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We describe an implementation of the general linear
model that facilitates the characterization of evoked
hemodynamic responses to sensorimotor or cognitive
processing, when the exact form of these responses is
not known. The importance of this approach is that
one can test for differential responses among tasks
that may elude more conventional analyses. In partic-
ular, we suppose that an evoked response has early
and late components and that a differential response
may involve (i) both components to the same degree,
as in a conventional “activation” or (ii) differential ex-
pression of the early and late components in two tasks,
as might be seen in differential adaptation, or differ-
ences associated with the tasks (e.g., requiring and not
requiring sustained attention). Using this approach
we were able to demonstrate that the anterior cingu-
late differentiates, in terms of its response, between
two motor tasks that did and did not require sustained
attention. This differential response was observed
even though there was no classical “activation” (i.e.,
there was no difference in the mean activity associ-
ated with the two conditions). It is suggested that
these demonstration results point to the possibility of
making greater use of the temporal resolution af-
forded by fast fMRI techniques. ©1995 Academic Press, Inc.

INTRODUCTION

This paper represents the integration of two previ-
ous approaches that we have described for the analysis
of fast fMRI time-series. In the first paper (Friston et
al., 1995a) we introduced a simple extension of the gen-
eral linear model that allowed for correlations between
error terms due to physiological noise or correlations
that ensue after temporal smoothing. This extension
used the effective degrees of freedom associated with
the error term (a simple function of the number of
scans and the temporal autocorrelation function).
The second paper (Friston et al., 1995b, the com-
panion paper to this one) used multivariate statistics
(MANCOVA and canonical variates analysis) to char-

acterize the form of hemodynamic transients that are
evoked during a cognitive or sensorimotor task. This
analysis assumed that physiological responses could
show profound task-dependent adaptation and time-
dependent changes over the seconds following the on-
set of a task. By modeling hemodynamic responses us-
ing appropriate temporal basis functions, we were able
to estimate their form within the general linear model
using MANCOVA and CVA. The results revealed some
compelling and somewhat unexpected insights about
transient but stereotyped responses to changes in cog-
nitive or sensorimotor processing. The most remark-
able observation was that these responses can be bi-
phasic and show profound differences in their form de-
pending on the extant task or condition.

The aim of this short paper is to describe a specific
variant of the univariate techniques described in the
first paper (Friston et al., 1995a) that allows for region-
specific and task-dependent differences in the form of
an evoked hemodynamic response or evoked transient.
This variant of the general linear model uses temporal
basis functions as in the second paper (Friston, 1995b)
but with the added constraint that the number of these
basis functions is kept to a minimum. In the general
linear model one tests hypotheses about specific effects
using a compound or contrast of the effects one has
modeled in the design matrix. The analysis is usually
more powerful when the degrees of freedom of the error
terms are higher. The degrees of freedom due to error
represent the effective number of independent obser-
vations minus the number of effects modeled. Clearly if
we were to use a large number of basis functions the
degrees of freedom would be compromised and the
choice of contrast would become very complicated.
Therefore we have chosen to use two basis functions
that model the family of likely responses as efficiently
as possible.

The importance of modeling a whole family of re-
sponse transients (as opposed to one fixed and simple
form) is demonstrated using a single-subject study of
attention in motor sequencing. It is shown that the
“activation profiles” that ensue from the analysis can
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vary enormously depending on whether one tests for a
conventional (sustained) difference in activity or
whether one tests for biphasic differences that result
from a differential response in terms of early and late
components. Biphasic differences can be thought of as
an interaction between early and late components of
the hemodynamic response to a task and the tasks in
question. This form of differential response was sug-
gested by our previous multivariate analysis (Friston
et al., 1995b) and is intuitive in the sense that subjects
are likely to habituate to some tasks more rapidly than
to others (particularly those involving sustained atten-
tion or new learning). This differential habituation,
“warm up,” or indeed “carry over” from one task to the
next (see Discussion) may be associated with differen-
tial adaptation over several seconds in terms of the
measured hemodynamic sequelae. A simple conse-
quence of this is that the one task may evidence a
stronger earlier activation but, following adaptation,
the second task may supervene at later stages. In other
words the differences could be biphasic. In this paper
we provide a demonstration study to show that this
effect can be seen empirically and suggest that thisis a
sufficient reason for modeling these effects generally.

The paper is divided into two sections. The first the-
ory section summarizes the use of the general linear
model in the construction of statistical parametric
maps, with specific emphasis on the temporal basis
functions proposed for fast fMRI data analysis. The
second section presents an analysis of a motor sequenc-
ing task involving sustained attention to visual cues.
We show that only when more subtle differential re-
sponses among the conditions are examined, do we see
systematic, task-specific differences in the anterior cin-
gulate and SMA.

THEORY

In functional imaging the general linear model is
used to make statistical inferences by performing uni-
variate tests at each and every voxel. This is known as
statistical parametric mapping (Friston et al., 1991). In
what follows we present a specific implementation of
the general linear model designed to facilitate the com-
parison of stereotyped hemodynamic responses to cog-
nitive or sensorimotor processing, where the exact
form of these responses is unknown. These stereotyped
responses will be referred to as [hemodynamic] tran-
sients. The general approach has been described in de-
tail elsewhere (Friston et al., 1995a) but will be sum-
marized for completeness in this paper. The implemen-
tation considered in this paper centers on the way in
which the transients are modeled, using an efficient
basis set of two functions that can approximate most
forms of response seen in fMRI.
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The General Linear Model

The general linear model (Chatfield and Collins,
1980) for a time-series can be written in matrix nota-
tion as

X=H.n+ D.y +e, )
where X is a column vector of response variables, in
this case values from a single voxel in a fMRI time-
series. The columns of H model the effects of interest,
in this case the temporal basis functions modeling the
transient response to each occurrence of a particular
task or condition. The columns of D model effects of no
interest that are considered confounds, for example,
time or the global activity of the scan. H and D are
partitions of the design matrix G = [H D]. The design
matrix has one row for every scan and one column for
every effect (covariate) in the model. g = [nT yT]T is a
column vector of parameters for the “effects” modeled
by each column of the design matrix. The errors e are
assumed to be independent and identically normally
distributed with covariance 3 = ¢?.1, where 1 is the
identity matrix. This model can be extended to include
temporal smoothing. Let K be a convolution matrix us-
ing a Gaussian kernel with parameter s where, by Eq.

(1

KX=G*g + Ke 2)

where K.X represents the temporally smoothed data.
G* = K.G is a similarly convolved design matrix G and
now the error terms K.e are identically distributed
with covariance 3 = o> K.K".

The Design Matrix, the Temporal Basis Functions,
and Confounds

We have chosen two basis functions that define a
family of curves typical of response profiles seen in
fMRI. These functions are exponentially modulated
sine functions of the form

AD) = sin(r.tln + 1)).exp(~t(n.k)), (3)

where & = 4 (early response) or —1 (late response) and
n is the length of each task or condition epoch in scans.
The two modulated functions are shown in Fig. 1 (up-
per panel). The lower panel shows the variety of re-
sponse forms that linear combinations of these two ba-
sis functions can model. These curves can be unimodal,
bimodal, biphasic, positive, or negative, always begin-
ning and ending with zero. In the examples shown the
length of each task or condition is assumed to be 10
scans. The H partition of the design matrix contains
two columns for each different task or condition. Each
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FIG. 1. The temporal basis functions modeling the early and late
components of an evoked hemodynamic response. (Top) The two
modulated basis functions spanning the duration of one epoch of a
single condition or task (assumed here to be 10 scans). (Bottom)
Some examples of the curves that obtain by linear combinations of
these basis functions.

of these two columns contains repetitions of one of the
two basis functions at the times during which the con-
dition in question is present. The amount to which each
of the two basis functions contributes to a particular
task is given by the estimate of the respective coeffi-
cients in the vector of parameter estimates . Least
squares estimates of B8, say b, are given by

b = (G*TG*)'G*T K.X. 4

The null hypothesis that the effects embodied in H are
not significant can be tested with the ¢ statistic using
linear compounds or contrasts of the parameter esti-
mates b. A contrast (row vector) ¢ is simply a set of
weights that sum to zero. The principal advantage of
using two basis functions is that these contrasts can be
specified in a meaningful and intuitive fashion. One
useful way of thinking about the variety of contrasts
that could be specified is to consider the differences
between any two conditions and the two basis func-
tions as representing a factorial experimental design.

159

In this framework we can ask three classes of ques-
tions. First, we can test for the main effect of the basis
functions. This is equivalent to testing the hypothesis
that there is a significant difference between the mag-
nitude of the early component of the response (first
basis function) and the late component (second basis
function) that is prevalent in both conditions. For ex-
ample, if pairs of columns in G modeled early and late
components in conditions A, B, and C:

c=[001-11-1....... ]

would test for a main effect of the early component
(relative to the late component) common to conditions
B and C. The dots represent zeros for the confounds in
the D partition of the design matrix. Clearly this con-
trast does not tell us anything about the differences
between the responses to conditions B and C and will
not be considered further here. The second sort of con-
trast tests for a main effect of condition, i.e., similar
increases (or decreases) in both early and late compo-
nents between two conditions. For example,

c=[00-1-111....... 1

tests for an activation in C, relative to B that is ex-
pressed in both early and late components. This con-
trast would correspond most closely to the tests used in
conventional fMRI time-series analysis (e.g., correla-
tions with a box-car or sine waveform, or performing
unpaired ¢ tests on the data from conditions B and C).
The third and final sort of contrast is effectively an
interaction or difference in the relative contributions of
the early and late components depending on condition.
For example,

c=[001-1-11....... ]

would test the hypothesis that condition B evokes a
phasic early component that adapts quickly, while con-
dition C is associated with a slower and more sustained
response with a more pronounced late component (rel-
ative to B). In other words a difference in the shape of
the hemodynamic transients. It is this difference that
the current framework is designed to accommodate,
and we suggest that these differences can be as impor-
tant as the simple differences tested for with conven-
tional contrasts. The significance of a particular linear
compound of effects is tested with

T = ¢.b/e.e2.(G*TG*)~1.eT), (5)

where

(6)

€ =rlrlv
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v is the degrees of freedom associated with the residu-
als r =X — G.b, and T has the Students ¢ distribution
with degrees of freedom v. If the error terms (elements
of r) were independently distributed v would simply be
the number of scans minus the number of effects esti-
mated, i.e., N — rank(G*). However, the error terms
are known to be correlated because of the temporal
smoothing (3 = > K.K") and v = [N - rank(G*))/
V(2ms?). See Friston et al. (1995a) for details. By using
the above expressions, for every contrast or compound
¢, we obtain a value for T at each and every voxel.
These constitute a statistical parametric map or

SMP{t}.

Statistical Inference in SPMs

To simplify subsequent analysis, the SPM{t} is trans-
formed to a SPM{Z} using a probability integral trans-
form or other standard device. The problem now is that
an extremely large number of nonindependent univari-
ate comparisons have been performed and the proba-
bility that any region of the SPM will exceed an uncor-
rected threshold by chance is high. Standard proce-
dures have been developed in statistical parametric
mapping that correct for the multiplicity of voxels and
the spatial correlations among them. These corrections
are based on either the height or the spatial extent of a
local excursion of the SPM (i.e., cluster of voxels above
a threshold) to give a corrected P value based on height
P(Z .. > u) or spatial extent P(n,,,, = k). The distri-
butional approximations required for these corrections
derive from the theory of Gaussian random fields (see
Friston et al., 1991; Worsley et al., 1992; and Friston et
al., 1994a, for the development of this theory in func-
tional imaging). In this paper we present P values that
are based on both the spatial extent and the peak
height of a region.

A DEMONSTRATION STUDY

In these sections we describe the experimental de-
sign and data used to illustrate the above theory. The
example chosen is typical of fMRI activation studies
that use more than two conditions. There were three
conditions: a rest condition, a motor sequencing condi-
tion where the subject moved his or her right and left
hand in a fixed alternating order (in response to a vi-
sual cue), and a motor sequencing condition in which
the subject moved either the right or the left hand as
instructed visually in a random sequence. The only dif-
ference between the “fixed” and “random” conditions
was that the subject had to attend to the instruction
that specified the movement. Clearly in the random
condition the subject could not anticipate or prepare
the exact movement before seeing the cue. The move-
ments involved raising the forefinger and the cues were
presented at pseudorandom intervals of 2, 3, or 4 s. The
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details of this paradigm and a full discussion of the
results will be presented elsewhere.

Data Acquisition

One hundred and twenty T,* weighted volume im-
ages (128 x 64 x 10 voxels) were obtained from a sin-
gle male subject using a GE/ANMR 1.5T system with
EPI capabilities. The volumes consisted of 10 sequen-
tial transverse sections and were acquired every 3 s.
Voxel size was 3 X 3 X 7-mm voxels with 0.5-mm slice
separation. The three conditions were presented in
blocks of 10 scans, in pseudorandom order. Each con-
dition was therefore repeated four times, each time
constituting a 30-s epoch for that condition.

Data Prepossessing

The 120 volume images were realigned to the first as
described elsewhere (Friston et al., 1995¢) and resam-
pled to 3 x 3 x 6-mm voxels. The data were then
smoothed with an isotropic Gaussian kernel with
FWHM of 8 mm. Voxels that had values greater than
0.8 of the volume mean, in all the images, were selected
to restrict the analysis to intracranial regions. The
data were mean corrected to form the matrix X above
with 14476 columns (one for each voxel) and 120 col-
umns (one for each scan).

Data Analysis

The design matrix G is seen in the upper right panel
of Fig. 2 and models early and late response compo-
nents (basis functions) for each of the three conditions.
These effects are seen in the first six columns of the
design matrix and correspond to the H partition. The
remaining columns were confounds (i.e., D in the the-
ory section). These confounds comprised low frequency
sine and cosine functions of the scan number (up to a
maximum of 3.5 cycles per 120 scans). These confounds
effect a high-pass filter, removing low frequency arti-
facts due to aliased cardiorespiratory and other cyclical
components. The remaining two columns were a col-
umn of ones and global or whole brain activity. The
convolution matrix K used for temporal smoothing was
a Toeplitz matrix with a Gaussian kernel with stan-
dard deviation s = (V8)/3 scans or V8 s. This corresponds
to a dispersion of about 8 s and rendered the effective
degrees of freedom due to error 44.

SPM({Z} were constructed using Eq. (5) and two con-
trasts. The first contrast corresponds to a conventional
analysis and tested for a main effect of the random
condition relative to the fixed condition. This contrast
is seen in graphical form displayed above the design
matrix in Fig. 2(¢=[00 -1 -111...... D. The
elements of the contrast are shown above the corre-
sponding columns or effects. The resulting SPM{Z} was
thresholded at 0.01 (uncorrected) to show regions that
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sag corona —

5 10 15
Design Matrix
region size {k} P(nmex>k) Z P(Zmex > u) (Uncorrected)  {x,y,z mm}
1 92 0.014 5.29 0.002 (0.000) 36 -57 36
4.10 0.246  (0.000) 30 -~51 30
4.01 0.341  (0.000) 48 -45 36
2 58 0.096 4.47 0.060 (0.000) 36 39 30
416 0.199  (0.000) 27 45 36
3 136 0.002 4.18 0.183  (0.000) 9 3 30
4.07 0.280  (0.000) 9 0 42
4.04 0.306 (0.000) -3 3 24
4 7 0.998 3.63 1.206 (0.000) 60 -39 36

Threshold = 2.33; Volume [S] = 14476 voxels; df = 44
FWHM =[10.8 10.9 11.7] mm (i.e. 569 RESELS)

FIG.2. Results of the test for activations in the random condition
relative to the fixed condition. (Top right) Above: A contrast ¢ = [0 0
-1-111..... ] testing for the significance of the activation. Below:
The design matrix G with 6 covariates on the left (early and late
components for each of the three conditions) and 10 confounds on the
right. These confounding covariates correspond to cyclical time ef-
fects, a constant and to global or whole volume activity. Because
elements of this matrix can take negative values the gray scale is
arbitrary and has been scaled to the minimum and maximum. The
form of the design matrix is the same as in the text—K.[H D]. Note
that the length of the contrast is the same as the number of columns,
or effects, in the design matrix, which is the same as the number of
parameters one is explicitly estimating. (Top left) SPM{Z}: This is a
maximum intensity projection of the SPM{¢} following transforma-
tion to the Z score. The display format is standard and provides three
views of the brain from the front, below, and the left-hand side. Data
are presented only for regions with P < 0.1 corrected. The gray scale
is arbitrary and the space conforms to that described in the atlas of
Talairach and Tournoux (1988). (Bottom panel) Tabular data are
presented for “significant” regions (P < 0.1 corrected). The location of
the maximal voxel in each region is given (positive x is left) with the
size of the region (k) and up to three Z maxima. For each maxima the
significance is assessed in terms of P(Z,,,, > u) a corrected P value
based on peak height and P(n,,, > k) a corrected P value based on
the spatial extent of the region.
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activate, in terms of the overall response (early and
late components) when the motor movement is speci-
fied by the cue. Based on our understanding of the
functional anatomy of attention and response selection
we anticipated that the anterior cingulate and SMA
would be involved in these differences. We were disap-
pointed. The SPM{Z} is shown in the upper right panel
of Fig. 2. Only regions reaching P < 0.1 (corrected, i.e.,
based on peak height or spatial extent) are shown. Tab-
ular data on these regions is provided in the lower half
of the figure. The three regions implicated included the
left dorsolateral prefrontal cortex, the middle regions
of cingulate cortex, and the left angular gyrus (in the
parietal region). Although these areas are all very
plausible the context of motor sequencing and atten-
tion they did not include the areas that we had hypoth-
esized. However, the responses in these areas were sig-
nificantly different, as we now demonstrate.

The second contrast tested for a biphasic or interac-
tion between early and late components and the fixed
and random conditions i.e.,¢c=[001-1-11....].
This contrast and the resulting SPM{Z} are seen in Fig.
3. It is immediately obvious that the profile of differ-
ential responses is more extensive than that obtained
with the previous contrast. Furthermore this profile
now includes the anterior cingulate and a small portion
of ventral SMA. In addition right superior frontal gy-
rus (premotor), right angular gyrus, and extensive so-
matosensory regions are implicated. It is pleasing to
note the anterior cingulate is the second most signifi-
cant area with a Z value of 4.96. The responses at this
location are shown in Fig. 4. The top panel plots the
observed activity against the linear compound of basis
functions tested for by the contrast (i.e., G.cT). A strong
positive correlation is observed. The lower panel plots
the observed [adjusted] activity over time (dotted line)
and that estimated in terms of the basis functions. Al-
though the fit is not perfect there is a very reasonable
agreement, with the sustained and late components of
the random condition being clearly evident. The ob-
served responses are shown in a different format in
Fig. 5, by plotting each condition epoch separately for
the same anterior cingulate voxel. This figure shows
more clearly the difference in the early and late com-
ponents of the response among the three conditions.
The rest condition evoked a response with little sys-
tematic structure. The fixed conditions start off high
and adapt within 5 to 10 s (the initial rise has been
obscured by the temporal smoothing). In contrast the
random condition is associated with a protracted and
sustained increase in signal until about 20 to 25 s and
thereafter it declines. It is interesting to note that the
average signal in the fixed and random conditions is
about the same. This is why this region was not iden-
tified using a more conventional analysis.

The relationship of these regions to the underlying
anatomy is depicted in Fig. 6 which renders the acti-
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region size (k} P(nmex>'k) Z P(Zmax > u) (Uncorrected)  {X,y,Z mm}
1 97 0011 - 5.56 0.000 (0.000) -3 -45 60
<474 0.019  (0.000) 15 -30 66

4.38 0.086  (0.000) 24 -15 60

2 30 0.506 4.96 0.007 (0.000) 6 33 24
3 302 0.000 4.83 0.014  (0.000) 3 -9 30
476 0.018  (0.000) -9 -15 30

4.56 0.043  (0.000)_ 36 -48 30

4 49 0.165 4.70 0.024 (0.000) 54 -12 30
384 0.620  (0.000) 45 -9 42

3.00 6.680 (0.001) 39 -24 30

5 160 0.001 4.65 0.029 (0.000) -54 -27 36
4.26 0.139  (0.000) -63 -18 24

4.13 0.221  (0.000) -51 24 36

6 26 0.622 4.65 0.030  (0.000) 27 -6 18
3.33 2.862 (0.000) 24 -15 12

7 37 0.340 4.35 0.100  (0.000) -57 -48 36
4.28 0.129  (0.000) -63 -42 18

3.30 3.106  (0.000) -63 -45 30

Threshold = 2.33; Volume [S} = 14476 voxels; df = 44
FWHM = [10.8 10.9 11.7} mm (i.e. 569 RESELS)

FIG. 3. The same as Fig. 2 but for a contrast that tests for a
differential response in terms of early and late components.

vations (P < 0.01 uncorrected and P < 0.1 corrected)
onto the original data. The lower panels show the an-
terior cingulate region, the left angular gyrus, and
right superior frontal areas. In addition, we see differ-
ential responses in the middle and posterior cingulate
gyrus and bilaterally around the central sulcus.

To demonstrate the consistency of this differential
response pattern we repeated an identical analysis us-
ing an independent data set obtained from a female
subject doing exactly the same paradigm. As before, a
conventional analysis failed to show the anterior cin-
gulate but this region was strongly implicated when we
tested explicitly for a differential response. In this in-
stance the biphasic differences in the evoked tran-
sients are even more pronounced. Figure 7 shows the
observed activity in the anterior cingulate of the second
subject. Here the phasic response and rapid adaptation
during the fixed condition are very evident. The re-
sponse to the random condition is more sustained but
peaks earlier than in the first subject. The anatomic
topography of the SPM{Z} is less extensive than the

compound of covariates
Responses in the Anterior Cingulate

1 —

0.8f i 1

0.6 3

response and covariate

0 20 40 60 80 100 120
scan

FIG. 4. Plots of the fMRI signal from a voxel in the cingulate
gyrus. (Top) The observed [adjusted] activity as a function of the
covariates (basis functions) in the design matrix weighted by the
contrast in Fig. 3. (Bottom) The same data but plotted as functions of
time. The solid line is the estimated activity according to the model
used (i.e., in terms of the basis functions) and the broken line and
dots represent the empirical adjusted data X.

first subject’s (see Fig. 8) but is composed of areas pre-
viously identified, namely, the anterior cingulate, the
right superior prefrontal gyrus, and left angular gyrus.

DISCUSSION

We have described here a simple implementation of
the general linear model that facilitates the character-
ization of evoked hemodynamic responses to sensori-
motor or cognitive processing, when the exact form of
these responses is not known. The importance of this
approach is that one can test for differential responses
among tasks that may elude more conventional analy-
ses. In particular we suppose that an evoked response
has early and late components and that a differential
response may involve (i) both components to the same
degree, as in a conventional “activation” or (ii) differ-
ential expression of the early and late components in
two tasks, as might be seen in differential adaptation,
or differences associated with the tasks (e.g., requiring
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FIG. 5. The same data as in Fig. 4 but now plotted on an epoch
by epoch basis. The dotted lines correspond to the rest epoches, the
broken lines to the fixed epoches, and the solid lines to the random
epoches. Each epoch lasts for 10 scans or 30 s.

and not requiring sustained attention). Using this ap-
proach we were able to demonstrate that the anterior
cingulate differentiates, in terms of its response, be-
tween two motor tasks that were and were not speci-
fied by a visual cue. This differential response was ob-
served even though there was no classical “activation”
(i.e., there was no difference in the mean activity asso-
ciated with the two conditions).

The exact model proposed is a simple variant of the
general linear model that uses two temporal basis
functions to model the response of interest. These basis
functions are exponentially modulated sine waves and
model the early and late components of a response re-
spectively. Framing this analysis in terms of the gen-
eral linear model allows for the production of statistical
parametric maps of the ¢ statistic and statistical infer-
ences about them using established techniques. The
nature of the differences in response between any two
conditions is specified by a linear compound or contrast
of the coefficients of the early and late components in
each condition. A variety of differential responses can
be examined; we have focussed on conventional differ-
ences due to an activation (involving early and late
components to a similar degree) and more complicated
interactions between the two conditions and early and
late responses (involving a significant difference in the
early and late components). Clearly there are other
forms of difference one could test for (e.g., the differ-
ences between early components, while ignoring the
late components) depending on the nature of the hy-
pothesized effect.
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FIG. 6. The same SPM({Z) as in Fig. 3 (top) rendered onto three
orthogonal sections of the original MRI data, through a point in the
anterior cingulate (lower). The white regions correspond to areas of
significant differential response and are described in the main text.

The Nature of Differential Responses

A major difference between PET and fMRI is that
with fMRI observations of brain physiology can be re-
peated immediately and typical experimental designs
observe the subject switching from one condition to an-
other. With sensory stimuli the consequences of this
switching may be small; however, this may not be the
case for more complex tasks that involve some “top
down” (volitional) processing. At least two, closely re-
lated, effects are likely to occur which we can call
“warm up” and “carry over.” Both of these phenomena
have been extensively examined in behavioral studies.

Warm up is a well established phenomenon’in motor
skill performance. Peak performance cannot be
achieved immediately from rest, but only after a period
of activity. The term comes from the not necessarily
erroneous belief that the muscles function better if
they are warm. Studies of warm up are reviewed in the
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FIG. 7. The same format as Fig. 5 but showing the results of an
independent study on a second subject, using the same analysis.

classic work of Eysenck and Frith (1976). Performance
on pursuit rotor (a simple tracking task) shows a sharp
increase during the first 10 to 20 s after a rest, with
this increase being more marked the longer the time
elapsed since the last period of practice. The simplest
explanation for this is that time is needed to instanti-
ate the most appropriate “set” for the performance of
the task. Thus, for the first 10 to 20 s after a rest,
performance may well engage difference or extra sys-
tems.

Switching from one task to another is likely to re-
quire an even greater change of “set” than switch from
rest to a task. Allport (among others) has studied this
switching (Allport et al., 1994) and has measured what
he terms “switch costs.” For example, he has studied
switching in the Stroop test (color words written in
incongruous ink, e.g., GREEN written in red). In con-
dition 1 the subject names the ink color, while in con-
dition 2 he reads the word. Immediately after the
switch from one condition to the other, and for a few
trials thereafter, the response time is greatly in-
creased. Furthermore this carry over effect can be
markedly asymmetric. Of particular interest is the ob-
servation that getting up to speed again after a switch
depends not on the time since the switch, but on the
number of responses. These carry over effects are po-
tentially important for fMRI because (i) they demon-
strate that even at a behavioral level there are pro-
found changes in response during the seconds follow-
ing a change in condition and (ii) they suggest that the
effects of condition A preceded by condition B may not
be the same as the effects of condition A preceded by C.
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FIG. 8. The same format as Fig. 6 but showing the results of an
independent study on a second subject, using the same analysis.

Alternative Approaches

In this section we consider some alternative ways of
addressing the issue about differential responses from
a statistical perspective. One simple and intuitive ap-
proach would be to use an extended set of basis func-
tions (e.g., a Fourier set) and use the F ratio as the
statistic to test for a systematic temporal response pat-
tern. The disadvantage of this approach is that one
cannot make statistical inferences about specific differ-
ences between tasks as would normally be effected
with contrasts and a SPM{¢}. An alternative would be
to use a more elaborate set of basis functions and con-
trasts; however, the diversity of contrasts that one
would have to explore may be prohibitively large and
many contrasts would have no direct intuitive inter-
pretation. We have previously suggested using a mul-
tivariate analysis in conjunction with canonical vari-
ates analysis to overcome this problem and let the data
decide what the best “contrasts” are. However, this ap-
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proach denies the possibility of testing specific hypoth-
eses directly, and in our experience the anatomic or
spatial information in the canonical images is difficult
to interpret. In conclusion we consider the use of uni-
variate tests to produce SPMs using just two basis
function to be the most effective way of making statis-
tical inferences about differential hemodynamic re-
sponses in a regionally specific fashion.

Conclusion

The analysis in this paper is not meant to devalue
conventional approaches to fMRI data. The detection of
“classical” activations (as opposed to significant differ-
ential responses that are not easily assigned to the
class of activations) is probably the most important ex-
ample of a differential response. In the sensory cortices
it may be, biologically, the most prevalent sort of re-
sponse difference. Indeed our previous work on the na-
ture of the hemodynamic response function to under-
lying neural activity (Friston et al., 1994b) was predi-
cated on a box-car reference waveform and, implicitly,
a sustained and fixed activation in [extra]striate cortex
due to photic stimulation. What we are suggesting is
that for some paradigms that involve learning or cog-
nitive components that may show some short term
(seconds) adaptation a more careful characterization of
the hemodynamic responses may be appropriate. Al-
though this may complicate the interpretation of the
results, it does provide for a richer characterization
and for the possibility of activation studies that explic-
itly use habituation and adaptation to probe functional
organization in the brain. We have not presented a
comprehensive analysis of these responses but have
simply shown that they can exist. We consider this the
first step in maximizing the potential of fast fMRI tech-
niques.
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Note added in proof. It has pointed out recently that the estimators
for the variance of the parameter estimates [Eq. (5) and Eq. (6)] are
incorrect and biased (Worsley-personal communication). The correct
expressions will be found in Worsley and Friston (Worsley, K. J. and
Friston, K. J. Analysis of fMRI time-series revisited-Again. submit-
ted for publication) and generally give a more conservative test. The
latter communication also contains a more rigorous treatment of the
effective degrees of freedom.
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