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This paper is about warping a brain image from one
ubject (the object image) so that it matches another
the template image). A high-dimensional model is
sed, whereby a finite element approach is employed
o estimate translations at the location of each voxel in
he template image. Bayesian statistics are used to
btain a maximum a posteriori (MAP) estimate of the
eformation field. The validity of any registration
ethod is largely based upon the constraints or, in this

nstance, priors incorporated into the model describ-
ng the transformations. In this approach we assume
hat the priors should have some form of symmetry, in
hat priors describing the probability distribution of
he deformations should be identical to those for the
nverses (i.e., warping brain A to brain B should not be
ifferent probabilistically from warping B to A). The
undamental assumption is that the probability of
tretching a voxel by a factor of n is considered to be
he same as the probability of shrinking n voxels by a
actor of n21. In the Bayesian framework adopted here,
he priors are assumed to have a Gibbs form, where the
ibbs potential is a penalty function that embodies

his symmetry. The penalty function of choice is based
pon the singular values of the Jacobian having a

ognormal distribution. This enforces a continuous
ne-to-one mapping. A gradient descent algorithm is
resented that incorporates the above priors in order
o obtain a MAP estimate of the deformations. We
emonstrate this approach for the two-dimensional
ase, but the principles can be extended to three
imensions. A number of examples are given to demon-
trate how the method works. r 1999 Academic Press

Key Words: registration; anatomy; imaging; stereo-
axy; spatial normalization; PET; MRI; functional map-
ing.

1. INTRODUCTION

Image registration is an important component in
any neuroimaging applications. One of the objectives

f image registration is to allow the characterization of
he morphology of different subjects’ brains. This allows
natomical comparisons to be made among different

opulations. Studies of brain morphometry have al- i
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eady revealed structural differences between a num-
er of patient populations, and much of the focus of
chizophrenia research in particular is based upon
rain morphometry. We have previously presented a
ultivariate approach for identifying global structural

ifferences based on very smooth (low spatial fre-
uency) deformation fields (Ashburner et al., 1998).
he registration approach developed here should allow
uch more detailed deformation fields to be obtained

nd therefore allow one to identify more subtle struc-
ural differences with greater precision.

Another objective of this work is to provide a more
recise form of spatial normalization. In functional
maging, the operation of spatial normalization facili-
ates intersubject averaging of data. Modalities such as
ositron emission tomography (PET) are limited by the
adioactive dose that can be administered to any sub-
ect. This means that it is often necessary to average
ignals over a number of subjects in order to obtain a
eaningful result. A template image is used to define the

tandardspace intowhichthedifferentsubjectsarewarped.
y using a template that conforms to the space of a
tandard coordinate system, such as that defined by Talair-
ch and Tournoux (1988), it is possible to report anatomical
ositions in terms of meaningful Cartesian coordinates,
elative to some reference space (i.e., the template).
Spatial transformations can be broadly divided into

abel based and non-label based. Label-based tech-
iques identify homologous features (labels) in the

mage and template and find the transformations that
est superpose them. The labels can be points, lines, or
urfaces. If the labels are points, then the required
ransformations at each of those points is known.
etween the points, the deforming behavior is not
nown, so it is forced to be as ‘‘smooth’’ as possible.
here are a number of methods for modeling this
moothness. The simplest models include fitting splines
hrough the points in order to minimize bending energy
Bookstein, 1997, 1989). More complex forms of interpo-
ation are often used when the labels are surfaces. For
xample, Thompson et al. (1996) map surfaces together
sing a fluid model. Non-label-based approaches iden-
ify a spatial transformation that minimizes some

ndex of the difference between an object and a tem-

1053-8119/99 $30.00
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620 ASHBURNER, ANDERSSON, AND FRISTON
late image, where both are treated as unlabeled
ontinuous processes. The matching criterion is usually
ased upon minimizing the sum of squared differences
equivalent to maximizing the correlation) between the
mages. For this criterion to be successful, it requires
he template to appear like a warped version of the
mage. In other words, there must be correspondence in
he gray levels of the different tissue types between the
mage and template.

There are a number of approaches to non-label-based
egistration. A potentially enormous number of param-
ters are required to describe the transformations that
arp two images together (i.e., the problem is very high
imensional). The forms of registration tend to differ in
ow they cope with the large number of parameters.
ne approach is to reduce the number of parameters

hat model the deformations. Some groups simply use
nly a 9- or 12-parameter affine transformation to spatially
ormalize their images, accounting for differences in posi-
ion, orientation, and overall brain size. Low spatial fre-
uency global variability in head shape can be accommo-
ated by describing deformations by a linear combination
f low frequency basis functions (Amit et al., 1991; Friston
t al., 1995; Ashburner and Friston, submitted for publica-
ion). The small number of parameters will not allow
very feature to be matched exactly, but it will permit
he global head shape to be modeled.

The deformations required to transform images to
he same space are not clearly defined. Unlike rigid
ody transformations, where the constraints are ex-
licit, those for warping are more arbitrary. Regulariza-
ion schemes are therefore necessary when attempting
igh-dimensional image registration, thus ensuring
hat voxels remain close to their neighbors. Without
ny constraints it is of course possible to transform any
mage such that it matches another exactly. The issue is
herefore less about the nature of the transformation
nd more about defining constraints or priors under
hich a transformation is effected. Priors are normally

ncorporated using some form of Bayesian scheme,
sing estimators such as the maximum a posteriori
MAP) estimate or the minimum variance estimate
MVE). The MAP estimate is the single solution that
as the highest a posteriori probability of being correct,
nd it is this estimate that we use in this paper. The
VE is used by Miller et al. (1993, 1994) and is the

olution that is the conditional mean of the posterior. In
ddition to minimizing the differences between the
mages, Bayesian schemes involve minimizing addi-
ional functions relating to the position of each voxel
elative to its neighbors. Often, the a priori distribu-
ions used by these schemes are linear and include
inimizing the membrane energy (or Laplacians) of the

eformation field (Amit et al., 1991; Gee et al., 1997),
he bending energy (Bookstein, 1997), and the linear-

lastic energy (Miller et al., 1993). However, none of
hese linear regularization schemes necessarily pre-
erve the topology of the warped images.
An alternative to using a Bayesian scheme incorporat-

ng some form of elastic prior would be to use a viscous
uid model (Christensen et al., 1994, 1996) to describe
he warps. In these models, finite difference methods
re normally used to solve the partial differential
quations that model one image as it ‘‘flows’’ to the
ame shape as the other. The major advantage of these
ethods is that they are able to account for large

isplacements and also ensure that the topology of the
arped image is preserved, but they do have the
isadvantage that they are computationally expensive.
iscous fluid models are almost able to warp any image
o that it looks like any other image, while still
reserving the original topology. In some respects these
odels may have too much freedom, in that extremely

nlikely deformations are not penalized.
Viscous fluid models are one of many approaches that

escribe the spatial transformations in terms of a
hysical process. However, rather than obeying physi-
al laws, the intensity-based registration model pre-
ented in this paper utilizes statistical rules. Unlikely
eformations are penalized by incorporating prior infor-
ation about the smoothness of the expected deforma-

ions using a MAP scheme. In addition, the topology of
he deformed images is preserved by ensuring that the
eformations are globally one to one. The remainder of
his paper is divided into two sections. We first intro-
uce the theoretical background and then some illustra-
ive applications.

2. THEORY

A high-dimensional image registration can be consid-
red as an optimization problem involving many thou-
ands of parameters. In order to achieve a satisfactory
esult with this many parameters, it is essential that priors
r constraints are imposed. A Bayesian framework has
een used by a number of researchers (Amit et al., 1991;
iller et al., 1993; Gee et al., 1995a,b) to incorporate prior

robability distributions into a warping model, and we do
he same here. Bayes rule can be expressed as

p(Y 0b) ~ p(b 0Y) p(Y),

here p(Y) is the a priori probability of parameters Y
eing the true parameters, p(b 0Y) is the likelihood of
bserving data b given that parameters Y are correct,
nd p(Y 0b) is the a posteriori probability that Y are
orrect given the data b. Here, Y are the parameters
escribing the deformation, and b are the images to be
atched. The estimate that we determine here is the
AP estimate, which is the value of Y that maximizes

(Y 0b). A probability is related to its Gibbs form by

2H(Y)
p(Y) ~ e .
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621IMAGE REGISTRATION
herefore, the MAP estimate is identical to the param-
ter estimate that minimizes the Gibbs potential of the
osterior distribution (H(Y 0b)), where

H(Y 0b) 5 H(b 0Y) 1 H(Y) 1 c,

here c is a constant.
From an information theoretic perspective, it can be

een that the Gibbs potential is simply the information.
herefore minimizing H(Y 0b) is equivalent to minimiz-

ng the information or surprise about a deformation
iven the data. In order to minimize H(Y 0b), we must
inimize the sum of H(b 0Y) (the likelihood potential)

nd H(Y) (the prior potentials). We now discuss these
otentials in detail.

.1. Likelihood Potentials (H(b 0Y))

The registration matches an object image (f) to a
emplate image (g). Our current model assumes that
ne is simply a spatially transformed version of the
ther (i.e., there are no intensity variations between
hem), where the only intensity differences are due to
niform additive Gaussian noise. The Gibbs potential
or this situation is given by

H(b 0Y) 5
1

2s2 o
i51

I

( f (y(xi)) 2 g(xi))2,

here g(xi) is the ith pixel value of g and f (y(xi)) is the
orresponding pixel value of f. In the model we use
ere, the variance (s2) is assumed to be the same for all
oxels. A suitable value to use for each iteration is
stimated by computing the residual sum of squared
ifferences. For the early iterations, s2 has a higher
alue. This places more weight on the priors in the
AP optimization scheme, so that the deformations

re smoother. When close to the final solution, s2 has
ecreased, and the algorithm is able to compute more
etailed deformations.

.2. Prior Potentials (H(Y))

Consider the deformation fields that register two
mages f and g. The two fields that map from f to g and
rom g to f can be combined in order to map from f to g
nd then back to f. If the registrations are perfect, then
he resulting deformation should be uniformly zero.
ny deviations must be due to registration errors. In
rder to minimize these errors, we suggest that there
hould be symmetry in the priors. In addition to
onsidering the deforming forces that warp image f to
atch image g, we also need to consider what is
appening to the forces mediating the inverse of the
eformation field. In order to achieve this symmetry, we
ake the fundamental assumption that the probability
f stretching a voxel by a factor of n is the same as the t
robability shrinking n voxels by a factor of n21. For
xample, a deformation that stretches one voxel in the
bject image to fit two voxels in the template should
ncur the same penalty as the contraction of two voxels
o fit one template voxel.

In order to compute these potentials, we consider the
ixels of the template image (g) as being on a regular
rid, with unit spacing between them. A triangular
esh connects the centers of each pixel (as shown in
ig. 1). Within each triangle, there is assumed to be a
niform affine mapping between the images. If the
oordinates of the vertices of an undeformed triangle
re (x11, x21), (x12, x22), and (x13, x23), and if they map to
oordinates (y11, y21), (y12, y22), and (y13, y23), respectively,
hen the 3 3 3 affine mapping (M) can be obtained by

M 5 1
m11 m12 m13

m21 m22 m23

0 0 1
2 5 1

y11 y12 y13

y21 y22 y23

1 1 1
21

x11 x12 x13

x21 x22 x23

1 1 1
2
21

.

he Jacobian (J) of this affine mapping is simply
btained from matrix M by

J 5 1
m11 m12

m21 m22
2.

he penalty for distorting each of these triangles is
erived from its Jacobian. By using singular value
ecomposition, J can be decomposed into two unitary
atrixes (U and V) and a diagonal matrix (S), such that
5 USVT. The unitary matrixes simply represent

FIG. 1. The area of the template image (g) is divided into a

riangular mesh where the nodes are centered on the pixels.
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622 ASHBURNER, ANDERSSON, AND FRISTON
otations1 and are therefore not important to the pen-
lty function. Diagonal matrix S contains the singular
alues, and these represent relative stretching in or-
hogonal directions. The determinant of J (det(J))
epresents relative volume changes and is simply the
roduct of the singular values.
A suitable prior potential function should preserve a

ne to one mapping between f and g, by constraining
he determinants of the Jacobians to be positive. The
nverse of the mapping also needs to be considered, in
hat the potential (per unit area) for J should be
dentical to that which would be obtained for J21. A
enalty such as log(det(J))2 (or even det(J) 1
et(J)21 2 2) would realize both these criteria. How-
ver, relative lengths also need to be considered, and
he length and volume changes should have similar
istributions. A suitable form for this function is based
pon the diagonal elements of S being drawn from a

ognormal distribution (i.e., the logs of the elements are
ormally distributed). The penalty per unit area is
herefore llog(s11)2 1 llog(s22)2, where l is a ‘‘regulariza-
ion parameter.’’2 A lognormal distribution for each
iagonal element of S also implies a lognormal distribu-
ion for det(J), since log(det(J)) ; log(s11) 1 log(s22) and
oth log(s11) and log(s22) are normally distributed. Each
riangular patch has an area of 1⁄2 pixel, and it will have
n area of det(J)/2 pixels when mapped to the space of
mage f. The total area affected by the penalty in both
he template and the object images is therefore
1 1 det(J))/2, so the penalty for each triangle becomes

5 l(1 1 det(J)) (log(s11)2 1 log(s22)2)/2. Examples of
hese penalties in terms of two-dimensional probability
unctions are illustrated in Fig. 2. The prior potential
ver the whole image is based on the sum of the
otentials for each of the I triangles:

H(Y) 5 o
i51

I

hi.

or simplicity, in the current description, the fact that
he images have boundaries is ignored. The boundaries
re fixed so that the deformation at the edges is always
ero. This ensures that the topology is preserved,
ecause deformations are globally one to one when they
re locally one to one and have fixed boundaries.

1 Complications arise when the determinant of J is negative. In
his case either U or V will also incorporate a reflection by having a
egative determinant. However, this should not cause problems since
he registration prevents the determinant of J from becoming
egative.

2 Short of determining l using a large number of ‘‘true’’ deforma-
ions, it is assigned some suitable value that facilitates rapid
wonvergence to reasonable solutions.
.3. Steepest Descent Optimization

The images are matched by estimating the set of
arameters (Y) that maximizes their a posteriori prob-
bility. This involves beginning with a set of starting
stimates and repeatedly making a tiny adjustment to
he parameters such that the a posteriori potential is
ecreased. In each iteration, the voxel coordinates are
pdated in situ, by sequentially scanning from top to
ottom and left to right. In the next iteration, the order
f the updating is reversed (bottom to top and right to
eft), and this alternating sequence is continued until
here is no improvement.

Each iteration of the optimization involves determin-
ng the rate of change of the a posteriori potential with
espect to tiny changes in each element of Y. For the
th iteration, the estimates for the ith element of Y are
odified according to

yi
(n11) 5 yi

(n) 2 e
­H(Y 0b)

­yi
5 yi

(n) 2 e1­H(b 0Y)

­yi
1

­H(Y)

­yi
2 ,

here the value of e is chosen to be suitably small (see
elow).
­H(b 0 Y)/­yi is the rate of change of likelihood poten-

ial with respect to changes in yi:

H(b 0Y)

­yi
5

­( f ( yi) 2 g(xi))2/(2s2)

­yi
5

( f (yi) 2 g(xi))

s2

­f (yi)

­yi
,

2

FIG. 2. Probability density functions relating to the position of
he center voxel, assuming that all other voxels remain at fixed
ocations on a regular grid. Left column, using heavy regularization

5 10. Right column, using light regularization l 5 1. Top, on a
egular grid; bottom, on an irregular grid.
here s is estimated as described in Section 2.1.
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623IMAGE REGISTRATION
­H(Y)/­yi is dependent upon changes to the Jacobi-
ns of the six adjacent triangles shown in Fig. 3.
ecause the mathematics of computing these partial
erivatives is algebraicly dense, a C subroutine is
rovided in Fig. 4 that will compute the derivatives for
single triangular patch.
It is essential that none of the determinants become

ess than or equal to zero, because the registration
lgorithm would be unable to recover if this were to
appen. However, preventing this is relatively straight-
orward. Before any yi is updated, the areas of all
ffected triangles are computed. If any of the areas
ould become less than or equal to zero, then the value
f e is decreased, for that point, until the change in yi
esults in a nonnegative area. By incorporating this
est of stability, it is possible to use larger values of e.
his is especially useful for the early iterations because

t allows faster convergence by allowing large deforma-
ions to be estimated more rapidly. For later iterations,
maller values of e are more appropriate as they slow
own convergence, thus reducing the amount of noise
n the deformation fields.

3. ILLUSTRATIONS

.1. Examples Using Simulated Data

Simulated data were used to demonstrate the revers-
bility of the deformation fields. Two images (of
00 3 100 pixels) were constructed, one of them a circle
nd the other a square. Pixel intensities ranged from 0
o 1. The circle was warped to match the square, and
he square was warped to match the circle using a value
f 1 for l. No noise was added to the images, so a
onstant variance (s2) of 0.01 was assumed for all
terations. The final results of the registration are
hown in Fig. 5.
In order to demonstrate the symmetry of the deforma-

FIG. 3. The six neighboring triangles whos Jacobians are influ-

rnced by translating the central point.
ions, the two deformation fields were combined. These
re shown in Fig. 6. If the deformations were perfectly
ymmetric, the combined deformations would be com-
letely uniform. However, wrinkles can be seen which
ay be due to using finite approximations of continu-

us functions. Another contributing factor to the
rinkles may be because the likelihood potentials
riving the registration are not symmetric. Only the
radients of one of the images is used. Future work may
nvolve using the gradients of both images to drive the
egistration.
With some modifications, the method should allow

arge deformations to be estimated by reducing the
alue of l. The limitations of using a finite element
pproach on a fixed lattice mean that a regridding
cheme (Christensen et al., 1996) may need to be
ncorporated to allow larger deformations to be mod-
led correctly. However, because brains are all of simi-
ar shape, the ability to model very large deformations
n this way may not be necessary in neuroimaging
pplications.

.2. Registering a Pair of Images

Approximately corresponding slices through two MR
mages of different subjects were registered together
sing the current approach. Each image contained
00 3 256 pixels (where each pixel was 1 3 1mm), so
he registration involved optimizing a total of 100,584
arameters.
In order to reduce the chance of the algorithm being

aught in a local minimum, the first few iterations of
he registration were carried out with the images
moothed using an 8-mm full width at half maximum
aussian convolution kernel. Larger values for l were
lso used for the early iterations in order to estimate
he global head shape prior to estimating the more
etailed deformations. The final results of the registra-
ion are shown in Fig. 7.

Two-hundred iterations were used for this particular
xample, each iteration taking approximately 2 s on a
un SPARC Ultra 2. s2 was estimated from the residual
quared difference between the images at each itera-
ion, and the regularization parameter (l) was set to 0.5
n the final iterations.

.3. Toward a Canonical Brain

The main objective of spatial normalization is to
ransform images from a number of subjects to the
ame stereotactic space. In order to achieve this, the
mages of all the subjects must be matched to a
emplate image. Obviously, some template images are
‘better’’ than others. For example, if the image of a
ubject with a particularly unusual pattern of cortical
olding was used, then the validity of the resulting

egistrations would be compromised. In order to regis-
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624 ASHBURNER, ANDERSSON, AND FRISTON
er the images to an unusually shaped brain, the
eformations would need to be greater and therefore
ore susceptible to error. The ideal solution would be to
se a ‘‘canonical’’ or average shaped brain as a tem-

FIG. 4. C code for computing the rate of change of the prior poten
he routine are the original coordinates at the vertexes of the triangle.
y12,y22), and (y13,y23) respectively. The values returned are h, dh1,
riangular patch and the rate of change of the potential with respect t
are ((w 1 ((w 1 2d)(w 2 2d)) 1/2)/2)1/2 and ((w 2 ((w 1 2d)(w 2 2d))
late. The concept of a canonical brain we shall use s
ere is one that other images can be matched to with
he least amount of ‘‘energy’’ (Gibbs potential).

An iterative procedure has been used to generate
uch an average from a slice from the MR images of 29

(h) with respect to changes in y11 and y21. The arguments passed to
ese are (x11,x21), (x12,x22), and (x13,x23), and they map to (y11,y21),

dh2, and these correspond to the potential of the deformation of the
anges in y11 and y21. Note that the singular values of a 2 3 2 matrix
/2)1/2, where w 5 j11

2 1 j12
2 1 j21

2 1 j22
2 and d 5 j22 j11 2 j12 j21.
tial
Th
and
o ch

1/2)
ubjects. The images were first registered to the same
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625IMAGE REGISTRATION
tereotactic space using a 12-parameter affine registra-
ion (Ashburner et al., 1997), and the same slice was
xtracted from all the registered images. The first step
s to average the intensities of the unwarped images to
reate an initial estimate for the canonical template.
his model also incorporates a spatially varying s2, and

his is computed from the residual variance at each
ixel. Then an iteration of the registration procedure is
sed to bring each of the images slightly closer to the
hape of the template. The warped brains are averaged
gain, and this average is used as the template for the
ext round of the procedure. The residual variance is
lso recomputed and used as the new estimate for the
onstationary s2. This is continued until the algorithm
onverges and the Gibbs potential of the system is
inimized. After many iterations, the end result is a

emplate that satisfies our criterion. The results of this
rocedure are shown in Fig. 8. We suggest that this
ay be a very useful and principled technique to

enerate templates and ‘‘canonical’’ references.

FIG. 5. Demonstration using simulated data. Top left, original
quare; top right, original circle; middle left, square deformed to
atch the circle; middle right, circle deformed to match the square;

ottom left, deformation field applied to the circle in order to warp it
o match the square. The deformation field shows where data should
e resampled from in the original image in order to generate the
arped version. Bottom right, deformation field required to deform
ehe square to the circle.
4. DISCUSSION

In summary, we have presented a novel high-
imensional image registration method that uses
ayesian statistics to achieve a maximum a posteriori
stimate of the required deformations. The priors used
y the model are symmetric, in that the probability
istribution of the deformations is considered identical
o those for the inverses. Although the method has only
een demonstrated in two dimensions, the principles
an be extended to three-dimensional registration. The
wo-dimensional prototype was developed, mostly be-
ause it makes the evaluation of the basic principles
uch more straightforward. Two-dimensional deforma-

ion fields can be visualized much more easily than
hree-dimensional deformations and also require less
xecution time than the equivalent implementation in
hree dimensions. Many hundreds of iterations are
ormally required for the algorithm to converge to the
nal solution, so a three-dimensional version would
ake several hours to run.

Like all image registration methods that rely on
onventional optimization techniques, this method can
till get caught in a local minimum. The chance of this
ccurring is reduced by assigning more regularization
o the early stages of the registration (when the match-
ng may also be performed using smoother images).
his results in the global brain shape being estimated
rst. By gradually decreasing the amount of regulariza-
ion (and smoothing), the algorithm can estimate higher
requency deformations. However, this ‘‘coarse to fine’’
pproach will still not guarantee the globally optimum
olution, especially for features on the cortical surface.
or example, it would be very easy for a sulcus in one
rain to be matched to an incorrect sulcus in another. In
rder to achieve a globally optimal solution, some form
f robust stochastic method would be required. Unfortu-
ately, these methods are very computationally inten-
ive and are therefore not really practical for extremely
igh-dimensional image registration methods. How-

FIG. 6. Demonstration of the reversibility of the deformations
btained by combining forward and reverse deformations. Left,
eformation field that warps from the circle to the square and back to
he circle; right, deformation field that warps from the square to the
ircle and back to the square.
ver, if sulci and gyri can be easily labeled from the
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626 ASHBURNER, ANDERSSON, AND FRISTON
rain images, then robust methods can be applied in
rder to match the labeled features. Robust methods
ecome more practical when the amount of information
s reduced to a few key features. The robust match can
hen be used to bias the high-dimensional registration
Joshi et al., 1995; Thompson and Toga, 1996; Davatzi-
os, 1996), therefore increasing the likelihood of obtain-
ng the globally optimum solution.

The emphasis of this paper is about how priors used
or image registration should be symmetric. Unlike
ayesian models that use linear priors such as mem-
rane energy (Amit et al., 1991; Gee et al., 1997), linear
lasticity (Miller et al., 1993), or bending energy (Book-
tein, 1989, 1997), the Jacobians of the deformation
eld are increasingly penalized as they approach singu-

FIG. 7. Top left, the unwarped object image; top right, the templa
rder to warp it to match the template image; bottom right, the object
arity. In theory, by decreasing the weight of the priors, f
arge distance deformations can be achieved that still
reserve the image topology. Unfortunately, one of the
isadvantages of using weaker priors (smaller l) is that
he search space is increased because there are effec-
ively a greater number of independent parameters in
he model. A larger search space means that there are
ore potential local minima, so it becomes more impor-

ant to provide better starting estimates if large dis-
ance deformations are to be estimated.

The priors are currently spatially invariant. Future
ork may involve defining nonstationary priors. Be-

ause structural variability is often greater in certain
irections (Thompson et al., 1996), some form of a
ensor field describing normal variability in each direc-
ion may be appropriate. A data representation of this

age; bottom left, the deformation field applied to the object image in
age after warping to match the template.
te im
orm, together with a canonical brain template and
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627IMAGE REGISTRATION
ssociated error variance image, would allow anatomi-
al comparisons to be made against the normal popula-
ion. This would facilitate the identification of abnor-
al morphological features by locating higher than
ormal values in the spatial distribution of the Gibbs
otentials. If successful, this should be a significant
ontribution to the field of radiology and computational
euroanatomy in general.

ACKNOWLEDGMENT

FIG. 8. Top left, the average of the MR images of 29 subjects reg
verage (both shape and intensity) of the same 29 MR images after reg
he standard deviations of the affine registered MR images; bottom
sing the current method. The images of standard deviation are show
This work was supported by the Wellcome Trust.
REFERENCES

mit, Y., Grenander, U., and Piccioni, M. 1991. Structural image
restoration through deformable templates. J. Am. Stat. Assoc.
86:376–387.

shburner, J., and Friston, K. J. 1999. Nonlinear spatial normaliza-
tion using basis functions. Hum. Brain Map. 7(4): in press.

shburner, J., Neelin, P., Collins, D. L., Evans, A. C., and Friston,
K. J. 1997. Incorporating prior knowledge into image registration.
NeuroImage 6:344–352.

shburner, J., Hutton, C., Frackowiak, R. S. J., Johnsrude, I., Price,
C., and Friston, K. J. 1998. Identifying global anatomical differ-
ences: Deformation-based morphometry. Hum. Brain Map. 6(5):

red together using a 12-parameter affine registration; top right, the
ering together using the method described in Section 3.3; bottom left,
ht, the standard deviations of the MR images after the registration
sing the same intensity scaling.
iste
ist
rig
348–357.



B

B

C

C

C

D

F

G

G

G

J

M

T

T

T

628 ASHBURNER, ANDERSSON, AND FRISTON
ookstein, F. L. 1989. Principal warps: Thin-plate splines and the
decomposition of deformations. IEEE Trans. Pattern Anal. Mach.
Intell. 11(6):567–585.

ookstein, F. L. 1997. Landmark methods for forms without land-
marks: Morphometrics of group differences in outline shape. Med.
Image Anal. 1(3):225–243.

hristensen, G. E. 1994. Deformable Shape Models for Anatomy,
doctoral thesis. Sever Institute of Washington University.

hristensen, G. E., Rabbitt, R. D., and Miller, M. I. 1994. 3D brain
mapping using a deformable neuroanatomy. Phys. Med. Biol.
39:609–618.

hristensen, G. E., Rabbitt, R. D., and Miller, M. I. 1996. Deformable
templates using large deformation kinematics. IEEE Trans. Image
Process. 5:1435–1447.
avatzikos, C. 1996. Spatial normalization of 3D images using
deformable models. J. Comput. Assist. Tomogr. 20(4):656–665.

riston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D.,
and Frackowiak, R. S. J. 1995. Spatial registration and normaliza-
tion of images. Hum. Brain Map. 2:165–189.
ee, J. C., Le Briquer, L., Barillot, C., Haynor, D. R., and Bajcsy, R.
1995a. Bayesian approach to the brain image matching problem. In
Proceedings, SPIE Medical Imaging 1995: Image Processing (M. H.
Loew, Ed.), Vol. 2434, pp. 145–156. SPIE, Bellingham, WA.
ee, J. C., Le Briquer, L., and Barillot, C. 1995b. Probablistic

matching of brain images. In Information Processing in Medical
Imaging (Y. Bizais, C. Barillot, and R. Di Paola, Eds.), pp. 113–125.
Kluwer, Dordrecht.
ee, J. C., Haynor, D. R., Le Briquer, L., and Bajcsy, R. K. 1997.
Advances in elastic matching theory and its implementation. In
CVRMed-MRCAS’97 (P. Cinquin, R. Kikinis, and S. Lavallee,
Eds.). Springer-Verlag, Heidelberg.

oshi, S. C., Miller, M. I., Christensen, G. E., Banerjee, A., Coogan,
T. A., and Grenander, U. 1995. Hierarchical brain mapping via a
generalized dirichlet solutions for mapping brain manifolds. In
Proceedings, SPIE International Symposium on Optical Science,
Engineering and Instrumentation.

iller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. 1993.
Mathematical textbook of deformable neuroanatomies. Proc. Natl.
Acad. Sci. USA 90:11944–11948.

alairach, J., and Tournoux, P. 1988. Coplanar Stereotaxic Atlas of
the Human Brain. Thieme, New York.

hompson, P. M., and Toga, A. W. 1996. Visualization and mapping of
anatomic abnormalities using a probablistic brain atlas based on
random fluid transformations. In Proceedings of the International
Conference on Visualization in Biomedical Computing, pp. 383–
392.

hompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., and Toga, A. W.
1996. 3D statistical analysis of sulcal variability in the human

brain. J. Neurosci. 16(13):4261–4274.


	1. INTRODUCTION
	2. THEORY
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	3. ILLUSTRATIONS
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. DISCUSSION
	ACKNOWLEDGMENT
	REFERENCES

