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Within the framework of statistical mapping, there
are up to now only two tests used to assess the regional
significance in functional images. One is based on the
magnitude of the foci and tends to detect high inten-
sity signals, while the second is based on the spatial
extent of regions defined by a simple thresholding of
the statistical map, a test that is more sensitive to
extended signals. The aim of this paper is to combine
the two tests into a single test that is more sensitive to
awider range of signals. This combined test is based on
an analytical approximation of the distribution of
these two parameters (size and height) and is applied
in the context of statistical maps. The risk of error in
noise-only 2D or 3D volumes is assessed under a wide
range of experimental conditions obtained by varying
both the resolution of the map and the threshold at
which clusters are defined. In addition, we have inves-
tigated this new test on simulated signals, and applied
it to an experimental PET dataset. The experimental
risk of error is close to the predicted one, and the
overall sensitivity increases when analyzing a volume

containing different types of signals. o 1997 Academic Press

1. INTRODUCTION

Statistical analysis of functional images often em-
ploys pixel-based analyses. Statistical parametric maps
(SPMs) are constructed to reflect the probability of
change at each voxel. The significance of regional
activation in PET studies and more recently fMRI
studies is usually assessed using two kinds of tests. The
first uses the magnitude of the SPM value, in other
words, the peak height of a cluster in SPM (Friston et
al., 1991; Worsley et al., 1992). Because increases in
activity do not necessarily conform to a sharp peak but
can appear as more broad spatially distributed in-
creases, some tests based on the spatial extent of
suprathreshold regions were introduced, at first using
empirical distributions (Poline and Mazoyer, 1992,
1993; Roland et al., 1993) and then using results from

the Gaussian random field theory (Friston et al., 1994).
These tests are generally more sensitive at the expense
of dropping the risk of error from the pixel level to the
“cluster” level. Unfortunately, spatial-extent-based
analyses do not necessarily increase the sensitivity in
all cases. Clearly, sharp localized activations might
occur (for instance in small structures) and would be
missed by the use of spatial extent tests. Regions
showing increased activity are likely to have various
shapes and extents in real data.

To address this issue, some new strategies have been
considered. First, peak height detection could be en-
hanced if the data were subject to a filter that matches
the signal to be detected. A multifiltering strategy was
therefore proposed and has been shown to be generally
more sensitive (Poline and Mazoyer, 1994a; Worsley et
al., 1996). While efficient and robust, this strategy
requires larger computer resources and is limited by
the use of large filters that degrade the spatial resolu-
tion.

A second strategy consists of testing for both the
spatial extent and the peak height and was investi-
gated using a test based on Monte Carlo simulations
(Poline and Mazoyer, 1994b). Monte Carlo simulations
are costly in terms of computer resources and have to be
repeated for different analysis parameters in order to
properly assess the distribution under the null hypoth-
esis, especially the thresholds defining the clusters.

While these two tests (peak intensity and spatial
extent) are currently available, it is not valid to use
them both at the same time without correcting for the
implicit multiple testing.

We propose in this paper to combine peak height and
spatial extent tests into a single test, using a theoreti-
cal model for the joint bivariate distribution of these
two variables under the null hypothesis. We have
investigated specificity using some simulated noise
volumes and sensitivity using (i) some known simu-
lated signals (in two and three dimensions) and (ii) an
actual PET language activation study.
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2. MATERIALS AND METHODS

2.1. Combined Test: Optimizing the Intensity Threshold

The two tests that we propose to combine appear to
be quite different; the peak height test sets a high-
intensity threshold, such that any voxel above it can be
considered significant; the spatial extent test requires
two thresholds: a low-intensity threshold and a size
threshold, such that any cluster with a spatial extent
greater than, or equal to, the size threshold is declared
significant. In fact, the first test can be regarded as a
special case of the second with a size threshold of 1 (i.e.,
a peak is above the intensity threshold if, and only if, its
spatial extent is greater than zero). Therefore, we are
really combining two variants of the same test.

This leads to the more general question of how to
choose the intensity threshold to maximize the sensitiv-
ity of the spatial extent test. This question has been
partly answered by Friston et al. (1994), who consid-
ered a simple model of white noise plus Gaussian
signal, both smoothed by a Gaussian point spread
function (PSF). With this model, they show that for
signals wider than the full width at half-maximum
(FWHM) of the PSF, the intensity threshold should be
low; for signals sharper than the FWHM of the PSF, the
image threshold should be high.

Figure 1 illustrates why this is so. It turns out that
the critical cluster size can be obtained approximately
as follows. Construct a signal identical to the PSF,

smooth it with the PSF, to give a Gaussian function
with \E times the FWHM of the PSF. Set the height to
the intensity threshold for a 5% test of peak height,
found using the formula in Adler (1981), reported in
Worsley et al. (1992). Call this the critical function.
Now threshold the critical function at an arbitrary
lower level (t) and measure its spatial extent; this is
then the approximate size threshold we seek for a 5%
spatial extent test at an intensity threshold of t (Fig.
1a).

Now, if the FWHM of a Gaussian signal is less than
that of the PSF, it will be sharper than the critical
function; it therefore follows that the image threshold
must be set high in order for the spatial extent of the
signal to exceed the spatial extent of the critical
function (Fig. 1b). Conversely, if the FWHM of a
Gaussian signal is larger than that of the PSF, then the
smoothed signal is wider than the critical function and
so the intensity threshold should be set low in order to
be best detected (Fig. 1c).

The above discussion shows that sensitivity to Gauss-
ian signals depends on the choice of intensity thresh-
olds: low thresholds are best for wide signals, and high
thresholds are best for sharp signals. This suggests
that sensitivity can be maximized by searching over a
range of intensity thresholds. This is analogous to
scale-space searches (i.e., multifiltering), originally pro-
posed by Poline and Mazoyer (1994a) and then devel-
oped in a theoretical framework by Siegmund and
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FIG. 1.

(a) The critical function (solid curve), constructed by smoothing a signal identical to the point spread function (PSF), with the PSF,

to give a Gaussian function with FWHM equal to 2 times the FWHM of the PSF. The height equals the intensity threshold for a 5% test based
on peak height. The spatial extent of the critical function at any lower level is the approximate size threshold for a 5% spatial extent test. (b) If
the FWHM of the Gaussian signal (dotted curve) is less than that of the PSF, its image will be sharper than the critical function; it follows that
the image threshold must be set high (*) in order for the spatial extent of the signal to exceed the spatial extent of the critical function. (c)
Conversely, if the FWHM of the Gaussian signal (dotted curve) is larger than that of the PSF, then the smoothed signal is wider than the
critical function and the intensity threshold should be set low (*) for greatest sensitivity.
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Worsley (1995) and Worsley and co-workers (1996), in
which sensitivity is maximized by searching over a
range of smoothing kernel FWHMSs. In other words,
intensity thresholds play an analogous role to FWHM,;
both affect the sensitivity for different size signals.

However, there is one major difference between scale-
space searches and intensity threshold searches, which
is apparent from Fig. 1. If the signal is wider than the
PSF, then the intensity threshold should be set as low
as possible; if the signal is narrower than the PSF, then
the threshold should be set as high as possible, with
nothing in between. This is not the case for scale-space
searches; there the optimal FWHM matches the FWHM
of the signal (by the Matched Filter Theorem), which
opens up the possibility of estimating the FWHM of the
signal by the FWHM of the optimal filter.

No such estimator appears to be possible via inten-
sity threshold and spatial extent tests. Instead, the
optimal image threshold takes one of two values: either
as low as possible for wide signals or as high as possible
for narrow signals. The generally more powerful test
would then simply take the best of the two image
thresholds, that is, the minimum of the two P values.
Now the highest possible threshold, as the above
discussion shows, corresponds simply to the peak height
test. Thus the best test should take the minimum of the
P value for the low intensity threshold spatial extent
test and the peak height test. This is the very test that
we propose in this paper.

To summarize:

® The sensitivity of the spatial extent test for differ-
ent signal sizes depends on the intensity threshold;

® This suggests searching over values of the inten-
sity threshold (the image threshold defining the clus-
ters), by analogy to scale-space searches;

® However, the optimal intensity threshold for Gauss-
ian shaped signals flips between very low and very
high, depending on whether the signal width is larger
or smaller then the PSF width (unlike scale-space
searches, where optimal FWHM matches that of the
signal);

® The highest possible image threshold corresponds
to the peak height test;

® Thus the combination of the spatial extent test (for
a low image threshold) and the peak height test, via the
minimum P value of the two tests, should provide a
better detection for signals of all sizes.

2.2. Combined Test: Theory

In this section we specify a combined test based on
two parameters (peak height and spatial extent).

First, an approximation for the probability of a given
cluster having a spatial extent S greater than s, and

maximum intensity or peak height H greater than hg is
derived in the Appendix using results from Gaussian
random field theory (see Eq. (14)). This distribution is a
function of the image threshold and spatial resolution
and is derived under the hypothesis of a Gaussian
autocovariance function (see Section 4). Second, a way
of combining the spatial extent and the maximum
intensity is chosen in order to select events (an occur-
rence of a cluster) that will be rejected at a given risk of
error under the null hypothesis of pure noise. There are
an infinite number of possibilities for this step. In
Poline and Mazoyer (1994b), two clusters (sq, hy) and
(s1, hy) would be rejected with the same risk of error if

P(S = So, H = ho) = P(S = Sl' H = hl)

In other words, the rejection area is defined by the
isocumulative curve

P(S = s5, H = hy) = constant

(see Fig. 2). For our proposed combined test, the risk of
error is simply defined as the minimum of the risk for
spatial extent and the risk for maximum peak height.
This gives a rejection area defined by

min [P(S = s;), P(H = hy)| = constant

(see Fig. 2 and Subsection 2.3).

The test of Poline and Mazoyer (1994b) has a smooth
boundary; ours has a rectangular boundary. The main
difference is as follows. If one statistic, say spatial
extent, is more significant than the other (peak height),
then our test will give the same significance irrespec-
tive of the peak height; the test of Poline and Mazoyer
(1994b) will be more conservative if the evidence against
the null hypothesis from peak height is weak. On the
other hand, if both spatial extent and peak height are
equally significant, our test will be more conservative
and that of Poline and Mazoyer (1994b) will give more
significant results. In practice the difference between
the two tests is likely to be small; ours has the distinct
advantage that it is based on the simple concept of the
minimum of the P values of spatial extent and peak
height.

Third, the conditional probability above is used to
compute the unconditional probability. This is simply
done since, for a high threshold t, the clusters are
independent and the number of clusters C above t
follows approximately a Poisson law with mean m
(Adler, 1981) given by

m(t) = V‘A‘1/2(2,17)—(D+1)/2tD—le—t2/21 (1)
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FIG. 2. (Top) The rejection area for a cluster with height H; and
size S; based on the minimum P value of the two established tests. In
this example the minimum probability is found using the peak height
H;. S, corresponds to the cluster with a similar P value for either the
cluster size test or the peak height test. This defines our 2D rejection
boundary (thick continuous line). All the clusters falling on this line
have the same probability of being rejected, i.e., the integral over the
striped area. Hairlines represent isointensity curves of the 2D
probability density function. Also shown are the rejection regions for
the spatial extent and peak height tests alone (stripes going up and
down, respectively). (Bottom) Three different shapes for the rejection
boundary: iso-cumulative contours (Poline and Mazoyer, 1994b),
minimum P value (our proposed combined test), and volume of the
cluster between the intensity threshold and the image itself (excess
mass). For example, cluster (C) would be detected by the three tests,
cluster (B) by the “iso-cumulative” test and the excess mass test only,
and cluster (A) by the excess mass test only. On the other hand,
cluster (A’) is detected by the “minimum” test and not by the two
others, (B’) is detected by the “minimum” and isocumulative test, and
(A") by all three tests.

where V is the volume of the search region and A is the
variance matrix of the derivatives of the image in each
dimension. For an image generated by white noise
smoothed by a Gaussian PSF,

V|A|Y2 = RESELS(4 log,2)P?,

where RESELS is the volume of the search region
divided by the product of the FWHMSs of the PSF in
each dimension (see Worsley et al., 1992).

We denote by P, the probability that the spatial
extent and peak height probability of a single cluster
falls in the rejection area. Then if k clusters occur in the
volume V, the probability that at least one cluster will
be rejected is simply

P(rejection|C = k) = (1 — (1 — P,)").

Summing over k, weighted by the probability of C = k,
we get

P(rejection) = >, (1 — (1 — Pygj)¥)mkem/k!
k=0 (2

=1 — e M)Prej,

2.3. Combined Test: Summary

The procedure for finding the P value of a cluster of
size Sy and a peak of height Hy above a threshold t (so
that the total peak heightist + H,) is as follows.

1. Find the marginal probability for spatial extent
for a given cluster:

P(S=S,) = e~ (A[**tPso/ac)2iD. 3)

where a is given by Eq. (6) in the Appendix and c is
given by Eg. (12) in the Appendix (see also Friston et al.,
1994).

2. Find the marginal probability for peak height
above threshold for a given cluster by dividing m(t + Hy)
by m(t) (see Eq. (1)) to give

P(H = Hy) = (1 + Hy/t)P-Te tHo-H5r2, 4)
which can be well approximated by e ~*Ho for large t and
small Hy (Friston et al., 1994).

3. Find the minimum probability
H=min{P(S=S,), P(H = H,y).
In the next two steps, we find values sy and hy such that
the cluster level marginal probabilities are both equal
to
H=P(S=sy) =P(H=hy).

4. fu<P(S = Sy), then put hy = Hy and equate Eq.
(3) to pand solve for sq to give

So = ac|A| Y2t ~P(—log, p)°"=.
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5. If u < P(H = hyp), then put s = Sy and equate Eq.
(4) to p and solve for hy; there is no exact expression, but
for large t and small hy, hy = (—log, p)/t.

6. Use Eq. (14) in the Appendix to find the combined
probability of rejection for the spatial extent and peak
height at the cluster level:

Prj = P(S=s5) + P(H = hy) — P(S = s, H = hy)

7. Use Eq. (2) to correct this for searching over
clusters, to get the final P value of the combined test:

P(rejection) = 1 — g ™MPrej,

2.4. Validation Using Monte Carlo Simulations
2.4.1. Noise Simulations

We performed straightforward simulations under the
null hypothesis to validate the risk of error as com-
puted using Eq. 2. Random Gaussian fields were
simulated using white Gaussian noise convolved
with a Gaussian kernel, using two-dimensional
(128 X 128 pixels) or three-dimensional (64 X 64 X 32
voxels) processes. The agreement between the experi-
mental false positive rate and the predicted (theoreti-
cal) one was assessed over various thresholds (t rang-
ing from 2 to 3.5) and various smoothness parameters
(Gaussian kernels with FWHM ranging from 10 to 20
mm in the xy plane and from 8 to 16 mm in the z
direction, with the convention that a voxel is2 X 2 X 2
mm?3). The number of simulations was, respectively,
10* for the 2D case and 5 X 10% for the 3D case.
This ensures a good precision on the risk of error found
on the simulated noise fields (for example, for a 5% risk
of error, we have (for 5 X 10% simulations) ¢ =

V(.05 * .95)/5 X 103= 0.3%). In 3D, the cluster detec-
tion was performed in a periodic manner to avoid edge
effects, that is, clusters cut by edges. (Obviously, in
actual brain volumes, the data are not periodic. Be-
cause of the edges of the brain, clusters found in noise
only situation will tend to be smaller on average, and
therefore the comparisons performed here might be too
stringent).

2.4.2. Signal Simulations

The simulations presented here are not intended to
provide a full-power analysis of the new test, simply
because we do not have any good model for true signals.
We therefore limited our analyses to some specific
examples. These examples, however, should demon-
strate the ability of the new test to overcome the
limitations of previous strategies. We simulated three
kinds of signal: (1) a sharp peak with high intensity
(which should be detected by the peak height test), (2) a
large signal with low intensity (which should be de-

TABLE 1

Spatial Extent and Height of Simulated Signals in Two
and Three Dimensions

Signal 1 2 3
2D
Spatial extent S, mm?2 5.25 116.00 11.25
Peak height H 3.76 1.91 3.71
3D
Spatial extent S, mm? 4.87 224.25 15.12
Peak height H 4.46 2.35 3.81

tected by the spatial extent test), and (3) a signal that
would have approximately the same probability of
being detected with either of the two established tests.

All three signals were either 2D squares or 3D
cuboids placed in Gaussian white noise and convolved
with Gaussian kernels (FWHM = 14.10 mm or 7.05
pixels in the x and y direction and 11.77 mm in the z
direction). The size and the maximum peak value of
these three signals (in 2D and in 3D) are summarized
in Table 1.

A signal was considered to be detected when at least
one local maximum was found within an area corre-
sponding to the voxels above 75% of the maximum of
the original filtered signal.

2.5. Application to a Real (PET) Dataset

We present an application of the combined test on an
experimental dataset acquired from six subjects who
took part in a verbal fluency activation study. Subjects
were all right-handed males aged between 20 and 60.
During the stimulation task, subjects were asked to
silently generate verbs related to nouns at the rate of
one noun every 6 s. The control condition was a silent
rest condition. Six scans were acquired per subject
(three controls and three stimulations) on an Ecat 951
CTI PET scanner. Scans were stereotactically normal-
ized to the Talairach space (Friston et al., 1995) and
analyzed using a complete randomized block design. A
T statistic map was constructed for the contrast condi-
tion effect (verb generation minus rest), correcting for
the global activity in the brain using proportional
scaling leaving 25 degrees of freedom. The T map was
then transformed to a Z map (see http://www.fil.ion.ucl.
ac.uk, SPM short course for more information on the T
to Z transformation), which was tested for significant
regions by peak height, suprathreshold cluster size
(t = 2.81), and by the combined test. We smoothed our
data with a narrow kernel (6 mm FWHM in the three
directions) to balance significance levels for the spatial
extent and the peak height tests (more smoothed data
would show much higher significance for the peak
height test). The resulting Z map had a resolution of
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9.8, 11.2, and 12.5 in the X, y, and z directions, respec-
tively. Since we wanted to compare two valid methodolo-
gies, we corrected the P value obtained with the two
original tests as if they were independent. Although
this is clearly not true and leads to conservative results,
it is the one way to correct for this “two tests” proce-
dure.

3. RESULTS
3.1. Validation Using Monte Carlo Simulations

3.1.1. Shape of the Bivariate Distribution

We compare the bivariate distribution of the spatial
extent and peak height of clusters found above the
threshold t = 3 with the theoretical approximation
obtained in Eqg. (14). Figure 3 shows the results for the
3D simulations (results are, in fact, better in the 2D
case, as seen in Section 3.1.2) with, from top to bottom,
the theoretical (top) and experimental (middle) distribu-
tions and the difference (bottom), all on a logarithmic
scale. We observe that although the agreement is good,
the match is not perfect (maximum absolute difference
is 0.034, found for objects of 1 pixel and intensity
H = .06). However, we note that the 2D test involves
summations over this distribution and therefore the
actual results of the test are more robust than one
might expect from Fig. 3. This point will be confirmed
by the simulations below (Section 3.1.2).

3.1.2. Noise Simulations

Varying the threshold t. The risk of error observed
in 2D and 3D is compared to the expected risk of error
(type I error) for a series of thresholds t = 2, 2.5, 3, and
3.5 at a constant resolution (FWHM = 14.1 mm in X
andyand 11.8 mm in z). On the same graphs we plotted
the risk of error found with the previously validated
tests (spatial extent, dashed line; peak height, dotted
line). Recall that the threshold t here is the base
threshold that defines the clusters, while H is the peak
height of these clusters.

Figures 4 and 5 show the results for two and three
dimensions, respectively. We present the results for the
two low thresholds, where the theory is least accurate,
and for the highest threshold (t = 4). Our results
indicate the good agreement between expected and
predicted risks of error with high thresholds, with the
peak height test being slightly too conservative in 2D
and 3D for all simulations. At low thresholds (t = 2),
the combined test is too conservative for small risks of
error in 2D, but not conservative enough for risks of
error above 20% in 3D. The cluster size test also failed
to control properly the type | error in 3D for t = 2. This
effect should be strongly attenuated when using actual
datasets that have edges. Overall, the combined test is
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FIG. 3. (Top) Theoretical (predicted) bivariate distribution of
spatial extent and peak height for regions occurring above an image
threshold of t = 3 in a 64 X 64 X 32 volume (128 X 128 X 64 mm?3)
with resolution 17.5 mminxandy and 12.5 mm in z. Data intensity is
presented in a log scale to increase the visibility of the tail of the
distribution. (Middle) Observed bivariate distribution of spatial
extent peak height under the same conditions as those described
above. (Bottom) Difference between the two. On the two top graphs,
blue is a zero intensity (maximum intensity is 1) while on the bottom
graph, null values are in yellow.
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FI1G. 8. Experimental dataset analyzed with the three different tests. The first panel (top left) shows the maximum intensity projection of
the Z map in the saggital coronal and axial orientations. The volume has been previously normalized to correspond to the Talairach atlas. In
the right panel is the design matrix of the experiment for a two-way analysis of covariance. (see Friston et al. (1995) for a full description of the
elements of the design matrix). The table presents for each region (clusters defined with an image threshold of t = 2.8 and the extent threshold
of 40 voxels) the P value given by the combined test (in parenthesis: number of pixels (size) and peak height (2)), the P value given by the
spatial extent test, the P value given by the peak height test, and the location of the peak. The P values for the peak height and the spatial
extent tests were corrected for a two-test procedure (see Section 2.5).
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FIG. 4. Expected vsobserved risk of error with various thresholds in 2D volumes (128 X 128 pixels or 256 X 256 mm?Z) at a fixed resolution
(FWHM,y = 14.1 mm). (Left) Risk of error between 1 and 10%. (Right) Risk of error varying between 10 and 70%. (Top) High intensity
threshold (t = 3.5). (Middle) Low intensity threshold (t = 2.5). (Bottom) Very low threshold (t = 2.0). The dashed line shows the results from
the spatial extent test, the dotted line from the peak height test, and the dot and dashed line from the combined test. The solid line corresponds

to the y = x line. Results were assessed using 7 X 103 simulations.

conservative except for low thresholds and high risks of
error (greater than 20%), but the vast majority of
applications should avoid these domains.

Varying the width of the convolution kernel (resolu-
tion). Varying the kernel resolution (constant thresh-
old t = 3) did not have any major effects on the recorded
risk of error: in all situations (2D or 3D, low resolution
or high resolution) the observed risk was very close to
the predicted one for the combined test (see Fig. 6;
results in 2D are not shown as they are very similar to
the 3D results). The peak height test again showed a

tendency to be overly conservative over the range of
resolutions employed.

3.1.3. Simulated Signals

Figure 7 presents the percentage of detection of the
three signals defined previously at four different risks
of error for the 3D signals. Similar results were found
in 2D. For the first two “extreme” signals (sharp peak
and spatially extended signals) the combined test re-
sults were in all cases close to the best results obtained
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FIG.5. Expected vs observed risk of error with various thresholds in 3D volumes (64 X 64 X 32 voxels or 128 X 128 X 64 mm?3) at a fixed
resolution (FWHM,y, = 14.1 mm and FWHM, = 11.8 mm). (Left) Risk of error between 1 and 10%. (Right) Risk of error varying between 10 and
70%. (Top) High intensity threshold (t = 3.5). (Middle) Low threshold (t = 2.5). (Bottom) Very low threshold (t = 2.0). The dashed line shows
the results from the spatial extent test, the dotted line from the peak height test, and the dot and dashed line from the combined test. The solid
line corresponds to the y = x line. Results were assessed using 3 X 103 simulations.

either by the spatial extent test or by the peak height
test, demonstrating the ability of the test to detect both
kinds of signal with very little loss in sensitivity.
Indeed, if both these sighals were present in the same
volume, the overall gain in sensitivity would be of the
order of 20 to 30%.

The third signal (detected with a similar probability
by either the spatial extent or peak height test) was
also easily detected both in 2D and in 3D. Note that in
any case the significance value given by the 2D test
should always be less than the minimum of the P value
given by the two one parameter tests, since this is how

we constructed the rejection area. Occasionally, be-
cause we are working with approximate distributions,
the significance of the combined test might be greater
(lower P values) when compared to the two other tests.
However, this disparity should not be great (see, for
instance, the simulation results on the “balanced”
signal in 3D for risks of error greater than 10%).

3.2. 2D Test Results on the Verbal Fluency Dataset

On the experimental dataset the combined test per-
formed as predicted (see Fig. 8). We deliberately chose a
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FIG. 6. Expected vs observed risk of error with various resolution in 3D volumes (64 X 64 X 32 voxels or 128 X 128 X 64 mm3) at a fixed
threshold (t = 3). (Left) Risk of error between 1 and 10%. (Right) Risk of error varying between 10 and 70%. (Top) Low resolution
(FWHM,y = 18.8 mm and FWHM, = 15.7 mm). (Middle) Medium resolution (FWHM,, = 14.1 mm and FWHM, = 11.8 mm). (Bottom) Very
high resolution (FWHM,y, = 9.4 mm and FWHM, = 7.8 mm). The dashed line shows the results from the spatial extent test, the dotted line
from the peak height test, and the dot and dashed line from the combined test. The solid line corresponds to the y = x line. Results were

assessed using 3 X 103 simulations.

contrast showing relatively weak results in terms of
significance (strong results would be significant with
any kind of test). The results demonstrate the versatil-
ity of the combined test: while some areas were de-
tected because of the peak height (e.g., first cluster at
the 0.072 risk of error), others were significant because
of their large spatial extent (second and third cluster,
P = 0.003 and P = 0.040 respectively), while all these
clusters were found significant using the combined test.
Overall, the combined test showed a greater sensitivity,

although this benefit is emphasized by the correction
for the two-tests procedure which is too stringent.

4. DISCUSSION

We have proposed a test based on both the spatial
extent and the peak height of clusters in statistical
images which under the null hypothesis are well ap-
proximated by a smooth Gaussian random field. The
test uses an analytic approximation of the bivariate
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FIG. 7. Percentage of detected signal versus risk of error for three types of signal in 3 X 103 3D volumes (64 X 64 X 32 voxels or
128 X 128 X 64 mm3). (Left) Sharp peak. (Middle) Extended signal. (Right) “Balanced” signal. The dashed line shows the results from the
spatial extent test, the dotted line from the peak height test, and the dot and dashed line from the combined test. Volume resolution was
FWHM,, = 14.1 mm and threshold t = 3. See Table 1 for the characteristics of the signals.

probability distribution function of these two param-
eters. The test was designed to be as general as
possible, being able to detect both high, sharp signals
and broad, extensive signals. The test proposed in this
work should provide greater sensitivity for a wider
range of signals, with a controlled risk of error over the
entire search region.

How do we now report the results of this test?
Because it incorporates a spatial extent test, the risk of
error associated with the combined test is at the cluster
level rather than at the voxel level. This is the case for
all spatial extent methods. We suggest that if the
combined test detects a cluster via the spatial extent
component, then the cluster as a whole is declared
“significant.” In other words, this test provides for a
cluster-level inference.

Obviously, the higher the intensity threshold at
which the clusters are defined, the greater the regional
specificity of the inference, since the clusters will be
smaller. We have seen that the test should be applied
with thresholds greater than 2.5. However, Section 2.1
shows that the intensity threshold should be as low as
possible for a Gaussian shaped signal (unless one
wants to have a high regional specificity). We suggest
the use of threshold around t = 3. The resolution of the
map seems to have little influence on the risk of error
(see Fig. 6). The only noticeable departure of the
observed risk, compared to the predicted risk, was an
underestimation for the peak intensity test and for all
the three tests at low resolution and low risk. The
restriction that the volume is well sampled compared to
the resolution still holds, and this might be a limitation
when analyzing raw (noninterpolated, nonfiltered) fMRI
data.

We note that a high resolution is, in theory, not an
issue. Itis always possible to interpolate the data (with

sinc or spline interpolation) to emulate a good sampling
compared to the resolution. Obviously, this implies
increasing the amount of data to process.

Unlike search over scale or Monte Carlo simulations,
the computational cost of the combined test is very
small. Using matlab (MathWorks Inc.), actual computa-
tion for a cluster is almost instantaneous on a Sun
Spark 20 (Sun Inc.) workstation.

Sensitivity and the Shape of the Rejection Area:
Isocumulative Curves versus Minimum Significance

Because we defined our rejection area in a bivariate
space, as stated in the methods section, there is no
unique definition for this area (there is no order rela-
tion in the bivariate space of size and height). In theory,
one could tailor the test when a priori knowledge is
available on the expected signal types. For instance, in
fMRI, the spatial resolution is better and therefore the
test could be adapted to detect spatially restricted
signals or indeed to reject artifacts (e.g., isolated voxels
with very high intensity values). The definition of the
rejection area in this work should lead to a test slightly
more sensitive to clusters with extreme values (very
high intensity but small spatial extent or large spatial
extent with relatively small heights) and less sensitive
to regions with more “balanced” parameters) when
compared to the definition used in previous work (see
Fig. 2).

In summary the assumptions made when applying
the combined test are (1) a good lattice approximation
to a Gaussian field, (2) a large volume relative to the
resolution, (3) a Gaussian autocorrelation function, and
(4) a sufficiently high image threshold (t = 25). Al-
though all these assumptions are made in deriving the
test, in practice the combined test should be robust to
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violations of some of these assumptions. In particular
because of the way in which the bivariate distribution
was constructed (see Appendix), we expect some robust-
ness with respect to the shape of the point spread
function (PSF), even if in the case of PET data, the
original scanner PSF and the Gaussian filter usually
applied both tend to produce a PSF well approximated
by a Gaussian function. Moreover, the theory only
depends on the curvature of the autocorrelation func-
tion at zero lag, not on the whole function (cf. Eq. (9)).
Note also that there is a variability introduced in the
statistical results when the smoothness of the map is
assessed (which is generally the case when analyzing
statistical maps, (Poline et al., 1995)).

The application of nonparametric statistics as devel-
oped by Holmes et al. (1996) is an attractive alternative
when any or some of the above assumptions are vio-
lated. However the principle of the combined test can
be retained. This would combine the freedom given by
nonparametric approaches with the sensitivity of the
combined test.

An alternative to the combined test would be to use a
function of the spatial extent and the peak height, such
as the “volume” (or excess mass) above a given thresh-
old. This is equivalent to a rejection region with a
hyperbolic shape (see Fig. 2), since, assuming a parabo-
loid model, volume is proportional to the product of
spatial extent and height. This rejection area is similar
to, but more extreme than, the iso-cumulative contours
test of Poline and Mazoyer (1994b). This test might
miss a cluster with large spatial extent if its peak
height was low, while our combined test should detect
such a cluster (see Fig. 2).

In a sense, the search over scale space has aims and
features similar to those of the combined test. The
common aim is to detect in a single procedure various
kinds of signal (different sizes). Note that this implies
occasional loss of sensitivity when the foci are better
detected by one or the other test. The multifiltering
approach assumes a search with isotropic kernels
independent of the underlying anatomy. In other words,
the combined test should be more sensitive to signals of
large size with an irregular shape. These kind of
signals may be expected given the complexity of the
underlying anatomy.

5. CONCLUSION

Because it is essential to have both accurate control
over the risk of error and good sensitivity over a variety
of responses, we have proposed a test that addresses
these two aspects. This test can be seen as an extension
of the test based on spatial extent that is sensitive to
sharp localized signals as well, and so it should have
applications to statistical maps produced with func-
tional MRI.

6. APPENDIX

As a first approximation, we model the shape of the
image Z(x) near a local maximum at X, as an inverted
paraboloid using a simple Taylor series expansion
(Adler, 1981, Chap. 6):

Z(X) = Z + (X — Xo)' Z(X — Xo)/2,

where Z and Z are the values of Z(x) and its second
derivative evaluated at the local maximum. IfH=2Z —t
is the peak height above a threshold t, then the extent S
above t, found using this model, is approximately

S ~ aH D/2/|_2|ll2, (5)
where
20 D/2
= L (6)
I D 1
— +
2

is the volume of a unit D-dimensional sphere, multi-
plied by 2P2, It can be shown that H has approximately
an exponential distribution with mean 1/t (see Adler,
1981, Chap. 6); it is necessary to find the distribution of
Z conditional on H, or equivalently, conditional on Z.
Let p(x) be the correlation function of Z(x) and let

A = Var (2) = —(0).
Then it can be shown that Z and Z have a multivari-

ate normal distribution with zero expectation and
second moments

Var (Z) = 1,
Cov (Z, Z) = —A,
Var (Z) = p(0).

The distribution of Z conditional on Z is then multivar-
iate Gaussian with moments

E(Z|Z) = —AZ,  Var (Z|Z) = p®(0) — A ® A.
We can therefore write, conditional on Z,

—Z =AZ + A, 7)

where A is multivariate normal with mean zero and
variance (7). Since A is small relative to AZ then we can
use the standard approximation for the determinant
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based on the first term in a Taylor series expansion:

log |—Z|~ log|A| + D log Z + €/(2Z). (8)

Where e = tr (A*A). The distribution of € is multivari-
ate Gaussian with expectation zero and variance (from

Eq. (7)):
o =tr (A"'® A Hp¥(0)) — D2 9)

The simplest way of evaluating o2 is to transform the
voxel coordinates x to x* = A~12x. Defining the trans-
formed correlation function p*(x*) = p(x), we get from

Eqg. (9)

64 *(X*)

- Dz
*2 9y *2
0X3 8XJ

x*=0

vm 33 )

i=1 j=

For the case of a Gaussian shaped correlation function

p(X) = exp (—x'Ax/2),

p*(x*) = exp (=x*'x*/2),
8 (x%) 3 Q=]
oxXFXI2 o (1 i
= 2D.

Putting Egs. (5), (6), and (8) together, log (S) condi-
tional on H can be modeled by

loga — (1/2) log |A| — (D/2) log Z

+ (D/2) logH — log (1 + €/22)
with e normal. Since H is small relative to t then we can
replace Z in the above mean and standard deviation
by t.

Comparing the theoretical distribution and the one
assessed using our simulations, we found that instead
of approximating e by a Gaussian distribution, it was
better to approximate 1 + €/2Z by a multiple of a x2
distribution with degrees of freedom v chosen so that
var (1 + €/2Z) = var (x3/v) = 2/v. This gives v = 8t%/¢? =
4t2?/D for the Gaussian correlation function, and the
approximation

va‘A‘fllzt—Dle DIZS -1 XE' (10)

Finally, we can adjust the constant a to ensure that
the expected total region size above t agrees with the
sum of the individual components S, a technique em-
ployed in Friston et al. (1994). The expected cluster size
is the expected total region size divided by the expected

number of clusters m from Eq. (1):

E(S) = V&(t)/m
11
- ‘A‘—1/2t—(D—1)(2,‘T)(D+1)/2 etZIZ(D(t)’ (1)

where V is the search volume and ®(t) is the P value of
a voxel above t:

D(t) = j: ) e-ZZ/Z/ J2mdz.

From our direct derivation (10) and the fact that the
marginal distribution of H is exponential with mean
1/t, we get

E(S) — a‘A‘_l/zt_Dle(H D/2) — ‘A‘—l/Zt—D(Z,‘T)DIZ_

Therefore we can correct our theoretical approximation

such that the expected region size matches Eq. (11).
The correction factor is

c = \2mtet™2d(t), (12)

which approaches one as t tends to infinity. This

suggests the more accurate approximation

vaC‘A‘flIthD/ZH DIZSfl — X]Z}, (13)

in which a is multiplied by c. Integrating this over the
marginal distribution of H, we get:

P(S = s5, H=h,)

- (14)
~ J; . W [vac| A| Y2t ~P2h P2/ lte ~thdh,
=hno

where W, is one minus the x2? distribution function with
degrees of freedom v = 4t2/D, given by

. uv/27lefu/2

=, 270 (i2) O
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