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The global activity is an important confound when
analyzing PET data in that its inclusion in the statis-
tical model can substantially reduce error variance
and increase sensitivity. However, by defining global
activity as the average over all voxels one introduces a
bias that is collinear with experimental factors. This
leads to an underestimation of true activations and
the introduction of artefactual deactivations. We pro-
pose a novel estimator for the global activity based on
the notion of finding a maximally nonlocal mode in a
multivariate characterization of the data, while max-
imizing the locality of the remaining modes. The ap-
proach uses singular value decomposition (SVD) to
find a provisional set of modes, which are subse-
quently rotated such that a metric based on the above
heuristic is maximized. This metric is a version of the
stochastic sign change (SSC) criterion that has been

sed previously for normalizing medical images with
ocal defects. The estimator was evaluated on simu-
ated and real functional imaging (PET) data. The sim-
lations show that the bias of the global mean, intro-
uced by focal activations, is reduced by 80–90% with
he new estimator. Comparison with a previous unbi-
sed estimator, using the empirical data, yielded sim-
lar results. The advantage of the new estimator is that
t is not informed of experimental design and relies
nly on general assumptions regarding the nature of
he signal. © 2001 Academic Press

INTRODUCTION

Functional brain imaging data are typically ana-
lyzed using some form of statistical model in which the
observed variance is explained in terms of effects of
interest, confounds, and error (Friston et al., 1995).
The success of the model, in terms of detecting effects
of interest with high sensitivity, depends critically on
selecting a parsimonious set of confounds, which model
the data well without sacrificing degrees of freedom.

1 To whom correspondence and reprint requests should be ad-
dressed at Karolinska MR Research Center, Karolinska Hospital
N-8, 171 76 Stockholm, Sweden. Fax: 46 8 5177 6111. E-mail:
jesper@mrc.ks.se.
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One commonly used confound is the “global” variate,
which is typically defined as the average intensity
across all intracerebral voxels. The “globals” are of
crucial importance and explain a huge proportion of
the variance (Fox and Mintun 1989; Friston et al.,
1990) for positron emission tomography (PET). The
picture is less clear for functional magnetic resonance
imaging (fMRI) (Zarahn et al., 1997; Aguirre et al.,
1997, 1998; Skudlarski et al., 1999). However, the
globals play a special role, compared to nuisance vari-
ables, in that they are typically not orthogonal to the
effects of interest. This has the effect that their inclu-
sion/exclusion in the model will affect not only the
error term, but also the estimate of the effects of inter-
est, i.e., it affects specificity as well as sensitivity
(Holmes et al., 1997). Furthermore, the way that the
global variate is defined means that, typically, a bias is
introduced since the sum of all activations will be in-
cluded in the intensity average. This bias has been
shown to significantly influence the results that obtain
(Strother et al., 1995, 1996; Andersson, 1997), and a
method for circumventing this problem has been sug-
gested (Andersson, 1997). The previous method is
based on iteratively refitting the statistical model with
increasingly unbiased globals, excluding significantly
activated voxels from the global estimator through F
map masking. The disadvantage of that approach is
that the global estimator depends on the statistical
model used, resulting in the potential for inferential
bias. Furthermore, processing time scales with the
number of iterations.

In the present paper we attempt a redefinition of the
global variate and suggest an estimator for it. The
estimator is based on rotating the matrices obtained
from a singular value decomposition (SVD) of the data
to make the eigenimages adhere to certain assump-
tions regarding the nature of the signal we are trying
to characterize. The assumption is based on the notion
that activations are localized to a limited number of
distinct foci. A metric that implements this is the sto-
chastic sign change (SSC) criterion (Venot et al.,
1983) that has been used for the normalization of
medical images and is relatively insensitive to focal
changes.
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1194 ANDERSSON, ASHBURNER, AND FRISTON
A disadvantage of the SSC, as previously imple-
mented, is the need for a high contrast-to-noise ratio
(CNR) of the focal changes and its discontinuous na-
ture. This makes it very tedious to locate the distribu-
tional modes, particularly in a multivariate setting. In
the present paper we describe a modified version of the
SSC, the approximate stochastic sign change criterion
(ASSC). The ASSC is based on ideas borrowed from the
field of neural networks. We implement this idea by
using the ASSC to drive a factor rotation (Johnson and
Wichern, 1998) of the eigenimages given by the SVD.
We validate the new estimator by examining its behav-
ior on simulated data and by comparing it to the pre-
viously suggested estimator (Andersson, 1997) using
PET data. In what follows we provide the theoretical
background to the different components of the ap-
proach and then present an empirical validation using
real and simulated data.

METHODS

Theoretical Background

The general linear model. Functional imaging data
are typically modelled by the general linear model
(GLM) (e.g., Friston et al., 1995), which describes data
s a linear combination of explanatory variables and
n additive error term. An example of such a model, for
given voxel, would be

yi 5 m 1 b~Gi 2 G# ! 1 ai 1 gi 1 . . . 1 ei, (1)

or in matrix terms,

ym31 5 Xb 1 e, (2)

where the experimental design is defined by the indi-
cator or explanatory variables, i.e., the columns of the
design matrix X, and m denotes number of scans. The
important thing about Eq. (2) is that the observed data
is modeled as a linear combination of the columns of
the design matrix X, where the weights of the linear
ombination are given by b.

An unbiased estimator of b is given by (ignoring
serial correlations)

b̂ 5 ~X*X!21X*y, (3)

which minimizes ê9ê (e.g., Johnson and Wichern, 1998).
9 denotes transpose. Consider the simplest experiment
possible with one baseline condition and one “acti-
vated” condition only. We would typically model this
experiment with

ym31 5 @1 ĝ a#@m g a#9 1 e, (4)

where g and a denote the global effects and the effect of
the experimental condition respectively, ĝ and a de-
note columns of the design matrix. Note that ĝ is an
estimator of some underlying global effect g, which we
take to be the arithmetic mean of the data. In reality
our model is closer to

ym31 5 @1 g 1 la a#@m g a#9 1 e. (5)

The magnitude of l depends on the spatial extent
nd magnitude of the activation described by the time
ourse a. Under certain assumptions it can be shown
hat Eq. (2) no longer yields unbiased estimators, but
hat the estimates are now

E~b̂! 5 F m
g

a 2 lg
G , (6)

hence,

E~â! 5 a 2 lg, (7)

which simply states the well known fact that bias is
introduced by the arithmetic mean estimator whereby
local activations lead to an underestimation of true
activations (a . 0) and to false deactivations in areas
where the null hypothesis is true (a 5 0).

Desirable properties of a global estimator. Let us
note that the global estimator does not necessarily
have to be the average of all voxels and think about
what properties a global confound should have. This
confound can be construed as successful when it ex-
plains more variance, for a larger proportion of the
voxels, than any other vector. The success of the global
confound can be attributed to it modeling a variance
component, or trend, that is shared by virtually all
voxels and will consequently decrease the error vari-
ance in large portions of the brain. In other words a
global confound explains the most variance over as
much of the brain as possible. Clearly this “ideal” con-
found would, by definition, be the average time course
over all voxels, were it not for the experimentally in-
duced variance. Hence, what we really want is the
variate whose spatial expression is as global as possi-
ble, while discounting contributions from any variates
with a highly localized spatial expression. A confound
of this sort would potentially reduce error variance on
par with the global average, while preserving any vari-
ance due to spatially localized sources, notably exper-
imentally induced activations.

The stochastic sign change (SSC) and the approxi-
mate stochastic sign change (ASSC) criteria. The SSC
criterion was originally suggested precisely for the pur-
pose of normalizing the intensity of nuclear medical
images (Venot et al., 1983, 1984) but has since been
used mainly for image registration (Venot et al., 1984;
Herbin et al., 1989; Minoshima et al., 1992). It does not
give a global measure as such, but given two stochastic
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1195A GLOBAL ESTIMATOR
processes it yields a scale factor that relates them. The
basic idea behind the SSC is best described graphically
a schematic explanation is provided in Fig. 1). In brief:
iven two image processes y1(x, y, z) and y2(x, y, z),

containing additive noise, and the process resulting
from their subtraction y3(x, y, z) 5 y1 2 y2 (where y1

and y2 are vector representations of y1 and y2, respec-
ively, over all x, y, and z), the SSC is simply defined as
he number of sign changes of y3 as counted along one,

or several directions. Intuitively we would expect the
SSC to be large when the intensities of y1 and y2 are
similar, and small if, for example, the intensities in y1

are much larger than those in y2 (in which case y3

would be mainly positive). We would further expect the
SSC to have a maximum when the intensities of y1 and
y2 are maximally similar. In addition we would expect
this measure to be relatively insensitive to focal
changes of a limited extent, as demonstrated in Fig. 2.

Although having been used successfully for both nor-
malization and registration the SSC is inherently dis-
crete (integer) and nondifferentiable. That means that
gradient or quasi-Newton methods cannot be used for
its minimization and implementations have had to re-
sort to very slow methods such as random (Venot et al.,

FIG. 1. Graphical explanation of the stochastic sign change cri-
terion. The upper left (UL) panel shows two, n 5 200, FWHM 5 3, 1D
processes (that may be thought of as a 200 voxels profile through an
image of arbitrary dimensionality) with expectations 10 (solid line,
denoted y1) and 11 (dashed line, denoted y2) and unit normal vari-
ance. The upper right (UR) panel shows the profile resulting from the
linear combination sy2 2 y1, where scaling factor s equals 1. The
number of sign changes in UR equals 10. The lower left (LL) panel
shows how the number of sign changes varies as s is varied between
0.7 and 1.1 (i.e., SSC(s)). Note the jagged appearance of the graph
resulting from the SSC being an integer entity. The s corresponding
to the maximum of SSC, indicated by the dashed line in LL, yields
the profile shown in the lower right panel (LR) where the number of
sign changes is 37. For this case the “true” s would have been 10/11 5
0.91, the global mean would have yielded s 5 0.910, and the SSC
indicates two equally good s, 0.899 and 0.909. The more “accurate”
result obtained with the global mean reflects the fact that the SSC is
a less efficient estimator than the global mean, this being an appre-
ciable difference only for very small/smooth processes.
1984; Herbin et al., 1989) or quasiexhaustive
(Minoshima et al., 1992) search methods. Furthermore
its discreteness leads to multiple local maxima across a
large range of search scales. This problem motivates a
criterion (ASSC), which has the same basic properties
as the SSC, but which is continuous and differentiable.
Consider the following definition of the SSC criterion

SSC 5
1

4
~D sgn~y1 2 y2!!9~D sgn~y1 2 y2!!, (8)

where y is a column vector representation of the image,
sgn is the sign operator that transforms any value v
according to sgn(v) 5 v/uvu. D is a differential operator
matrix along any direction, or combination of direc-
tions, x, y, and z. It is readily apparent that the cause
of the discontinuity is the sgn operator and that this is
remedied by replacing it with a continuous differentia-
ble squashing function such as arctan

ASSC 5
1

p2
~D arctan~c~y1 2 y2!!!9

z ~D arctan~c~y1 2 y2!!!,
(9)

FIG. 2. Demonstration of the relative insensitivity of the SSC
with respect to local changes. The upper left (UL) panel shows two,
n 5 200, FWHM 5 3, simulated 1D processes with expectation 10
nd 22(1/2) variance, one of which contains an “activation of magni-

tude” 2.5 and with a spatial extent of 15% of the process (solid line,
denoted y2) and one that does not (dashed line, denoted y1). Scaling
y the respective global mean (9.95 and 10.38 for unactivated and
ctivated processes, respectively) and subtracting yields the process
0.959 y2 2 y1) shown in the upper right (UR) panel. This demon-

strates nicely the effect encountered in actual PET studies, where
the height of the activation is underestimated and where large
portions of the “unactivated” parts of the brain have negative values.
The lower left (LL) panel shows SSC(s) and demonstrates how the
activation produces a local maximum while not affecting the location
of the global maximum which was found for s 5 0.992. The lower
right (LR) panel shows 0.992 y2 2 y1, i.e., the linear combination
given by the SSC. Note how (i) the magnitude of the activation has
been increased and (ii) how the process changes seemingly randomly
between positive and negative values in areas outside the “activa-
tion.”
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1196 ANDERSSON, ASHBURNER, AND FRISTON
where c is simply a scale factor to adjust the range of
the process to the domain of arctan. Figure 3 shows the
behavior of the ASSC for a simulated 2-D process and
compares it to the SSC as c of Eq. (9) is varied. The

SSC appears as a smoother version of the SSC, the
moothness decreasing as c increases. In fact the SSC

(Eq. (8)) is the limiting case of ASSC (Eq. (9)) as c3 `.
We will preempt the results section by disclosing

hat a direct implementation of the ASSC for estimat-
ing the global variate does not work in practice due to
the relatively poor CNR in regions of functional acti-
vation (Fig. 4). However, the ASSC can be used to
characterize the “globalness” of linear combinations of
scans, which have higher CNR. These combinations
correspond to spatial modes. A global spatial mode will
have a small number of zero-crossings and, once iden-
tified, can be used to compute the global variate. Local
modes will have a higher number of zero-crossings. In
brief, one can consider the problem of finding the global
variate in terms of finding a global spatial mode. The
global estimator for each scan obtains from a weighted
average, over voxels, specified by this global mode. The
question then is how to choose the linear combinations
or modes without being informed of the experimental
design. This question is addressed in the next section.

Singular value decomposition (SVD) and factor rota-
tion. Consider the multivariate extension of Eq. (2)
above

FIG. 3. The upper left panels through to the lower right shows
the approximate stochastic sign change criterion (ASSC) evaluated
according to Eq. (9) for a simulated 128 3 128 2D process with a
FWHM of 3 and unit variance. In Eq. (9) c was varied to yield a
standard deviation (s) of the process c(sy2 2 y1) of 1, 10, 100, and
infinity, the latter effectuating the stochastic sign change criterion
(SSC). It can be easily appreciated how the ASSC becomes more and
more like the SSC as c increases and also how local maxima start to
appear as the standard deviation of the process goes above ;50. For
this particular simulation the maxima of the ASSC were found at
1.0022, 1.0038, 1.0032, and 1.0032 for s of 1, 10, 100, and `, respec-

tively.
Yn3m 5 mn311*13m 1 gn31g*13m

1 an31a*13m 1 . . . 1 en3n,
(10)

where n is the number of voxels, m the number of
cans, 1, g, and a are basis vectors, i.e., columns of the
esign matrix, and m, g, and a are parametric images

depicting the spatial distribution of the corresponding
time courses. g is the global mode we want to identify.
An alternative factorization of the data Y is given by
the SVD (dropping the size subscripts);

Y 5 USV* 5 s1E1e*1 1 s2E2e*2 1 . . . 1 smEme*m, (11)

where the e are the eigenvectors of Y*Y, the E are the
eigenimages or eigenmodes of YY*, and the s are the
square roots of the eigenvalues of either Y*Y or YY*.
The formal equivalence of Eqs. (10) and (11) is evident,
and is the basis for the use of SVD, or eigenimage
analysis, in functional imaging (e.g., Friston et al.,
1993; Strother et al., 1995). These methods rest on the
implicit assumption that the eigenimages are “sensi-
ble,” i.e., have some semblance to the parametric im-
ages alluded to in Eq. (10), and indeed their success

FIG. 4. The upper left (UL) panel demonstrates a simulation
consisting of 64 scans, each of extent 64 3 64 3 1, with a circular
bject varying according to one period of a sine wave. A smaller
ircular “activated” area varied according to a square wave orthog-
nal to the “global” signal and with a magnitude one-tenth that of the
lobal signal. Gaussian random noise was added according to a
ultiplicative model (noise scales with global signal) to yield a con-

rast-to-noise ratio (CNR) of 5 or 0.5 followed by smoothing with a
aussian filter (FWHM 5 3). The smoothing changes the effective
NR, but their relation should remain unchanged. The upper right
anel shows the “global” signal as evaluated by the global mean on
he CNR 5 5 data (virtually identical for CNR 5 0.5). The contam-
nation from the local signal is immediately obvious. The lower left
LL) panel shows the global signal as evaluated by the SSC on the
ata with CNR 5 5. Since the SSC only gives a delta measure, the
urve was generated by multiplying the global mean of the first scan
y the obtained scale factors. Note how the bias has vanished almost
ompletely. The lower right panel shows the results when using the
SC on the CNR 5 0.5 data.
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indicates that this is somewhat true. Unfortunately, it
can easily be demonstrated by simulating data accord-
ing to Eq. (10) that the factorization offered by Eq. (11)
is generally not the same. Indeed the SVD enforces
orthogonality between the Es and the es, which as we
know cannot be guaranteed for the globals, and even
when there is orthogonality the factorizations of Eqs.
(10) and (11) are not generally equivalent. This can be
seen, e.g., in Figs. 5m and 5n, where the observed
eigenvariates are similar, but not identical, to the
“true” time courses. Hence, the SVD is in itself not a
plausible candidate to yield the “true” global time
course. However, it may be used to formalize the intu-
itive notion of maximising the ASSC of a series of
linear combinations of the original images alluded to
above.

Factor rotation, or factor analysis, is a device by
which the eigenvectors are manipulated to yield a set
of rotated eigenvectors, or factors, which are more “sen-
sible” according to ones presumptions (e.g., Johnson

FIG. 5. (a and c) The spatial extent of the simulated object and
the “activated” area and b and d show their respective “true” time
courses. The two first eigenimages resulting from an SVD of the 64
“scans” are shown in e and f. It is clear that their eigenvariates,
shown in m and n, are not those specified in the model, but rather
linear combinations of them. (i and j) Activity profiles through the
eigenimages demonstrating the same thing where the negative parts
of j indicate that it is a has a negative component of the globals (much
the same thing we would see in a subtraction map following scaling
by the global mean). After rotation, such that the CF defined by
quation 14 (with w 5 [0 1]) was maximized, the rotated eigenim-
ges look like g and h, and profiles through them are shown in k and
. Note how the negative parts of the eigenimage depicting the
activation” (h and l) disappear and how there are now a large
umber of sign changes in the “unactivated” parts. Note also how the
ias of the globals has disappeared to a large extent (cf. m and o).
urthermore, the rotation preserves the orthogonality of the eigen-

mages (k and l) but not that of the eigenvariates (o and p). This is
dvantageous since we know that the globals may not always be
rthogonal to other effects. In short the factor rotation appears to
artition data into a set of spatially orthogonal (but by no means
ndependent) modes and the associated eigenvariates are the time-
ourses of those particular “objects.”
and Wichern, 1998). This is achieved by introducing a
rotation matrix R into Eq. (11) above such that

Y 5 USV* 5 URR*SV*, where RR* 5 I, (12)

which yields a set of rotated eigenimages UR, and a set
of rotated and scaled eigenvariates R*SV* that are no
longer orthogonal. In addition the factor model often
assumes that the data can be approximated by its first
few components such that

Yn3m 5 Un3mSm3mV*m3m 5 U*n3m*S*m*3m*V*9m*3m

1 en3m < U*S*V*9,
(13)

where U*, S*, and V* indicate truncated versions con-
taining the first m* eigenimages, singular values, and
eigenvariates, respectively. Henceforth we will use the
unstarred notation to denote also the truncated matri-
ces. Note that by using the truncated expression the
size of R may be reduced from m 3 m to m* 3 m*, and
the rotational degrees of freedom from the binomial

coefficient Sm
2 D to Sm*

2 D.
The trick in factor analysis is to find the rotation

matrix R, a task that typically involves finding the R
that maximizes/minimizes some function of UR, or of
R*SV*. The choice of function to minimize is typically
based on heuristic arguments and may be, for example,
the kurtosis of the columns of UR (Johnson and
Wichern, 1998). This is also related to independent
component analysis (ICA), where R is chosen to max-
imize, e.g., the entropy of the columns of UR, and
where R is no longer restricted to be orthogonal (e.g.,
Bell and Sejnowski, 1995; McKeown et al., 1998).

The heuristic we use, for this particular application,
goes as follows; for a truly global, spatial mode we
expect all, or virtually all, voxels to have the same sign;
i.e., we would not expect a global mode that correlates
positively with some voxels to correlate negatively with
others. Conversely, for a truly local spatial mode we
would expect the sign to change randomly, except in
restricted area/areas that constitute the mode. We
therefore suggest that the “global” mode may be found
by rotating the eigenimages U, such that the ASSC is
minimized for the first rotated eigenimage, while at the
same time maximized for the remaining ones. A cost
function based on this idea is

CF~p! 5 w13mdiagS 1

p2
~D arctan~UR~p!!!9

z ~D arctan~UR~p!!!D1m31,
(14)

where R(p) denotes the rotation matrix R as a function
of the rotation angles p, and w is a weight vector. This
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1198 ANDERSSON, ASHBURNER, AND FRISTON
means that we will find R by finding the parameters p
that minimize CF. According to the heuristic above our

eight vector w could be a 1 3 m vector of the form
w 5 [1 21 21 . . . 21]. However, we could also consider
w 5 [0 21 21 . . . 21] (see below). Figure 5 demon-
trates the arguments for and results of factor rotation
ased on Eq. (14). Considering Figs. 5g, 5h, 5k, 5l, 5o,
nd 5p, we see that CF rotates areas with local effects
way from the global mode giving spatially distinct
odes, each expressing the time course of that partic-
lar mode. In particular we see that Fig. 5g corre-
ponds to the unactivated parts and expresses mainly
he global effects, and Fig. 5h corresponds to the acti-
ated part, and hence expresses all the effects (global
nd experimental). The rotated eigenimage in Fig. 5g
an be thought of as a mask, or weights, with which the
lobal variate is estimated through multiplication with
he original time series. This is the same as the tem-
oral expression or eigenvariate of a rotated mode.
sing w 5 [0 21 21 . . . 21] will rotate the global

ffects out of the local modes and effectively discount
he global mode. On the other hand w 5 [1 21
1 . . . 21] is equivalent to rotating the global effects
way from the local modes, while at the same time
etaining enough of the local effects in the global mode
o avoid any sign changes in the “holes” that result
rom the local effects. Allowing those “holes” to extend
ll the way down to zero, by not punishing the zeros
rossings they incur (by setting the first element of w
o zero) means that a larger proportion of the bias may
e removed. Although the two forms of w yield similar
esults, tests on both simulated and measured data
ndicate that w 5 [0 21 21 . . . 21] removes a slightly
arger proportion of the bias, and is used henceforth.

The minimum of CF can be found using a quasi-
ewton method as described in Appendix A.
The procedure. The implementation of the ideas

bove, for estimating the global variate, follow:

1. Remove voxel means, or equivalently the block
ffects in a multisubject study. This is done by Y*adj 5

(I 2 H)Y* where each column of Y* contains the values
for one voxel, H is the “hat” matrix defined as
X(X*X)21X* and X is the relevant design matrix (e.g., a
single column of ones for each subject, modeling sub-
ject-specific mean effects). Also calculate the whole
brain means of the voxel or block means from g* 5
n21HY*1n, where 1n denotes an n 3 1 matrix of ones.

2. Calculate the SVD (Eq. (10)) by calculating V and
2 from the spectral decomposition of Y*adjYadj and com-

pute a subset of the columns of U (eigenimages) from
U* 5 YV*(S*)21, where the * denotes the dimension
reduced matrices (Eq. (13)).

3. Find the rotation matrix R that maximizes the
cost–function described by Eq. (14).

4. Calculate the “rotated” globals from g 5 g* 1
n21j*1nC*, where j is the first column of U*R, i.e., the

rst rotated eigenimage, and where C is the first ro-
ated eigenvariate, i.e., the first row of R*SV*. Note
hat g* is simply an offset being added to the global
ector and that n21j*1n is simply a scaling factor. De-

pending on how one models the global effects these
factors may or may not be necessary. For example,
when performing a within-subjects ANCOVA, with
scaling between subjects, one could use C* directly.

Practical considerations. The number of sign
changes may be calculated along any one direction (x,
y, or z as implemented by D), or as the sum of sign
changes along two or all directions. These measures
are generally quite correlated, but there is a potential
advantage of calculating the ASSC along all directions,
in particular for processes that are small in relation to
their smoothness. This is easily performed by extend-
ing Eq. (9) such that

ASSC 5
1

p2
T*T, where T

5 FDx 0 0
0 Dy 0
0 0 Dz

G~13 # c~y1 2 y2!!,

(15)

where Dx, Dy, and Dz are matrices implementing dif-
ferentiation in the x-, y-, and z-directions, respectively,
and V denotes tensor product. The price is execution
speed, but our experience suggests there is a real ad-
vantage in using all directions. We do so in the rest of
the paper.

Validation Studies

A large number of simulations were performed, an
illustrative subset of which will be presented here. In
general all simulations used 3-D processes of sizes
ranging from 64 3 64 3 24 to 128 3 128 3 64. Activa-
tions were mostly spherical and always homogenous
within the volume defined as “activated.”

The global time course was either a sine wave rang-
ing from a quarter of a period to several periods across
the course of the “study” or a Markovian random walk.
Categorical study designs ranged from simple two
state designs through multilevel single factor to 2 3
2 3 2 three-factor designs. Parametric linear designs
were also considered, either as simple parametric de-
signs, or as two-way categorical by parametric designs.
The time courses of activations were not restricted to
be orthogonal to the global time course.

Data were simulated according to either an additive
model (noise and activation independent of global ef-
fects) or a multiplicative model (noise and activations
scale with global effects) (Friston et al., 1990). Noise
was added as white (spatially and temporally) zero
mean, normal distributed deviations.

CNR was varied across a wide range (0.1 to 10),
either through varying activation magnitude or noise.
The nominal CNR was specified prior to spatial
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smoothing. Activations were mostly spherical and var-
ied in size from very small to 25% of the simulated
volume. One or more activated spheres were used in-
dependently of study design. For example, a 2 3 2
factorial could have a single “activated” area, which
was activated by both tasks and which expressed an
interaction, or it could have three “activated” areas,
each expressing a different effect.

The simulated volumes were smoothed with a gaus-
sian filter to a specified FWHM.

Experimental Data

We used a previously presented data set (Watson et
al., 1993) to demonstrate the effects of biased globals
and the improvement achieved with the present
method. In short 11 healthy volunteers were scanned,
in a CTI-953B brain PET scanner operating in 3-D
mode (Spinks et al., 1992), alternating between two
states; viewing stationary “Mondrians” (irregular ar-
rangements of partially overlapping rectangles) and
viewing moving “Mondrians.” The scans were corrected
for movements, spatially normalized using SPM99 and
smoothed using a 10-mm FWHM isotropic gaussian
filter.

Data Analysis

Simulations. A metric describing the bias in the
globals was defined on a per contrast basis in the
following way. If the design of a specific simulation is
given by the design matrix X, then the regressor de-
scribing a particular effect is given by Xc, where c is a
contrast weight vector describing the effect of interest.
Let g denote the vector of “true” global effects and ĝ the
vector of estimated globals, then the bias was defined
as bias 5 c*X*(ĝ 2 g). For two different estimates of
globals, e.g., ĝgm (global mean) and ĝfr (factor rotation),

e define the percentage reduction in bias as

100c*X*~ĝgm 2 ĝfr!/c*X*~ĝgm 2 g!.

For each simulation globals were estimated as the
global mean and by factor rotation and their respective
biases were calculated along with the reduction result-
ing from the use of factor rotation.

Experimental data. No “true” answer is available
for the experimental data and we were limited to dem-
onstrating construct validity by comparing the results
to those obtained with a previous method (Andersson,
1997). The data was analyzed using a multisubject,
ANCOVA by subject design explicitly modeling condi-
tion by replication effects (one column per scan).

For one analysis the global activity was calculated in
the “normal” way as the average across all intracere-
bral voxels.
For another set of analyses the globals were calcu-
lated as the average across all intracerebral voxels,
excluding those voxels that exhibited a P value less
than 0.05 based on the SPM{F} from the previous anal-
ysis. This was iterated 10 times to obtain asymptotic
estimators (Andersson, 1997).

The third set of analyses involved calculating the
globals by the method suggested in the present paper,
basing the ASSC on all three dimensions (Eq. (15)),
starting with UR scaled to yield a standard deviation
of 10, changing it for the final iterations of the factor
rotation to yield a standard deviation of 100. The num-
ber of eigenimages included in the factor rotation was
varied between 2 and 10.

Two contrasts showing areas with higher activity for
moving vs stationary scenes and lower activity for mov-
ing vs stationary scenes were used to generate two
SPM{t} for each analysis. The maximum t value and
the number of suprathreshold voxels (P , 0.01, uncor-
rected) were used to characterize each analysis.

RESULTS

Simulations

Direct application of ASSC to difference images. A
straightforward application of the SSC or ASSC to
estimate global difference between subsequent scans
revealed, as expected, a profound sensitivity to CNR.
Figure 4 shows an example of a simulation demon-
strating this effect. To show that this is a general
problem of SSC, and not specific to the ASSC, we used
the SSC in this particular simulation (the results for
the ASSC are almost identical). The explanation for
this behavior is that as CNR decreases the two peaks
seen in Fig. 2 increase their proximity until they merge
and the peak attributed to the activation starts to skew
the distribution from the unactivated areas. On simu-
lated data one can always find a level of spatial
smoothing such that the direct approach works reason-
ably well. However, the filter width has to be tailored
and depends on CNR and activation extent. This ap-
proach always failed on experimental data and was not
pursued further.

ASSC as cost function for rotating eigenimages. We
changed the scaling of UR in Eq. (14) (equivalent to
varying the scale factor c in Eq. (9)) to yield standard
deviations of the eigenimages (s) ranging from 0.1 to
100. The results were highly consistent across all sim-
ulations and indicated that s should be at least 10 in
order to obtain good results (Fig. 6). Furthermore there
were slight additional gains for s up to 100, but the
cost-function (Eq. (14)) became “rougher,” increasing
the risk of local maxima. From this we established a
multiscale factor rotation consisting of (i) a maximiza-
tion of Eq. (14) with s 5 10, followed by (ii) a maximi-
zation with s 5 100, using the results from the first
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1200 ANDERSSON, ASHBURNER, AND FRISTON
maximization as starting estimates for the second. The
second step changes the results only marginally, but on
the other hand does converge quickly.

In terms of bias and bias reduction the results indi-
cate a surprising consistency across the entire simu-
lated range of activation magnitudes, activation ex-
tents, CNR, and filter widths. An example of a typical
simulation can be seen in Fig. 7, which shows the bias
resulting from using the global mean, and the small
amount of bias remaining when using the ASSC. In
rder to retain a constant bias across CNR the activa-
ion magnitude was constant and the noise was varied.

ith the exception of unfiltered data with very low
NR (0.1) there is a consistent reduction in bias when
sing the ASSC across CNR and filter widths; 80–90%
f the bias is removed irrespective of the original de-
ree of the bias (a function of the extent of the activa-
ion). This finding is consistent provided enough eigen-
odes are used in the rotation.
The number of eigenmodes one should retain in the

otation is, not surprisingly, equal to the number of
ffects entered into the simulation; i.e., if data were
imulated using a design matrix containing global ef-
ects, two levels each of two factors and an interaction,
hen one should keep four eigenmodes. In general each
igenmode corresponds to an effect given by Xb, where
is the design matrix used to create the data and b is

ny column vector (cf. a contrast vector c). The inclu-
ion of the eigenmode corresponding to Xb in the rota-
ion will eliminate/reduce the bias from a contrast c
qual to or similar to b. Due to the nature of the SVD
ubsequent eigenmodes will correspond to “contrasts”

FIG. 6. Percentage bias reduction (as defined in main text) for
different choices of s for simulated data. The simulation consisted of
64 64 3 64 3 24 scans of a cylindrical object with 28 voxels radius
nd a spherical activation of 13 voxels radius. The global time course
as one half period of a sine wave and the activation was a square
ave with a fundamental frequency of 0.25 scans. Gaussian white
oise was added to yield a CNR of 1, followed by smoothing with a 3
oxels FWHM gaussian kernel. The results represent the average of
0 realizations with different levels of noise. The curve starts from
elow zero for s below ;0.2, which indicates the introduction of
dditional bias (a consistent finding) and rises steeply until s equals
1 and it reaches a plateau at s 5 100, at which 85–90% of the bias

is removed.
with smaller and smaller effects. In short, the num-
er of eigenmodes should be equal to the rank of the
esign matrix.

xperimental Data

An example of the CF described by Eq. (14) as a
unction of the two predominant rotation angles is
hown in Fig. 8. When calculating the globals in the
onventional way the SPMs exhibited massive activa-
ions in visual cortex and widespread, possibly artefac-
ual, deactivations in other parts of the brain (Fig. 9).
he t values of the “deactivations” decreased on aver-
ge by 1.1–1.3 for both the F map masking method and

FIG. 7. Bias and bias reduction as a function of extent of acti-
vated area, filter width and CNR. The simulations consisted of 64
64 3 64 3 24 scans containing a cylindrical object with radius 28
voxels, where the globals varied as one half of a sine wave. For each
simulation there was a single spherical activated area of radius 6, 8,
10, 13, or 16 voxels, which varied as a square wave with a frequency
of 0.25 scans. White gaussian noise was added to the images to yield
a CNR of 0.1, 0.5, 1, 5, or 10 prior to smoothing. The smoothing
employed a Gaussian kernel yielding a FWHM of 1 (no smoothing) 2,
3, 4, or 5 voxels. Each combination of activation extent, CNR and
FWHM were simulated ten times, and the points in the graphs
represent the mean of these realizations. The upper left panel shows
the bias (as defined in the main text) of the globals when using the
global mean. It can be seen that, as expected, it is affected by the
extent of the activation and is independent of smoothing. Panels 2
through 6 show the remaining bias after SVD and factor rotation
with s 5 10, followed by a few iterations with s 5 100. It can be seen
that for very poor CNR some smoothing is crucial, whereas otherwise
the results are surprisingly consistent across the tested range of
CNRs and FWHMs.
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for the present method (Tables 1 and 2 and Figs. 9 and
10) and the “activations” increased by roughly the
same amount. In fact, no deactivated voxels survived
the corrected threshold when using the present
method, in contrast to using the conventional globals
where there were six significant maxima. The F map
masking yielded one significant voxel located in the left
prefrontal cortex. It is obviously not possible to say for
certain that the deactivations encountered when using
conventional globals are false, although given the re-
sults of the simulations one might suspect this to be
the case.

FIG. 8. The CF (the sum of the ASSC of the local modes) as a
unction of rotation angle (in degrees) around two axes while holding
he angle around the remaining (eight) axes fixed at the values
btained by the full maximization. Note how the function appears
uite well behaved (quadratic) over this rather large range, espe-
ially for s 5 10. Note further the slight hint at “rougher” behavior
or s 5 100 and that the locations of the maxima differ slightly ([16°,
2°] and [14°, 25°] for s 5 10 and s 5 100, respectively).

FIG. 9. Maximum intensity projections of t maps, displayed at
P , 0.001 uncorrected, for the contrast depicting areas with less
activity during moving stimuli, compared to stationary stimuli. This
contrast was chosen because of its sensitivity to a bias in the global
covariate induced by the “true” activation in the negative contrast.
The global normalization was, from left to right, global mean, ten
iterations of F map masking and ASSC-based factor rotation retain-
ing five eigenmodes. Note the typical widespread areas of deactiva-
tion extending well into white matter resulting from using the global
mean. The results obtained with F map masking and factor rotation
are quite similar and contain considerably less deactivated areas.
The areas that persist are located to the left frontal medial gyrus and
the middle frontal gyrus bilaterally.
DISCUSSION

We have proposed a redefinition of the global variate
in PET activation studies and developed an estimator
based on that definition. Simulations indicate that this
new estimator greatly reduces bias that ensues from
conflating experimentally induced variance and global
changes when using the global mean.

In the present paper we have not examined the use
of the new global estimator on fMRI data. The reason
for this is that the complex spatio-temporal behavior of
fMRI signals warrants a separate analysis. It is clear,
however, that the question of the global covariate is as
pertinent for fMRI as for PET, given the conflicting
reports of its usefulness (Zarahn et al., 1997; Aguirre et
al., 1997; Skudlarski et al., 1999) and of the potential
errors introduced by failing to model the global effects
(Aguirre et al., 1998).

TABLE 1

Results from F Map Masking of V5 Data Set

Iteration Max pos t* Max neg t† SptExt‡ pos SptExt§ neg

1 20.19 (0.000) 6.20 (0.001) 27725 (0.000) 21011 (0.000)
2 20.76 (0.000) 5.34 (0.015) 33513 (0.000) 4037 (0.000)
3 20.99 (0.000) 5.13 (0.032) 35162 (0.000) 2936 (0.000)
4 21.04 (0.000) 5.07 (0.039) 35726 (0.000) 1953 (0.000)
5 21.06 (0.000) 5.06 (0.041) 35852 (0.000) 1930 (0.000)
6 21.06 (0.000) 5.05 (0.042) 35888 (0.000) 1922 (0.000)
7 21.06 (0.000) 5.05 (0.042) 35894 (0.000) 1922 (0.000)
8 21.06 (0.000) 5.05 (0.042) 35897 (0.000) 1921 (0.000)
9 21.06 (0.000) 5.05 (0.042) 35898 (0.000) 1921 (0.000)

10 21.06 (0.000) 5.05 (0.042) 35898 (0.000) 1921 (0.000)

Note. Values refer to highest positive (*) and negative (†) t values,
nd spatial extent (voxels) of largest clusters of connected voxels
ith t values . 2.36 (P 5 0.01) in the positive (‡) and negative (§)

SPM{t}’s. Values in parenthesis refer to the associated P values.

TABLE 2

Results from Factor Rotation of V5 Data Set

No. of
eigenmodes Max pos t* Max neg t† SptExt‡ pos SptExt§ neg

1 20.19 (0.000) 6.20 (0.001) 27725 (0.000) 21011 (0.000)
2 20.42 (0.000) 5.91 (0.002) 29502 (0.000) 13638 (0.000)
3 20.86 (0.000) 5.22 (0.023) 34913 (0.000) 3024 (0.000)
4 21.08 (0.000) 5.05 (0.043) 36270 (0.000) 1854 (0.000)
5 21.18 (0.000) 4.91 (0.068) 37648 (0.000) 1584 (0.000)
6 21.12 (0.000) 4.97 (0.055) 37009 (0.000) 1715 (0.000)
7 21.18 (0.000) 5.05 (0.042) 36196 (0.000) 1890 (0.000)
8 21.10 (0.000) 4.89 (0.073) 37370 (0.000) 1642 (0.000)
9 21.20 (0.000) 4.83 (0.090) 37699 (0.000) 1582 (0.000)

10 21.11 (0.000) 4.92 (0.066) 37073 (0.000) 1701 (0.000)

Note. Values refer to highest positive (*) and negative (†) t values,
nd spatial extent (voxels) of largest clusters of connected voxels
ith t values . 2.36 (P 5 0.01) in the positive (‡) and negative (§)

SPM{t}’s. Values in parenthesis refer to the associated P values.
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The suggested method may seem like a complicated
way to calculate something fairly simple. It should be
pointed out however that we have tried a number of
obvious (e.g., the median) and not so obvious (e.g., ICA)
methods in our pursuit of a valid global estimator. The
method above is the first we have found to perform
satisfactorily under a wide range of conditions. We set
out to find a multivariate characterization of the data,
and to identify one specific “global” mode of this char-
acterization without being informed of the experimen-
tal design. With this perspective in mind, our approach
becomes more intuitive.

One important question in factor analyses is the
number of eigenmodes one should retain in the rota-
tion. The simulations indicated that one mode should
be allowed for the global activity, one for each regressor
which would normally have been used to model each
factor (i.e., number of levels minus one) and one for
each interaction. Hence, a simple single factor (with
two levels) experiment, like that used for the valida-
tion, should be adequately modeled by two eigenmodes,
and for a 2 3 2 factorial four eigenmodes should suffice.
In the experimental data better estimates of the
globals were obtained as the number of eigenmodes
was increased to five (Fig. 10). This is not surprising
since a multisubject study will contain, in addition to
condition effects, subject by condition interactions. In a
multivariate characterization of the data, these effects
will surface in unpredictable ways. In the example

FIG. 10. The largest (most positive, solid lines) and smallest
most negative, dashed lines) t value from the contrast subtracting
tationary from moving stimulus for F map masking and for factor

rotation. It should be noted that despite the apparent similarity
between the graphs, they really depict completely different things.
The left panel shows how the t values change with subsequent
terations of the F map masking method. The right panel in contrast
hows what the t values are after the full iterative factor rotation
hen retaining between 1 and 10 eigenmodes. Hence, in the left
anel each point represents one iteration, whereas in the right panel
ach point represents the completion of one iterative procedure. The
ight panel shows how additional eigenmodes improve the results up
o five eigenmodes, after which it reaches a plateau. It can also be
een that the final result of the F map masking is quite similar to

those obtained by factor rotation when “enough” eigenmodes are
used.
used above, eigenmodes that modeled the condition
effects for subpopulations of the entire study emerged.
In addition, there are frequently other effects such as
time effects and time by condition interactions embod-
ied in real data. There are objective methods for deter-
mining the number of factors to retain in general prin-
cipal component analysis (Johnson and Wichern,
1998), but there is no real consensus regarding these,
and the eigenvalue spectra from PET data seldom lend
themselves to clear conclusions in terms of, e.g., scree
plots.

For the above reasons we suggest the rank of the
design matrix (which should be an adequate model of
the data) is used to specify the number of eigenmodes,
providing this is not too large. Our experience suggests
that about 5 is a reasonable number for a typical PET
study. The factor rotation is a problem of maximization
of a function with respect to multiple parameters. The

number of parameters increases as Sm
2 D, where m is the

umber of eigenmodes, i.e., it increases almost as the
quare of m. In addition, the number of function eval-

uations necessary for finding an extremum of a mul-
tiparameter function is approximately proportional to
the square of the number of parameters (Press et al.,
1992). Hence, the execution time, in a worst case sce-
nario, is proportional to the number of eigenmodes
raised to the power of four. Fortunately, it is not quite
as bad as this since the use of partial derivatives in the
minimization decreases the exponent.

Clearly by reducing the number of eigenmodes one
risks excluding experimentally induced variance, and
thereby not rotating that variance out of the global
mode. However, as long as the dominant spatiotempo-
rally coherent sources of variance are due to the exper-
imental design, each subsequent eigenmode contrib-
utes less and less to the bias of the globals.
Disregarding subject by condition interactions each
eigenmode correspond to one possible “contrast,” where
subsequent “contrasts” produce the activations of
lesser magnitude and/or extent. Because a contrast
that produces large activations is also likely to bias
global estimators, global bias is removed, effectively,
for the contrasts that matter.

Considering the, sometimes profound, bias that re-
sults from using the global mean as a regressor the
need for a way to calculate an unbiased measure of the
global activity is clear. The reason for developing an
alternative method to that previously suggested
(Andersson, 1997) was twofold.

First and foremost, the previous method involved
fitting the data with a tentative model, and then
changed the model based on the outcome of that fit.
Although the results of the first fit were used in a
highly indirect way (as a mask) there is always a risk
that bootstrapping a model in this way may introduce
inferential bias. The present method is not informed of

the experimental design and is driven solely by the
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assumption that true activations have a limited spatial
extent. Second, the previous method involved an iter-
ative refitting of the entire model, which was poten-
tially quite time consuming. The current method con-
sists of fitting all data to a reduced model once,
followed by an iterative procedure in a reduced sub-
space, yielding shorter execution times. However, since
the number of iterations needed can be great, this may
not always be true, especially for small sized studies.
As computing power increases, speed considerations
will become less important, while those of accuracy will
prevail.

In conclusion, we have suggested a novel way of
estimating the global variate. Compared to simple av-
eraging, it yields considerably less biased values while
not being informed of the experimental design. Simu-

lations and validation on PET data indicates that the

0 0 0
method serves its purpose, although further applica-
tions to PET studies will be needed to establish its
ultimate usefulness.

APPENDIX A: MINIMIZATION OF CF

Finding R that minimizes CF is a multidimensional
optimization problem and as such potentially sensitive
to local minima as well as time consuming. As a gen-
eral rule optimization methods that utilize derivative
information are considerably faster than those that do
not (Press et al., 1992). This was the motivation for
adopting the ASSC. Hence we need an expression for
the derivative of CF with respect to the optimization
parameters p. The derivation is slightly tedious (see
Appendix B), but it can be shown that the gradient of

CF is given by
m(n21)3n21 n213m m(n21)3m m(n21)3mn

m3m(n21)

¹CF~p! 5
2

p2
w~~~1m # In21!D arctan~UR~p!!! 3 ~Im # 1n21!!9~Im # D!

mn3l
mn3mm

mm3l

mn3l

z
S1*l # vecF 1

1 1 ~UR~p!!2GD 3 ~Im # U!
dR

dp ,

(A1)
where Appendix B may be consulted for an explanation
of notation. Assuming that CF may be approximated
y a quadratic function at some point p0 reasonably

close to the true minimum we can write

CF~p! 5 CF~p0! 1 ¹CF~p0!~p 2 p0!

1
1

2
~p 2 p0!9H~p0!~p 2 p0!,

(A2)

where H(p0) denotes the Hessian (the matrix of second
partial derivatives) evaluated at the point p0. For a

inimum of a multivariate scalar function the deriva-
ive should be zero and the Hessian should be positive
efinite (Marsden and Tromba, 1981). Now, if we dif-
erentiate the right side of Eq. (A2) with respect to p

and set it to zero we get

¹CF~p0! 1 ~p 2 p0!9H~p0! 5 0f

~p 2 p ! 5 2H21~p !¹CF~p !9,
(A3)
which means that if Eq. (A2) is a good approximation
the step (p 2 p0) according to Eq. (A3) will take us
directly to the minimum. The Newton method depends
on the ability to calculate the Hessian, preferably an-
alytically, and iteratively solves Eq. (A3). Given the
complexity of calculating the gradient in this case we
use a quasi-Newton method, which gradually builds an
approximation of the inverse Hessian by performing a
rank-2 modification of the current estimate at each
iteration. The basic idea is to start with a positive
definite “guess” of H21, typically I, and then for each
iteration find the minimum along the line segment
p0 2 lH0

21¹CF90, where 0 , l # 1, and where H0
21 and

¹CF0 denotes the inverse Hessian and the gradient,
respectively, at the point p0. Next we seek to find a new
estimate of the inverse Hessian (H1

21) of the form H1
21 5

H0
21 1 C, where C is a rank-2 updating matrix that

satisfies

2lH0
21¹CF90 5 H1

21~¹CF1 2 ¹CF0!9. (A4)
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The specific form of C that we use in the present paper
is that of Broyden–Fletcher–Goldfarb–Shanno (BFGS)
and a description of it may be found in Press et al.
(1992). We find that as long as positive definiteness of
H21 is explicitly enforced at each iteration, by simply
hecking the eigenvalues and reusing the old estimate
f not, this is a fast and robust way of finding the

inimum of Eq. (14).

APPENDIX B: PARTIAL DERIVATIVES
OF THE ASSC

The advantage of the ASSC, compared to the SSC, is
that it is a continuous differentiable function. This is of
particular importance when attempting to maximize it
with respect to more than one parameter since it allows
the use of quasi-Newton methods as opposed to slow
direct searches. The following is a derivation of expres-
sions for the derivatives of the ASSC with respect to
the rotation matrix. In the following In will denote an
n 3 n identity matrix and 1n will denote an n 3 1
column vector of ones. We will use V to denote the
Kronecker (tensor) product and 3 to denote Hadamard
(element-wise) product and we will use the vec opera-
tor defined such that vec(Am3n) 5 [a11

. . . am1

a12
. . . amn]9, i.e., it stacks the columns of A on top of

each other. When we write an operator as operating on
the entire matrix then that will mean performing that
operation on all elements of that matrix, e.g.,

F 1

1 1 A2G 5 3
1

1 1 a 11
2 · · ·

1

1 1 a 1n
2

···
· · ·

···

1

1 1 a m1
2 · · ·

1

1 1 a mn
2

4 .

The derivative of an m 3 n matrix valued function (A)
with respect to a k 3 l matrix (B) will be represented as
an mn 3 kl matrix arranged such that
FdA

dBG
mn3kl

5 3
a11

b11
· · ·

a11

bk1

a11

b12
· · ·

a11

bkl···
···

···
···am1

b11
· · ·

am1

bk1

am1

b12
· · ·

am1

bkl
a12

b11
· · ·

a12

bk1

a12

b12
· · ·

a12

bkl···
···

···
···amn

b11
· · ·

amn

bk1

amn

b12
· · ·

amn

bkl

4 .

Given this definition of the derivative and given that
Am3n 5 Bm3lCl3n, then

FdA

dBG
mn3ml

5 C* # Im (B1)

and

FdA

dCG
mn3ln

5 In # B. (B2)

Assume we have a matrix Un3m consisting of m eigen-
images, each consisting of n voxels and a rotation ma-

trix Rm3m, which is completely determined by Sm
2 D

(henceforth denoted l ) parameters p such that R 5
(p). We may then calculate a row vector assc con-

aining the ASSC measure for each of the rotated
igenimages from

ssc~puU!13m

5 1*mdiagS 1

p2
~D arctan~UR~p!!!9~D arctan~UR~p!!!D,

(B3)

where D is a spatial differentiation operator imple-
mented as an (n 2 1) 3 n matrix. What we require is

the matrix Fdassc

dp G
m3l

, which contains the derivatives

of the ASSC of each rotated eigenimage with respect to
each of the l parameters p. We now use the chain rule
and proceed in steps noting that
dassc 2 d~Darctan~UR~p!!!
m(n21)3n21 n213m m(n21)3m m(n21)3l

m3m(n21)

dp
5

p2
~~~1m # In21!D arctan~UR~p!!! 3 ~Im # 1n21!!9 dp

, (B4)

m(n21)3mn mn3l

d~D arctan~UR~p!!!

dp
5 ~Im # D!

d~arctan~UR~p!!!

dp
, (B5)
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d~arctan~UR~p!!!

dp

mn3l
mn3l

5 S1*l # vecF 1

1 1 ~UR~p!!2GD 3
d~UR~p!!

dp
,

(B6)

mn3mm
mn3l

d~UR~p!!

dp
5 ~Im # U!

dR

dp
, (B7)

where R is the product of l matrices R i each imple-

menting rotation round one axis such that (r i) jk is 1

m(n21)3m

n

if j 5 k, 0 if j Þ k except for a and b (a , b) for which
r i) aa 5 (r i) bb 5 cos( pi) and (r i) ab 5 2(r i) ba 5 sin( pi).

The derivative matrix of R i with respect to pi is
obtained by instead setting (r i) aa 5 (r i) bb 5 2sin( pi)
and (r i) ab 5 2(r i) ba 5 cos( pi) and the ith column of
dR/dp is hence derived from

FdR

dpG
:,i

5 vecSR1 . . . Ri21

dRi

dpi
Ri51 . . . RlD . (B8)

Hence in total the derivative of the ASSC with
respect to the rotation parameters p may be

written as
dassc 2
m(n21)3n21 n213m m(n21)3m m(n21)3mn

m3m(n21)

dp
5

p2
~~~1m # In21!D arctan~UR~p!!! 3 ~Im # 1n21!!9~Im # D!

mn3l
mn3mm

mm3l

mn3l

z
S1*l # vecF 1

1 1 ~UR~p!!2GD 3 ~Im # U!
dR

dp ,

(B9)
where dR/dp is given by Eq. (B8). There are a couple of
hings to note regarding this expression; the first being that
t is not as complicated as one might think upon a first
lance. The purpose of the Kronecker products is simply to
uplicate/rearrange the elements of the matrices. For exam-
le, the first part of the expression, which we may write as

m(n21)3n21 n213m m(n21)3m

~~1m # In21! A 3 ~Im # 1n21!!9

will simply take the columns of A 5 [a1 a2
. . . am] and

rearrange them such that

m(n21)3n21 n213m m(n21)3m

~~1m # In21! A 3 ~Im # 1n21!!9

5 3
a*1 0* · · · 0*

0* a*2 · · · 0*

···
···

· · ·
···

0* 0* · · · a*m

4 .
(B10)
The second thing to note is that a direct implementa-
tion of Eq. (B9) is not practical since it involves creat-
ing enormous matrices (e.g., Im V D) that are nothing
but very sparse matrices with multiple copies of the
same data. For a typical PET data set with m 5 5 and

5 50,000 Im V D would be a 249,995 3 250,000
matrix, whereas the actual storage requirement, if cap-
italizing also on the sparsity of D, is in the order of 4n,
i.e, 300,000 times smaller.

A computationally feasible approach is to calculate
dassc/dp one row at a time for which an efficient
expression is

13n21

dassc

dp
@i, :# 5

2

p2
~D arctan~UR~p!@:, i#!!9

(B11)
n213n

n3l

z D SS1l #
1

1 1 ~UR~p!@:, i#!2D

n3m

m3l

z U
dR

dp
@~i 2 1!m 1 1:im, :#D,

where we have adopted a Matlab like notation such
that A[a:b, c:d] denotes the submatrix consisting of
rows a to b of the columns c to d. Using Eq. (B11) the
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derivatives may be calculated within reasonable mem-
ory constraints without the need to duplicate any cal-
culations.
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