, also specificity. One
cause is the differential deformation of the sampling
matrix, by field inhomogeneities, at different object
positions, i.e., a movement-by-inhomogeneity interac-
tion. This has been addressed previously by using em-
pirical field measurements. In the present paper we
suggest a forward model of how data is affected by an
inhomogeneous field at different object positions.
From this model we derive a method to solve the in-
verse problem of estimating the field inhomogeneities
and their derivatives with respect to object position,
directly from the EPI data and estimated realignment
parameters. The field is modeled as a linear combina-
tion of cosine basis fields, which facilitates a fast way
of implementing the necessary matrix operations.
Simulations suggest that the solution is tractable and
that the fields are estimable given the deformed im-
ages and knowledge of the relative positions at which
they have been acquired. An experiment on a subject
performing voluntary movements in the scanner
yielded plausible estimates of the deformation fields
and their application to “unwarp” the time series sig-
nificantly reduced movement-related variance. © 2001

Academic Press

INTRODUCTION

Subject movement can be a serious confound when
assessing brain function from BOLD changes in EPI
images (Hajnal et al., 1994). Consequently, numerous

ethods for retrospective realignment of serial func-
ional MR images have been developed (Friston et al.,
995; Hajnal et al., 1995; Jiang et al., 1995; Woods et
l., 1998) where the accuracy of estimated registration
arameters is in the subvoxel range. However, even
fter registration considerable motion-related variance

1 To whom correspondence and reprint requests should be ad-
dressed at present address: Karolinska MR Research Center, Karo-
linska Hospital N-8, 171 76 Stockholm, Sweden. Fax: 46 8 5177 6111.
E-mail: jesper@mrc.ks.se.
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emains in the data (Friston et al., 1996), leading to
ecreased sensitivity and, in the case of task-correlated
otion, specificity. Several explanations have been

uggested for this residual variance including interpo-
ation errors (Ostuni et al., 1997; Grootoonk et al.,
000), which has lead to the development of fast algo-
ithms for Fourier interpolation (Eddy et al., 1996; Cox
nd Jesmanowicz, 1999), and spin-history effects (Fris-
on et al., 1996). Another possible source is the inter-
ction between susceptibility-induced distortions and
ubject movement (Wu et al., 1997; Jezzard and Clare,
999). Briefly, magnetization inhomogeneities cause
eometric distortions which are appreciable mainly in
he phase encoding direction, and these distortions
ay change as the subject moves in the scanner. Meth-

ds have been developed to correct for these effects by
xplicitly measuring field inhomogeneity (Jezzard and
alaban, 1995; Reber et al., 1998; Chen and Wyrwicz,
999). The direct method of measuring field maps is
ssociated with practical difficulties due to measure-
ent noise (uncertainty of the field maps) and rapid

oss of signal toward the edges of the object, leading to
ifficulties in unwrapping the phase. In addition, if the
bjective is to eliminate/reduce the distortion by move-
ent interactions, then a field map has to be generated

or each scan in the time-series.
In the present paper we suggest generative or for-
ard models for how the images are affected by move-
ent in the presence of an inhomogeneous field. From

hese we derive a method for solving the inverse prob-
em to estimate the deformation field directly from the
PI images. We present a mathematical framework for

he models and assess them using simulated and ex-
erimental data. This paper is concerned with the
athematical and theoretical basis of our approach. A

ubsequent paper will address validity and empirical
pplications.

THEORY

In this section we will present generative forward
odels for three specific cases of movement-by-inho-
ogeneity interactions. These cases are (i) inhomoge-
1053-8119/01 $35.00
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904 ANDERSSON ET AL.
neities fixed with respect to the object, (ii) inhomoge-
neities fixed with respect to the scanner, and (iii)
inhomogeneities that change with subject movement.
We will derive expressions for solving the correspond-
ing inverse problems, which yield estimates of the de-
formation fields.

It will be demonstrated that the third model encom-
passes both the former models as special cases. It can
therefore be considered as a general model.

Rigid Body Image Registration

An image can be considered as a scalar function of a
vector argument such that fi(x) denotes the intensity of
the ith image in a time-series at the location x 5 [x y
z]T. Let T(p) denote a 4 3 4 rigid body transformation
matrix mapping a location x to a new location x*
through [x*T 1]T 5 [x9 y9 z9 1]T 5 T[xT 1]T, where T is
parameterized through the vector p and contains three
rotation angles and three translations. Realignment
proceeds by aligning all scans to some reference scan,
often the first. It involves estimating p for each scan by
modeling the difference between the reference scan
and the scan to realign using the first two terms of a
Taylor expansion

f1~x! < fi~x! 1 F f1

p1
~x!

f1

p2
~x! · · ·

f1

p6
~x!Gpi

pi determines the transformation T such that f1(x) '
fi(T(pi)x). By extending the equation above to all n
voxels a least squares estimate of p obtains p̂i 5
(ATA)21AT(f1 2 fi), where A is an n 3 6 matrix contain-
ing the partial derivatives of f1. f1 and fi are n 3 1
olumn vectors containing intensity values for the first
nd ith image at all voxels. Iterative estimates for pi

can be obtained with high accuracy (Ashburner and
Friston, 1999a). Ti now maps the coordinates in the
first image to the coordinates in the ith, i.e., f1(x) '
fi(Tix). We denote the matrix consisting of the upper
left 3 3 3 partition of Ti, embodying rotation alone,
by Ri.

Geometric Deformations of Echoplanar Images

In the formation of echo planar images (EPI) position
is given by frequency, which is in turn determined by
local field strength. For a perfectly homogenous field,
combined with a perfectly linear gradient, this means
that an inverse Fourier transform of the acquired data
yields an image of the object sampled on a regular grid.
In the presence of field inhomogeneities, e.g., caused by
poor shimming or by an object causing local inhomoge-
neities, frequency will not change linearly with posi-
tion, and geometric distortions will ensue. Due to the
relatively long time during which frequency errors are
allowed to develop into phase errors, these distortions
are much larger in the phase encoding direction (for
EPI), and negligible in the frequency encoding direc-
tion (Jezzard and Balaban, 1995). Therefore an image
intensity value, that we think represents f(x), really
represents f(x 1 d(x)) 5 f([x y z]T 1 [0 d(x, y, z) 0]T),
where the value of d(x) is proportional to the field
inhomogeneity at x. We have assumed here that the
phase encoding direction coincides with the y-direction
(anterior-posterior). Because the x- and z-components
of d(x) are zero it might seem reasonable to represent
it by a scalar valued function of a vector (i.e., d(x)) but,
for reasons that will become clear later, we represent it
as a vector field. Henceforth we will use the terms field
inhomogeneities and deformation fields interchange-
ably.

A Model for Inhomogeneities Fixed with Respect to
Object (Model 1)

In this paper we consider three different models for
how a deformation field affects data in the context of
subject movements. These models correspond to three
distinct cases with respect to the behaviour of the
deformations when the object moves. The first case is
when the deformation field moves perfectly with the
object, a case we would expect to occur when the de-
formations are caused by the object itself and where
rotations only occurred around an axis parallel to the
magnetic field. Now consider two images f1 and f2 such
hat T maps f2 onto f1. Then we have effectively sam-

pled the object at positions given by the arguments of

f1~X 1 d~X!! (1)

for the stationary image and

f2~T21X 1 R21d~T21X!! (2)

for the moved image. Here X 5 [[x1
T 1]T[x2

T 1]T . . . [xn
T

1]T] denotes the one-extended 4 3 n matrix containing
he coordinates of all voxel centres in an object fixed
ystem, i.e., a system defined relative to the object in
he reference scan. R denotes the rotation part of T and
(X) is defined in the frame of f1. Assuming we know T

(or rather an estimate from rigid body realignment),
we can use it to realign f2 yielding

f2~TT21X 1 R21d~TT21X!! 5 f2~X 1 R21d~X!!, (3)

which should be compared to Eq. (1) for the stationary
image. Hence, despite the deformation field moving
perfectly with the object, there will still be deforma-
tion-related differences after realignment.
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905MODELING EPI DEFORMATIONS
Intuitively this can be seen by considering lying in
the scanner looking up, where the deformations
serve to stretch/compress the brain (or images
thereof) in the anterior-posterior direction. Now con-
sider rotating your head to look towards the side in
the scanner. Although every voxel will be affected by
a deformation of identical magnitude as before, it
will now be stretching/compressing the brain in the
right–left direction. Obviously, after realignment
this will cause differences in the realigned images,
since they will have been deformed in different
directions. A graphical illustration is presented in
Fig. 1.

Now assume an inverse deformation field exists, de-
noted d21, such that X 1 d(X) 1 d21(X 1 d(X)) 5 X,
which for small deformations will be reasonably ap-

FIG. 1. Graphical explanation of the forward model defined b
eformation field. The grey values indicate the deviation from a
ampling points have been deflected upwards and dark shades ind
he contour indicates a brain-like shape and the arrows show th

his deformation field. Upper middle panel: shows the resulting de
otation, where the deformation field has rotated together with t
dentical arrow as in the unrotated case. Lower left panel: shows
ramework our notation uses). It is now clear that although each
cting in a different direction. This is caused by the phase encod
ather than the object framework. Lower middle panel: shows the
emonstrates the mismatch between two images of an identical ob
bject had been rotated. Note that according to this model diffe
nsensitive to translations).
proximated by 2d. We seek to estimate the field d̂21

that minimizes the difference between f1(X 1 d(X) 1
d̂21(X)) and f2(X 1 R21d(X) 1 R21d̂21(X)), where f2 is in
a realigned framework (i.e., X 5 TX*, where X* is the
grid onto which f2 was originally sampled). Assume the
shape of d̂21 is known, but not its magnitude, i.e., that
d̂21 5 bb, where b is a known field and b is an un-
known scalar. We may now express f1(xi) and f2(xi) as
a function of b as the first two terms of a Taylor
expansion such that

f1~xi, b!

< f1~xi, 0! 1 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!GF 0

b~xi!
0

G (4)

qs. (1) and (3). Upper left panel: shows an example of a random
ular grid when sampling an object, where light shades indicate
e downwards deflection. The color bar is graded in units of voxels.

irection and magnitude of apparent deformation when imaged in
med contour. Upper right panel: shows the object following a 30°
object. Note how each point on the contour is associated with an
e same situation in a realigned (object) framework (which is the
int is affected by a deformation of identical magnitude, it is now
irection being stationary with respect to the scanner framework
sulting deformed contour for the rotated case. Lower right panel:

imaged in identical deformation fields, but where in one case the
tial deformations will only be introduced by rotations (i.e., it is
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906 ANDERSSON ET AL.
and

f2~xi, b!

< f2~xi, 0! 1 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!GR21F 0

b~xi!
0

G,
(5)

where the derivative of f1 is used in both expressions
for computational convenience. Finding the b for which
f1(xi, b) 5 f2(xi, b) means solving the equation

f1~xi! 2 f2~xi!

5 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!G~R21 2 I!F 0

b~xi!
0

G (6)

for b. Extending this by minimizing the differences
between f1(xi, b) and f2(xi, b) across all voxels we get

3
f1~x1! 2 f2~x1!
f1~x2! 2 f2~x2!···f1~xn! 2 f2~xn!

4

5 b3
Ff1

x
~x1!

f1

y
~x1!

f1

z
~x1!G ~R21 2 I!F 0

b~x1!
0

G
Ff1

x
~x2!

f1

y
~x2!

f1

z
~x2!G ~R21 2 I!F 0

b~x2!
0

G
···Ff1

x
~xn!

f1

y
~xn!

f1

z
~xn!G ~R21 2 I!F 0

b~xn!
0

G4 1 e

(7)

or in a more convenient notation

@f1 2 f2# 5 b@~~¹f1!R21 2 ¹f1!y 3 b~X!# 1 e, (8)

here ¹ denotes gradient, the y subscript indicates
hat only that component is considered, 3 denotes

Hadamard (or direct) product and b(X) denotes the
column vector of deformations at all locations x1,
x2

. . . xn.
Of course we do not know the shape of the deforma-

tions, but we can model them as a linear combination of
“known” basis-warps. In this paper we use the discrete
cosine set of transformations (DCT), which has previ-
ously been used to represent inter-subject shape differ-
ences (Ashburner and Friston, 1999b). Equation 8 then
changes to

@f1 2 f2#

5 D 3 b ~X! D 3 b ~X! · · · D 3 b ~X!b 1 e,
(9)
y 1 y 2 y l
where Dy denotes ((¹f1)R21 2 ¹f1)y, b1 to bl denotes the
set of l basis warps of increasing frequency and where
b is an l 3 1 column vector of parameter estimates.

Finally, let us extend this to the entire time series,
thereby restricting the solution to a single deformation
field that is common to all time points. Let us denote,
as above, the transformation matrix mapping fi onto f1

by Ti, and the corresponding rotation matrix with Ri.
Further let ((¹f1)Ri

21 2 ¹f1)y be denoted by Diy. Then a
model for the time series becomes

3
f1 2 f2
f1 2 f3···f1 2 fm

4
5 3

D2y 3 b1~X! D2y 3 b2~X! · · ·D2y 3 bl~X!

D3y 3 b1~X! D3y 3 b2~X! · · ·D3y 3 bl~X!
···

···
· · ·

···
Dmy 3 b1~X! Dmy 3 b2~X!· · ·Dmy 3 bl~X!

4
z b 1 e

(10)

or

ymn31 5 Amn3lbl311emn31, (11)

which is solved for b in a least squares sense through
b̂ 5 (ATA)21ATy. By iterative resampling of images and
derivatives based on the current estimate of the defor-
mation field, we can estimate the deformation field
based on our forward model. The problem with the
suggested model is that our design matrix A gets pro-
hibitively large. For a typical study, n (number of vox-
ls) is 643, m (number of scans) is in the order of

hundreds (say 200), and l (the number of basis warps)
is in the order 83 to 123. Hence a typical size of A would
be 52 z 106 3 1000, and even though we need never
store A explicitly, ATA would consist of more than half
a million unique elements, each requiring 52 million
multiplications and additions for its estimation.

Luckily the form of A allows the same form of speed
up as suggested by Ashburner and Friston (1999b).
Briefly, it capitalizes on the factorization of the basis
warps given by

@b1~X! b2~X! · · · bl~X!# 5 B 5 Bz # By # Bx, (12)

where V denotes Kronecker tensor product and where
x is the nx 3 lx matrix of the first lx components of a

DCT defined on a grid of size nx, and where nx is the
size (in voxels) of the image volume in the x-direction,
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907MODELING EPI DEFORMATIONS
and where lx is the order of the warp in the x-direction
(equivalent for By and Bz).

Model for Inhomogeneities Fixed with Respect to
Scanner (Model 2)

As our next model consider the case where the de-
formation field is fixed with respect to the scanner
frame, e.g., as a result of a poor/failed shim. Equation
(1) above, describing the forward model, becomes

f1~X 1 d~X!! (13)

for the stationary image and

f ~T21X 1 R21d~X!! (14)

FIG. 2. Graphical explanation of the forward model defined by
eformation field. The grey values indicate the deviation from a regul
oints have been deflected upwards and dark shades indicate downw
ndicates a vaguely brain like shape and the arrows shows direction
maged in this deformation field. Upper middle panel: shows the res
30° rotation, where the deformation field is stationary with respec
different part of the deformation field, and is now associated with a

he same situation in a realigned (object) framework. Note how eac
ifferent direction compared to the unrotated case. Lower middle pa
ight panel: demonstrates the mismatch between two images of an id
ase, the object had been rotated with respect to both the phase encod
ifferential deformations will be introduced by rotations and translat
s larger than that given by Eqs. (1) and (3) (Fig. 1), since there are
2

for the moved image which, after realignment, means
that we equate f1(X 1 d(X)) with

f2~TT21X 1 R21d~TX!! 5 f2~X 1 R21d~TX!!. (15)

The intuition for this model is to consider a distorting
mirror at a fair ground. Clearly the deformation field is
stationary in time, but as you move your head in front
of the mirror the image you “acquire” will change since
you sample the deformation field at different positions.
Even if you were able to “realign” these images they
would still look different due to differential deforma-
tions. Figure 2 illustrates this model.

Making the same assumption as above regarding the
“known” shape of the deformation field and the exis-

s. (13) and (15). Upper left panel: shows an example of a random
rid when sampling an object, where bright shades indicate sampling

ds deflection. The color bar is graded in units of voxels. The contour
d magnitude of apparent deformation of such an object when being
ng deformed contour. Upper right panel: shows the object following
the scanner. Note how each point on the contour has now moved to
erent arrow compared to the unrotated case. Lower left panel: shows
oint is affected by a deformation of different magnitude acting in a
l: shows the resulting deformed contour for the rotated case. Lower
tical object imaged in identical deformation fields, but where, in one
irection and the deformation field. Note that according to this model
s alike. Note also how for a given field and “movement” the mismatch
w two effects contributing to it.
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tence of an inverse field, the image intensities of the
stationary and moved scans depend on b according to

f1~xi, b! < f1~xi, 0!

1 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!GF 0

b~xi!
0

G (16)

and

f2~xi, b! < f2~xi, 0!

1 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!GR213

0

bSTFxi
1GD

0
4

(17)

xtending this to all voxels gives us the equivalent to
q. (8)
which may again be solved iteratively in a least
squares sense.

t
k
m

n

T

@f1 2 f2# 5 bF ~~¹f1!R21!y 3 bSSTF XT

113n
GD TD

2 ¹f1y 3 b~X!G 1 e.
(18)

Recognizing that for a field modeled as a linear combi-
nation of basis warps b(TX) 5 b1b1(TX) 1
b2b2(TX) 1. . . blbl(TX) (where TX is used as a short-
hand for the one-extended formulation) we get

@f1 2 f2#

5 @~DR21!y 3 b1~TX! 2 Dy 3 b1~X!· · ·~DR21!y

3 bl~TX! 2 Dy 3 bl~X!#b 1 e.

(19)

Extending it to the entire time series gives
3 f1 2 f2
f1 2 f3···f1 2 fm

4 5 3
~DR2

21!y 3 b1~T2X! 2 Dy 3 b1~X!· · · ~DR2
21!y 3 bl~T2X! 2 Dy 3 bl~X!

~DR3
21!y 3 b1~T3X! 2 Dy 3 b1~X! · · · ~DR3

21!y 3 bl~T3X! 2 Dy 3 bl~X!
···

· · ·
···~DRm

21!y 3 b1~TmX! 2 Dy 3 b1~X!· · ·~DRm
21!y 3 bl~TmX! 2 Dy 3 bl~X!

4b 1 e, (20)
where k is the number of parameters needed to de-
scribe the position. Now the actual positions in which
Model for Inhomogeneities Changing with the
Position of the Object (Model 3)

The final model is where the distorting field changes
as the subject moves in the scanner. An example of this
would be where the head, a convex object with air-
cavities, is subject to out of plane rotation such that
new configurations of air to matter are encountered by
the magnetic flux. Because the resulting magnetiza-
tion changes as the subject moves, there is no single
deformation field common to all the images and the
problem may seem intractable. However, we can refor-
mulate the problem and attempt to model the deriva-
tives of the deformation field with respect to object
movement. Suppose we have a field d(x, q), which
describes the deformation at a position x in the space of
an object positioned according to some parameter vec-
tor q. Then the deformation for a position q 1 Dq can
be approximated with the first two terms of a Taylor
expansion as

d~x, q 1 Dq! < d~x, q!

1 F d

q1
~x, q!

d

q2
~x, q! · · ·

d

qk
~x, q!GDq,

(21)
we sample our stationary and moved images become
the arguments of

f1~X 1 d~X!! (22)

and

f2~T21X 1 R21d~X! 1 R21D~d~X!!Dq!, (23)

respectively, where D(d(X)) denotes the partial de-
rivatives of dy with respect to q evaluated at all
points X. We will derive a model where we attempt to
estimate both the field at the point in position space
given by q, and its partial derivatives with respect
o q. This implies that we simultaneously model
1 1 fields, which remains tractable providing that
@ k.

We assume again that the fields are known (de-
oted b, b/q1, b/q2, . . . , b/qk) and that the cor-

responding scalars are given by b, b1, b2, . . . , bk.
hen the dependence of our stationary image on b—bk

becomes

f1~xi, b! < f1~xi! 1 bFf1

x
~xi!

f1

y
~xi!

f1

z
~xi!GF 0

b~xi!
0

G (24)
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and for the moved image

f2~xi, b! < f2~xi! 1 b~¹f1~xi!!R21F 0
b~xi!

0
G

1 b1~¹f1~xi!!R213
0

b

q1
~xi!

0
4Dq1 1 · · ·

(25)

By analogy with the earlier models we can solve for
b—bk in a least squares sense through

@f1 2 f2# 5 F ~~¹f1!R21 2 ¹f1!y 3 b~X! Dq1 ~Df1!R21

3
b

q1
~X!· · ·G b

b1

···

1 e.

(26)

f we model both the field at object position q and
tsderivatives as linear combinations of DCT basis
arps we obtain
@f1 2 f2#

5 @~DR21 2 D! 3 b1 · · · ~DR21 2 D! 3 bl

Dq1DR21 3 b1 Dq1DR21 3 b2 · · ·

DqkDR21 3 bl# 3 3
b
b1

···bk4 1 e,

(27)

where D denotes ¹f1, DR21 denotes (¹f1)R21, b i de-
notes the ith basis warps evaluated at all points in X,
and where it is implicit that only the y-direction is
considered. Note that all fields are now modeled
using the same basis set, but each field is still dis-
tinct because it comprises different linear combina-
tions as given by the k 1 1 column vectors b—bk of
size l 3 1.

Finally we extend the model to the full time
series
Ff1 2 f2
f1 2 f3
f1 2 fm

G 5 3 ~DR2
21 2 D! 3 b1· · ·~DR2

21 2 D! 3 bl D2q1DR2
21 3 b1 D2q1DR2

21 3 b2 · · · D2qkDR2
21 3 bl

~DR3
21 2 D! 3 b1· · ·~DR3

21 2 D! 3 bl D3q1DR3
21 3 b1 D3q1DR3

21 3 b2 · · · D3qkDR3
21 3 bl···

· · ·
···

···
···

· · ·
···~DRm

21 2 D! 3 b1· · ·~DRm
21 2 D! 3 bl Dmq1DRm

21 3 b1 Dmq1DRm
21 3 b2· · ·DmqkDRm

21 3 bl
43

b

b1

···
bk

41e,

(28)
where Diqj denotes the difference in object position
parameter j between the ith scan and scan 1.

The two previous models can both be seen as spe-
cial cases of this “general” model, in that Eq. (28)
reduces to the first model (Eq. (10)) when b1—bk are
all 0. Furthermore, when the “true” model conforms
to Eq. (20), the general model, using the three trans-
lations and three rotations as q, gives a good approx-
imation. In this instance b1—bk would generate de-
rivative fields that are simply the partial derivatives
of the stationary field with respect to translations
and rotations of the field itself. It may seem unwar-
ranted to formulate a model that has a design matrix
the size of mn 3 (k 1 1)l, corresponding to about 52 z
106 3 7000 (assuming 200 64 3 64 3 64 scans mod-
eling fields with 10 3 10 3 10 basis functions) if we
want only to model a static field. However, the form
of the design matrix in Eq. (28) lends itself to the
Kronecker product formulation, making the inver-
sion of ATA (of size (k 1 1)l 3 (k 1 1)l ) the rate
limiting step, rather than its calculation.

One may often be interested in letting q be a subset of
the parameters describing the rigid body transformation.
For example, we could postulate that, for a head moving
in a well-shimmed scanner, the main source of deforma-
tions is induced by the head itself. These deformations
would follow the head (i.e., move according to model 1),
but, in addition, change in the presence of rotations
around the x- and/or y-axis. One would model this case
using Eq. (28) with q containing only those rotation an-
gles (needless to say all rotation parameters are used for
Ri), yielding a design matrix of size mn 3 3l.

Empirical studies may show that the effect of the dif-
ferences in the direction of the deformation field (i.e.,
model 1, or the first l columns of Eq. (28)) is small com-
pared to the effects of the actual changes of the deforma-
tion field. If that is the case we can drop the l first
columns of Eq. (28). It should be noted that in this case
we would only model the derivatives of the deformations
and would be effectively “unwarping” all images to a
common deformation state given by the first image vol-
ume in the series (as opposed to some “zero deformation”
state). This models the deformation-by-movement inter-
actions, but not the deformations per se.

Finally we note that one is not restricted to modeling
the deformation field as a first order Taylor expansion.
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910 ANDERSSON ET AL.
In the presence of large movement a second term can
be added to Eq. (21)

d~q 1 Dq! < d~q! 1 F d

q1

d

q2
· · ·

d

qk
GDq

1 DqT3
2d

q 1
2

 2d

q1q2

· · ·
 2d

q1qk

 2d

q1q2

 2d

q 2
2

· · ·
 2d

q2qk

···
···

· · ·
···

 2d

q1qk

 2d

q2qk

· · ·
 2d

q k
2

4Dq.

(29)

Modeling 1 1 k 1 Sk 1 1
2 D fields. It is straightforward to

extend Eq. (28) in this case. This model may seem
extravagant, but considering the special case above,
where we concentrate on the effects of out-of-plane
rotations, one would only model 5 fields, which is per-
fectly feasible with current computing power.

METHODS

Simulated Data

A 64 3 64 3 64 EPI image volume with isotropic
-mm voxels was acquired on a 2 Tesla Magnetom
ISION (Siemens, Erlangen) MRI scanner. The image
as one in a series constituting an epoch-related audi-

ory fMRI study. Scan to scan repetition time was 7 s
nd TE 40 ms. A slice 40 mm above the AC–PC plane
as selected for the 2-D simulations.
Translations and rotations for time points 2 to 25 were

reated such that pi( j 1 1) 5 pi( j) 1 N(0, 1) (in units of
mm and degrees) for the two translations and the rota-
tion relevant for the 2-D case. Random 8 3 8 deformation
fields were created according to (By V Bx)b, where b is a
random independent identically distributed (iid)N(0, 5)
64 3 1 column vector. Clearly these random fields have a
spatial structure quite different from those observed in
actual field maps, but the magnitude of distortions is
comparable, ranging from 22 to 2 pixels.

From the single 2-D image described above, time
eries of variable length were created based on the
andom movements and deformation fields. Time se-
ies were created according to both model 1 (field mov-
ng with subject) and model 2 (field stationary in scan-
er) using Eqs. (3) and (15), respectively. Varying

evels of iid Gaussian noise was added to the images.
Singular value decomposition (SVD) of voxel mean

orrected time series was used as a device to assess the
patiotemporal modes of variance before and after cor-
ection for deformations.
Data created according to the forward model 1 (Eq.
(3)) was analyzed according to the corresponding esti-
mation model (Eq. (10)) and data created according to
forward model 2 (Eq. (15)) was analyzed with Eq. (20).
In addition, data created according to forward models 1
and 2 were analyzed with the general estimation model
given by Eq. (28).

Empirical Data

A healthy male volunteer was positioned in a 2 Tesla
Magnetom VISION (Siemens, Erlangen) MRI scanner.
Scan to scan repetition time was 4.86 s with a TE of 40
ms, and a total of 29 64 3 64 4 64 voxel EPI images with
n isotropic voxel size of 3 mm were collected. The first
our scans were discarded, leaving a total of 25. Head
ovement was lightly constrained, and the subject was

nstructed to perform a head rotation around the x-axis
pitch) and/or the y-axis (roll) every five scans.

Movement parameters were estimated using SPM99
Ashburner and Friston, 1999a) and used to model the
erivatives of the deformation field with respect to pitch
nd roll using Eq. (28). SVD was used to characterize the
ariance within the time series before and after resam-
ling based on the estimated deformation fields. Note
hat because we did not model a static field, this “unde-
ormation” will be relative to the deformation extent at
he geometric mean position of the time series.

RESULTS

imulated Data

The simulations indicated that deformation fields
ere readily estimated when analyzing a time-series
sing an estimation model corresponding to the for-
ard model that was used to generate the data. Exam-
les of the results of a simulation are shown in Figs. 3
o 9. For the simulations presented in Figs. 3 to 5 and
to 9, we used the deformation field shown in Figs. 1

nd 2, scaled such that the deformations ranged from
2 to 2 voxels. For the simulations presented in Fig. 6
nother field, drawn from the same iid random vector
, was used. The time series was 25 scans in length,
nd the simulated movements are shown in Fig. 3. An
VD of the time series indicates that variance was
ominated by movement and the eigenimages before
undeformation” exhibited a pattern determined by lo-
al magnitude of deformation and image gradient. This
s consistent with observations based on real data. The
eformation fields were estimated accurately when us-
ng estimation models corresponding to those used to
enerate the data, as evident from Figs. 4 and 5. When
undeforming” the time series ;90% of the movement-
elated variance was removed. This is reflected in the
igenimages before and after “undeformation” shown
n Figs. 4 and 5.
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For clarity we show results from a simulation where
no white noise was added to the time series. However,
the method appears stable in the presence of white
noise. Simulations with added white noise to yield sig-
nal-to-noise ratios (SNR) ranging from 200 to 2 indi-
cate that only when SNR drops to about 10 does accu-
racy go down appreciably (Fig. 6). Simulated time-
series as short as 10 scans still allowed accurate
estimation. The movements in the simulation depicted
in the figures are large compared to those typically
observed. Simulations were performed for a large
range of movements with similar results.

The general estimation model defined by Eq. (28)
yields sensible results when applied to data generated
by either models 1 or 2 (Eqs. (3) or (15)). When analyz-
ing data from model 1 the estimation of the field at q0

(the first l columns in Eq. (28)) corresponds to the true
field and the estimates of the derivative fields are very
close to zero (Fig. 7). Because model 1 is a subset of the
general model, the “undeformation” removed as much
movement-related variance as the corresponding gen-
erative model and the first eigenimage was very simi-
lar to that in the lower right panel of Fig. 4 (data not
shown). When analyzing data generated according to
model 2, we estimated a static deformation field and
derivatives with respect to three movement parame-
ters (Fig. 8). For this case the “true” derivative fields
were obtained from a numeric differentiation of the
static deformation field itself. It can be seen that there
are some differences between the “true” and the esti-
mated fields. Furthermore, a location with large differ-
ences between the expected and estimated fields for
one component tend to have large differences for one or
more other components (e.g., at the anteriormost as-
pect of the brain). This is due to the correlation be-

FIG. 3. Data used for simulations. Left panel: 2-D image used fo
at the shown position in the deformation field that was used for the s
yield deformations of half the magnitude shown there (i.e., ranging
Translations (left–right, solid line; anterior–posterior, dashed line) an
for all simulations.
tween the movement parameters in this particular
simulation (with, e.g., a 20.48 correlation between
translation in the left–right direction and rotation),
which tend to complicate the interpretation of the com-
ponent fields. However, results, in terms of variance
reduction, from the “undeformation” remain un-
changed. The variance reduction is demonstrated in
Fig. 9, which shows the first five eigenvalues for the
“deformed” time series and for the time series “unde-
formed” according to model 2 and the general model. It
is clear that a nearly equivalent variance reduction is
achieved with the general model. It is not surprising
that it is not identical because we employ a first order
Taylor expansion in the general model. When including
second order terms (i.e., according to Eq. (29)) this
difference is virtually obliterated (data not shown).

Empirical Data

The analysis of the 25 scans of empirical data pro-
ceeded for five iterations, taking ;30 min on a Sun
Ultra 60 when modeling two derivative fields with 8 3
8 3 8 basis functions. The resulting derivative fields
looked reasonable (Fig. 10, a formal comparison to
measured field maps will be reported elsewhere) and
indicated large changes of deformations, with respect
to movement, in known problematic areas such as
around the sinuses and at the temporal poles. The rate
of change of deformation, in the most affected areas,
was in the order of 0.1 to 0.15 voxels per degree rota-
tion of the head. Because areas with large susceptibil-
ity gradients tend to coincide with areas with large T2*
gradients, this means that one degree of rotation may
cause local intensity changes in the order of 5% (as-
suming a T2* image intensity gradient of 50%). It is

mulations. Middle panel: Deformed image after having been imaged
ulations. The deformation field shown in Figs. 1 and 2 was scaled to

22 to 2 voxels) and was used for all the simulations. Right panel:
otations (dotted line) in mm and degrees, respectively, that was used
r si
im
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912 ANDERSSON ET AL.
interesting to note the structured appearance of these
maps with a clearly discernible left–right symmetry for
x-axis rotations and corresponding antisymmetry for
y-axis rotations. We stress that this is not a property
that is conditional on our choice of basis-functions,
which can model any field up to the specified cut-off
frequency. Note also the pattern of opposite changes
surrounding the air cavity in the sinuses (best visible
in the transverse slices) showing the dipolar field in-
troduced by this cavity.

The first eigenvector is clearly dominated by move-
ment effects, being very close to a linear combination of
the estimated rotation angles (Fig. 11, middle and
right panels). The second eigenvector is probably due
to intrascan movement showing a strong correlation to
the derivative of rotation around the y-axis. The eig-
envector spectra before and after “undeformation”
shows that variance has been removed from the time
series, albeit less so than for the simulated data. The
realignment alone removed 84.6% of the variance from

FIG. 4. Results from simulations generating data according to Eq
eformations are assumed to follow the object perfectly. The upper ro
o the left and right. The lower left panel shows the first eigenimage
ith the deformations in it. Note how the areas with high loadings

ame deformation field. It should also be noted that the eigenvector
rotations shown in Fig. 3. The lower right panel shows the same aft
this data set, and the “undeformation” removed an
additional 4.7%. Note though that this corresponds to
30% of the residual variance, and an even larger pro-
portion of residual movement related variance. The
spectra appear to indicate that a similar proportion of
variance was removed from both the first and the sec-
ond component (which was not directly related to the
movement parameters). This is not the case. In fact the
first and second eigenvectors have traded places before
and after “undeformation.” Since so much of the vari-
ance relating to the first eigenvector (;49%) was re-

oved, it was relegated to second place to be preceded
y the eigenvector relating to intrascan movement
hich changed very little (;5%).
The eigenimage of the realigned time series is shown

n Fig. 12 along with the corresponding scaled eigen-
mage of the “undeformed” time series. Appreciable
mounts of movement-related variance have been re-
oved from the data, in particular from areas known

o be influenced by susceptibility artefacts such as the

) and analyzing them using Eq. (10), i.e., using the model where the
hows the “true” and the estimated deformations fields, respectively,
ultiplied with the first singular value) of the SVD of the time series
respond to those where we had large differences in Fig. 1 using the
responding to the first eigenimage has a .0.99 correlation with the
“undeformation” based on the estimated deformation field.
. (3
w s
(m

cor
cor
er
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913MODELING EPI DEFORMATIONS
frontal cortex (seen best in the sagittal section) and the
temporal poles (seen best in the coronal section).

DISCUSSION

It is evident that even after rigid-body registration,
considerable movement-related variance is still
present in the fMRI time series. There are a number of
conceivable explanations for this, including (i) interpo-
lation errors (Ostuni et al., 1997; Grootoonk et al.,
000), (ii) spin-history effects (Friston et al., 1996), (iii)
ovement-by-deformation interactions (Jezzard and
lare, 1999), and (iv) movement within (as opposed to
etween) (which is implicitly assumed in most realign-
ent methods, Kim et al., 1999) scans. An excellent

iscussion of these matters may be found in Cox (Cox,
996. Motion and functional MRI. http://varda.
iophysics.mcw.edu/;cox/regnotes.ps).
In principle it should be possible to discriminate

mong these causes using their expression in the tem-
oral and spatial domain.

FIG. 5. Results from simulations generating data according to E
he deformations are assumed to be stationary in the scanner frame
elds, respectively, to the left and right. The lower left panel shows t
f the time series with the deformations in it. Note how the areas wi
ig. 1 using the same deformation field. It should also be noted th
orrelation with the rotations shown in Fig. 3. The lower right p
eformation field.
Interpolation effects should manifest themselves
s a linear combination of periodic functions of
inear combinations of the realignment parameters
Grootoonk et al., 2000), although for small move-
ents these may be expressed as linear functions of

he realignment parameters. In the spatial domain
he effects should appear as linear combinations of
inc kernels leading to the tell-tale high-frequency
inging patterns radiating from areas with large spa-
ial derivatives.

Spin history effects would be expected, in the tem-
oral domain, to appear as the derivative of the re-
lignment parameters convolved with an exponential
ecay, whereas in the spatial domain they should con-
ain anatomical information in that the effect should
e dependent on local T1.
Movement-by-deformation interactions should be

ppreciable mainly in areas with nonzero deforma-
ion fields, i.e., in areas with susceptibility artefacts
for a well-shimmed scanner). Furthermore, if we

(15) and analyzing them using Eq. (20), i.e., using the model where
k. The upper row shows the “true” and the estimated deformations
rst eigenimage (multiplied with the first singular value) of the SVD

high loadings correspond to those where we had large differences in
the eigenvector corresponding to the first eigenimage has a .0.96
l shows the same after “undeformation” based on the estimated
q.
wor
he fi
th
at
ane
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look at the series expansion suggested by Eq. (29),
we would expect to find modes related to the realign-
ment parameters (corresponding to the first partial
derivatives of the deformation fields) and modes re-
lated to the realignment parameters squared (corre-
sponding to the second partial derivatives), etc. Fur-
thermore we would expect each subsequent mode to
explain less variance due to the converging proper-
ties of the Taylor expansion, i.e., the realignment
parameters should explain more variance than the
realignment parameters squared. Finally it should
be noted that this effect may be pronounced only for
a subset of movement parameters, e.g., the out-of-
plane rotations.

Finally, movement within scans should lead to ap-
parent deformations of the object during the scan/scans
within which movement occurs. In the temporal do-
main this should yield effects related to the temporal
derivative of the movement parameters, and in the
spatial domain it should be pronounced along edges in
the image. The exact appearance would depend on the
specific type of movement.

Hence, there is not a single cause for the movement-
related residual variance in fMRI time series, and it
may be possible that there is no one cause that consis-
tently dominates. It is likely that the increased use of

FIG. 6. Results from simulations assessing the effects of white n
and analyzed according to model 2. White noise was added to the da
SNR 10 simulations were performed. The top left panel shows the m
the true and the estimated fields. The top right panel shows the true
deformation fields selected from the simulations with errors correspo
respectively.
high field scanners will render movement-by-suscepti-
bility interactions an important source of variance.
Further work in this area would ideally aim towards
models accommodating all or several of these effects,
since clearly there will be interactions among them.
For example, high-order interpolation with Sinc ker-
nels is implicitly based on fitting linear combinations of
basis functions to the support points given by the orig-
inal voxel centres. In the presence of deformation fields
we mislocate the support points, yielding a different
(wrong) linear combination. We suggest this as a ten-
tative explanation for the finding (J. Andersson, un-
published observation) that the amount of movement-
related residual variance increases as the size of the
interpolation kernel increases (the larger the kernel,
the more “wrong information” is included).

In addition, all of these effects may interact with
movement parameter estimation (see Andersson, 1998,
for an example of interaction of interpolation errors
with movement estimation). From the data collected
for the present paper it is also clear that the move-
ment-by-susceptibility interactions influence the esti-
mation of movement parameters. When performing a
reregistration of the data following “undeformation”
based on the initial set of realignment parameters, we
found “residual movements” in the order of 0.5°. Al-

e on the ability to estimate the deformations. Data were generated
sets to yield signal-to-noise ratios (SNR) from 200 to 2, and at each

and standard deviation of the sum of squared differences between
ormation field. The lower left and lower right panels show estimated
ng to the dotted and dashed horizontal lines in the upper left panel,
ois
ta
ean
def
ndi
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though this idea is not pursued in the present paper, it
may prove beneficial to move away from the pair wise
registration of images towards a “true” time-series reg-
istration in which deformation models such as those
suggested here may be incorporated directly.

It is feasible to combine an explicit measurement of
the deformation field at a given position when model-
ing the derivatives of this field according to Eq. (28).
This would potentially combine the strengths of pre
and post hoc methods by supplying explicit data for the
field modeled by the first l columns of Eq. (28). There is
potentially very little information in EPI data about
the static (with respect to the object) field since only
rotations around the z-axis (yaw) would be expected to
contribute. There is typically little such rotation in
actual time series. In addition, by modeling the deriv-
atives there is no need to acquire a field map for each

FIG. 7. Results from simulations generating data according to E
modeling the static field and the derivatives with respect to x- and y-t
is very similar to the “true” one (as seen, e.g., in upper left panel
deformation per mm or per degree for translations and rotations, resp
corresponds to 20.2 to 0.2 voxels, i.e., the maps are multiplied by ten
this amplification the maps show very little structure, which is cons
scan and there is no risk of introducing additional
movement-related variance through errors in those
measurements. In such a setting it might be beneficial
to use a slightly more time consuming method for mea-
suring the field map (Chen and Wyrwicz, 1999) which
avoids problems with phase unwrapping.

Previous work on retrospective correction for geo-
metric distortions in EPI images has been based on
registration to images with no, or very little, geometric
distortions (Studholme et al., 1999; Kybic et al., 2000).
Hence, it has concentrated on the distortions per se
rather than the movements-by-distortions interaction,
which is the focus of the present paper. The method
suggested in the present paper attempts to estimate a
deformation field(s) and undistorted images of an un-
known object given multiple distorted images acquired
at known (or estimable) positions. In contrast, the

(3) and analyzing them using the general model defined by Eq. (28)
slation and rotation (C). The estimated static field (upper left panel)
Fig. 5). The derivative fields have been scaled to yield changes in
ively. The scale has been set such that the full range of the grey scale
mpared to the static map which ranges from 22 to 2 voxels. Despite
ent with them being zero as expected.
q.
ran
of
ect
co
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other methods assume the existence of an undistorted
image of the object, but with an unknown intensity
mapping between them.

Further work is needed on the model we have sug-
gested. The purpose of the present paper is to present
the mathematical framework. Points that will be ad-

FIG. 8. True (upper row) and estimated (lower row) maps of field
y-translation and rotation (columns 2 to 4, respectively). The derivati
and degree for translations and rotations, respectively. The derivati
voxels, whereas the static field ranges from 22 to 2 voxels.

FIG. 9. The left panel shows the first five eigenvalues for the tim
“undeformation” using model 2, and after “undeformation” using the g
panel shows the first eigenimage multiplied with the first singular v
panel of Fig. 5). The right panel shows the same after “undeformati
dressed in a subsequent paper are: Which effects we
need to model for EPI data, i.e., is it sufficient to model
changes in deformation with respect to pitch and roll?
Do we need to model some/all second order effects (i.e.,
Eq. (29))? How many basis functions do we need (i.e., at
which spatial scales do the movement-related changes

r object position q (column 1) and derivatives with respect to x- and
elds are scaled to yield rate of change of deformation per millimeter

images are scaled such that the grey scale ranges from 20.2 to 0.2

eries generated according to model 2, before “undeformation,” after
eral model in solid, dashed and dotted lines, respectively. The middle
e after undeformation with model 2 (i.e., is identical to lower right
using the general model.
fo
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917MODELING EPI DEFORMATIONS
in resulting magnetization occur)? Can we speed the
algorithm up by subsampling in the spatial and/or
temporal domain? It has been shown previously that
execution time for registration can be reduced by sam-
pling only areas with high information content
(Andersson, 1995), which would, in the present case, be

FIG. 10. The left column shows selected transversal, coronal and
reference position. The middle and right columns show rate of chang
and the anterior–posterior (f) axis, respectively. The derivative imag
the left–right symmetry for ]d/]u and the left right antisymmetry
affected by susceptibility artefact such as the orbitofrontal cortex an

FIG. 11. Left panel shows 10 first eigenvalues for realigned
solid line) and realigned and “undeformed” (dashed line) time series.

iddle panel shows first (solid line) and second (dashed line) eigen-
ector of realigned time series. Right panel shows estimated rota-
ions (degrees) around the x- (solid line) and y-axis (dashed line).
voxels with large image gradients in images at the
extremes of the estimated motion. We will also exam-
ine the method’s behavior for data sets with known
task-related movement.

In addition one could consider extending the model
to include also the intensity correction based on the
determinant of the local Jacobian to compensate for the
compression/dilution of signal caused by the deforma-
tions (e.g., Jezzard and Balaban, 1995; Studholme et

l., 1999). The issue here is that as the deformations
auses us to sample less densely than we believe, we
ill in addition integrate signal over a larger volume,
nd vice versa. Hence, in areas where the deformations
hange rapidly in the phase encode direction, there will
n addition to the geometric deformation be an inten-
ity scaling.
In the present paper we have presented a mathemat-

cal framework for modeling field changes resulting
rom subject movement. The same framework could in
rinciple be adapted to model field changes resulting

ittal slices through an EPI image from the human experiment at the
deformation with respect to object rotation around the left–right (u)

are scaled such that the range is 20.2 to 0.2 voxels per degree. Note
]d/]f. Note also the relatively focal changes in areas known to be
he temporal lobes.
sag
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918 ANDERSSON ET AL.
from other measurable sources such as verbal re-
sponses (Birn et al., 1998). Consider a paradigm where
the response could be one of a limited number of spo-
ken words, e.g., yes or no. The resulting deformations
could then be modeled using a finite impulse response
(FIR) model, where a separate field is modeled follow-
ing each type of response.

CONCLUSION

In the present paper we have established a mathe-
matical framework for modeling deformations caused
by magnetic field inhomogeneities. We have shown
how two special cases may be modeled within the
framework of a general model for which a fast algo-
rithm exists. We have demonstrated the feasibility of

FIG. 12. First eigenimage multiplied with first singular value for
realigned time series (left) and second eigenimage multiplied with
second singular value for realigned and “undeformed” time series
(right). The images are shown in the same scale and slices are taken
at the same levels as in Fig. 9. Note how much of the movement-
related variance along the edges has been removed. This is particu-
larly true for frontal areas as seen in the sagittal slice and temporal
areas seen in the coronal slice.
the method by simulations and using an empirical data
set, showing that sensible estimates of deformation
fields, or derivatives thereof, are obtained and that
movement-related variance can be reduced. A more
comprehensive characterization of its application to
EPI time-series will be reported separately.
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