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This note concerns mixed-effect (MFX) analyses in multisession

functional magnetic resonance imaging (fMRI) studies. It clarifies the

relationship between mixed-effect analyses and the two-stage

bsummary statisticsQ procedure (Holmes, A.P., Friston, K.J., 1998.

Generalisability, random effects and population inference. NeuroImage

7, S754) that has been adopted widely for analyses of fMRI data at the

group level. We describe a simple procedure, based on restricted

maximum likelihood (ReML) estimates of covariance components, that

enables full mixed-effects analyses in the context of statistical para-

metric mapping. Using this procedure, we compare the results of a full

mixed-effects analysis with those obtained from the simpler two-stage

procedure and comment on the situations when the two approaches

may give different results.
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Introduction

It is now standard practice, in functional magnetic resonance

imaging (fMRI), to distinguish between fixed and random (i.e.,

mixed) effects analyses of multisession or subject fMRI studies.

Multisession analyses rest upon a two-level linear hierarchical

observation model and the distinction between within-session and

between-session effects. Fixed-effect analyses use models in which

the interaction between the effect and session is treated as a fixed

quantity and the effect (e.g., activation) is compared against within-

session error. This corresponds to inferring that a subject’s

response is significant in relation to the precision with which it

can be measured. Conversely, the session or subject-specific effect

can be treated as a random variable, such that the observed

response is a mixture of fixed and random effects; hence, mixed-
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effects (MFX) analyses. Here, the inference is at the second level

and pertains to significant effects that are large in relation to

between-session variability.

These models can be expressed mathematically as

y ¼ X0b0 þ X 1ð Þb 1ð Þ þ e 1ð Þ

b 1ð Þ ¼ X 2ð Þb 2ð Þ þ e 2ð Þ ð1Þ

where y is the response variable, X(1) and X(2) correspond to the

first- and second-level design matrices containing effects of

interest, and X0 represents some confounds or nuisance variables

(e.g., drift). We will assume that the effects of interest and nuisance

effects are orthogonal X0
TX(1) = 0. e(1) corresponds to the first-level

error with within-session covariance Cov{e(1)} = C(1). e(2)

corresponds to the second-level error with between-session

covariance Cov{e(2)} = Cov{b(1)} = C(2). This is also the

covariance of the first-level parameters b(1) that are, implicitly,

random quantities. Technically, models that conform to Eq. (1)

belong to the class of conditionally independent hierarchical

models when the response variables and parameters are assumed

to be independent across units, conditionally on the hyper-

parameters controlling the error terms (Kass and Steffey, 1989).

Typically, the first-level design matrix X(1) has a number of

partitions modeling session-specific effects

X 1ð Þ ¼
X

1ð Þ
1
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for S sessions. In a two-level model, the response variable y has

two error covariance components, one for each level. This can be

seen easily by substituting the second level in the first, which gives

us a non-hierarchical form for Eq. (1):

y ¼ X0b0 þ X 1ð ÞX 2ð Þb 2ð Þ þ g 1ð Þ

g 1ð Þ ¼ X 1ð Þe 2ð Þ þ e 1ð Þ

Cov g 1ð Þ
� �

¼ X 1ð ÞC 2ð ÞX 1ð ÞT þ C 1ð Þ ð3Þ
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Thus, the mixed-effects error has two covariance components

X(1)C(2)X(1)T and C(1).1

Fixed-effects analyses ignore the second line of Eq. (1) and

proceed by estimating the first-level parameters and variance

parameters corresponding to the covariance component C(1).

However, if both levels of the model are included, it is necessary

to estimate both first- and second-level covariance components.

This is the case both for Bayesian and classical (i.e., frequentist)

approaches (see Harville, 1977). For example, when one wants to

use an empirical Bayesian scheme to make conditional inferences

about responses at the first level, C(2) plays the role of an empirical

prior on b(1) (Kass and Steffey, 1989). In a classical setting, when

one wants to make inferences at the second level using a mixed-

effects analysis, it is also necessary to estimate both components.

The estimation of multiple covariance components presents a slight

problem for neuroimaging because it is usually iterative (see

Discussion). Generally speaking, iterative schemes at each and

every voxel are, computationally, very expensive. Fortunately,

there are special cases of Eq. (1) for which non-iterative covariance

component estimation suffices.

The main aim of this paper is to introduce a simple approach to

full mixed-effects models in statistical parametric mapping that can

be used as a reference for the robustness of the conventional two-

stage procedure when its underlying assumptions are violated. In

what follows, we will describe briefly the estimation of parameters

and hyperparameters of hierarchical models and consider how

some special, but common, cases lead to the two-stage procedure

(proposed in Holmes and Friston, 1998 and also known as the

bsummary statisticsQ procedure; see Penny and Holmes, 2004). We

will then describe a simple mixed-effects analysis for neuro-

imaging data. The computational burden incurred by estimating

voxel-wise multiple covariance components is finessed by assum-

ing that the relative amounts of within- and between-session

random effects is fixed but the expression of this mixture varies in

degrees from voxel to voxel. In the final section, we will apply the

two-stage procedure and the full mixed-effects analysis to the same

multisession data to verify that the two-stage procedure is

reasonably robust to violations of the assumptions upon which it

rests.
Theory

In this section, we describe the estimation of parameters and

hyperparameters2 controlling fixed and random effects in a two-

level hierarchical model. We then describe the conditions under

which a conventional two-stage procedure can be used without

iterative hyperparameter estimation.
1 Note that Eq. (3) requires no particular form for either X(1) or X(2)

except that X(1) has as many columns as X(2) has rows. This is assured

because the two levels in the model have a direct hierarchical relationship

(see Eq. (1)).
2 Hyperparameters are parameters of the distribution of lower level

parameters. Strictly speaking, only the second-level variance parameter is a

hyperparameter because this controls the prior covariance of b(1). In order

to maintain a simple nomenclature, both first- and second-level variance

parameters are referred to as hyperparameters in this paper.
Non-sphericity at the second level

We start by constructing a model of second-level effects that is

expressed in terms of first-level estimators and properly incorpo-

rates the covariance components from both levels. This model

obtains by multiplying the non-hierarchical form of the second-

level model (see Eq. (3)) with the generalized inverse of the first-

level design matrix (i.e., X(1)�):

b̂b 1ð Þ ¼ X 1ð Þ�y

¼ X 2ð Þb 2ð Þ þ e 2ð Þ þ X 1ð Þ�e 1ð Þ

¼ X 2ð Þb 2ð Þ þ g 2ð Þ

g 2ð Þ ¼ e 2ð Þ þ X 1ð Þ�e 1ð Þ

Cov g 2ð Þ
� �

¼ C 2ð Þ þ X 1ð Þ�C 1ð ÞX 1ð Þ�T ð4Þ

The errors of this model comprise two components that are the

two components of Eq. (3) projected to the second level by X(1)�.

The first component C(2) is the intrinsic variability of the second-

level parameters. The second component X(1)�C(1)X(1)�T results

from observation error being projected, through the inverse of the

first-level design matrix, to the second level. Generally, this

component will induce non-sphericity3 at the second level because

X(1)�C(1)X(1)�T does not necessarily conform to the identity

matrix.

The model in Eq. (4) enables a simple implementation of

mixed-effects analyses using classical inference procedures. These

procedures rest on forming t or F statistics with appropriate

adjustments for non-sphericity using the Satterthwaite approxima-

tion (e.g., Friston et al., 2002b; Geisser and Greenhouse, 1958;

Worsley and Friston, 1995). However, these procedures require the

non-sphericity to be parameterised in terms of a single component

V, such that Cov{g(2)} = r2V. This requires the relative

contribution of the covariance components to be estimated so that

the non-sphericity of the errors g2 can be properly specified.4

V~Cov g 2ð Þ
n o

¼ C 2ð Þ þ X 1ð Þ�C 1ð ÞX 1ð Þ�T ð5Þ

Given V and a weighting matrix W, we can take weighted least

squares estimators of the second-level parameters b(2) and proceed

in the usual way. For example,
3 Non-sphericity denotes the violation of the assumption that error

terms are identically and independently distributed (i.i.d). In the case of

non-sphericity, the error covariance matrix C deviates from a scalar

multiple of the identity matrix. Non-sphericity can arise from heterogeneous

variances over different levels of a factor (identity assumption violated: the

diagonal of C has different values) or by dependence among the levels

(independence assumption violated: C has off-diagonal values), as in

repeated measures designs (Keselman et al., 2001).
4 Using the ReML estimates in this way ignores the relative uncertainty

and correlations among these estimates. Although heuristics exist for

computing the adjusted degrees of freedom for multiple covariance

components, these schemes are not used widely. See Kiebel et al. (2003).

This consideration applies only to empirical Bayes (as opposed to full

Bayes).
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b̂b 2ð Þ ¼ Mb̂b 1ð Þ

M ¼ WX 2ð Þ
� �T

WX 2ð Þ
� ��1

WX 2ð Þ
� �T

W

T ¼ cT b̂b 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTr2MVMTc

p

v ¼ tr RWVWf g2

tr RWVWRWVWf g

R ¼ I � X 2ð ÞM

r2 ¼ b̂b 1ð ÞTRTWTWRb̂b 1ð Þ

tr RWVWgf ð6Þ

Here the t statistic is distributed with v degrees of freedom under

the null hypothesis that the contrast cTb̂(2) = 0. The weighting

matrixW can be chosen to implement ordinary least squaresW = 1,

in which case the effective degrees of freedom v V trace {R}.

Alternatively, one can make W = V�1/2, in which case the

estimators are maximum likelihood (ML) and v = trace {R}. Notice

that the single hyperparameter r2 has an analytic non-iterative

solution, which is the usual sum of squared residuals estimator. The

only outstanding problem is to estimate the covariance components

so that V can be specified according to Eq. (6).

ReML estimation of covariance components

The error covariances of the first and second level can be

expressed by covariance components Q that are scaled by

hyperparameters k:

C 1ð Þ ¼ k 1ð ÞQ 1ð Þ

C 2ð Þ ¼ k 2ð ÞQ 2ð Þ ð7Þ

To simplify the exposition we have assumed each level has only

one covariance component.5 It is relatively simple to identify the

maximum likelihood estimates of the hyperparameters k(1) and

k(2), given the response variable y and design matrix [X0X
(1)X(2)]

from the model in Eq. (3), where the covariance components are

X(1)Q(2)X(1)T and Q(1). Hyperparameter estimation is restricted to

the null space of the design matrix to ensure they are not biased (see

Friston et al., 2002a). This restriction leads to restricted maximum

likelihood (ReML) estimates of the covariance components. ReML

is a special case of expectation maximization (EM; Dempster et al.,

1977), and in the context of linear hierarchical observation models

under Gaussian assumptions the objective functions of ReML and

EM are identical (see Appendix A and Friston et al., 2002a for

details). Note that ReML estimation of the covariance components

induced by first- and second-level error proceeds in observation

space (using the non-hierarchical form of Eq. (3)).
5 Generally, there may be more than one Qi
(1) and Qi

(2) that allow non-

sphericity to be modeled at the first level (e.g., serial correlations) or the

second level (e.g., correlations over repeated measures) (see Friston et al.,

2002a,b). In the empirical example below we used several components at

both levels.
The two-stage procedure

If we do not know the hyperparameters, then they have to be

estimated using ReML. As mentioned above, this would usually be

done at the first level using the model in Eq. (3) (see Fig. 1 and

Appendix A). However, there is one situation in which this

iterative estimation can be omitted. This is when both components

of Cov{g(2)} are expressed in exactly the same way. This will be

the case when:

Q 2ð Þ~X 1ð Þ�Q 1ð ÞX 1ð Þ�T ð8Þ
In other words, when the second- and first-level components

have the same form, the relative contributions of first- and second-

level variance components are irrelevant at the second level, and

one can proceed directly to Eq. (6), by assuming V ~ Q(2). This

procedure corresponds to taking parameter estimates from the first

level and treating them as a new response variable in a second-

level analysis. This is the basis of the two-stage procedure that has

an established role in general statistics (Laird and Ware, 1982) and

fMRI data analysis in particular (Holmes and Friston, 1998). It

rests on the assumption that the (projected) first- and second-level

components have the same form. Under i.i.d.6 assumptions at the

second level, there are three conditions that are sufficient to ensure

this is true. First, within-session error covariance is the same for

each session. Second, the first-level design partitions Xi
(1) are the

same for all sessions; and third, these partitions comprise one

explanatory variable.7 In this case, the contribution of the within-

session variability to the second level is exactly the same from

session to session. This contribution is indistinguishable from the

endogenous second-level variability, and the mixture can be

estimated non-iteratively using Eq. (6).

In summary, under the above conditions, between-level non-

sphericity, that is, non-sphericity at the second level that is induced

by first-level variance components (X(1)�C(1)X(1)�T), can be

ignored; this is the basis for the computationally efficient two-stage

procedure. However, it should be noted that the two-stage procedure

does allow one to model within-level non-sphericity, that is, non-

sphericity separately at the first level (e.g., serial correlations) and

the second level (e.g., correlations over repeated measures); see

Empirical demonstration of this paper and Friston et al. (2002b).

The need for full mixed effects analyses

The two-stage procedure is now common practice in the context

of balanced designs, where equality of variance is a tenable

assumption. However, in some situations, it is not possible to use

exactly the same first-level session-wise design partitions (see Eq.

(2)). For example, in the post hoc classification of events, as

brememberedQ or bforgottenQ, or in the study of EEG-correlated

fMRI (e.g., seizure or alpha activity), the explanatory variables

comprising the partitions Xi
(1) may not be under complete

experimental control. A natural and frequently asked question is

bhow robust is the two-stage procedure to departures from

balanced designs?Q The formulation of the mixed-effects analyses

in this section shows that departures will induce non-sphericity at

the second level. This non-sphericity will take the form of unequal
6 Independently and identically distributed.
7 More generally a one-dimensional contrast of first-level parameter

estimates is taken to the second level.



Fig. 1. Schematic showing the architecture of the mixed-effects procedure

in which ReML estimates of non-sphericity derived from a first-level model

enter a second level model as a known quantity V.
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variance, that is, heteroscedasticity. The question about unbalanced

designs then reduces to the question bhow robust is parametric

inference to violations of homoscedasticity?Q The general answer is
that parametric statistics are notoriously robust to this particular

form of violation. However, considerations of robustness are only

meaningful when the exact violation can be specified. Conse-

quently, it would be useful to have a simple and computationally

tractable mixed-effects analysis to provide a reference for the two-

stage procedure when its assumptions are violated.

Mixed-effects analyses in SPM2

In the next section we illustrate the approach that has been

implemented in the current version of the SPM2 software. This

procedure has been written to enable comparisons between full

mixed-effects analyses and multistage approximations. Clearly,

there are a variety of ways in which a full mixed-effects analysis

could be implemented. We use a simple approach that is

formally similar to the two-stage procedure but allows for

ReML estimates and multiple variance components per level.

Fig. 1 illustrates this scheme. In brief, second-level parameters

are estimated using first-level parameter estimates in exactly the

same way as in the two-stage procedure. The key difference is

that the non-sphericity induced by unbalanced designs or non-

sphericity at the first level enters a ReML estimate of V

explicitly. This estimation removes any dependence on assump-

tions of sphericity at the second level. To enable efficient

computation of the ReML estimates, they are pooled over

bresponsiveQ voxels. In our implementation, a responsive voxel is

defined as surviving an F test for any effect of interest at an

uncorrected threshold of P = 0.001. Operationally, as described
in Friston et al. (2002a), this involves replacing the outer product

yyT in the ReML algorithm (see Appendix A) with the equivalent

sample covariance matrix over n voxels YYT/n. This means that

the ReML estimate of non-sphericity can proceed given just the

sample covariance matrix of the data. This is accumulated during

estimation of the first-level parameters.

The key aspect of this procedure that distinguishes it from

classical approaches for univariate data is the pooling over voxels.

This is very similar to the device used by multistat (Worsley et al.,

2002) and rests upon the assumption that the relative contribution

of different error covariance components is the same in subsets of

voxels. However, the absolute amount of this mixture is voxel

specific and is estimated in the usual mass univariate fashion. Note

that this device is peculiar to neuroimaging, where one has the

opportunity to treat subsets of voxels as having the same

covariance structure. The special benefit, in neuroimaging, is that

one gets very precise hyperparameter estimates, allowing the non-

sphericity to be treated as known. This is nice because the

Satterthwaite approximation in Eq. (6) assumes V is known. In the

next section we apply the two-stage procedure and this mixed

effects analysis to the same data.
Empirical demonstration

The data set we chose to analyze comprised 1200 images that

were acquired from the same volunteer in 10 contiguous sessions

of 120 scans each. These data have been described elsewhere

(Friston et al., 1998). The reason we chose these data was that each

of the 10 sessions was different in terms of design. The

experimental design involved 30-s epochs of single word streams

and a passive listening task. The words were concrete, mono-

syllabic, and were presented at a number of different rates. Within

each of the 10 sessions three epochs were presented at different

rates. The word rate for each epoch was varied pseudorandomly

over the 10 sessions. We modeled responses using an event-related

model where the occurrence of each word was modeled with a

delta function. The ensuing stimulus function was convolved with

a canonical hemodynamic response function and its temporal

derivative to give two regressors of interest for each of the 10

sessions. Examples of these regressors, for the first two sessions,

are provided in Fig. 2 to illustrate that the number of words

presented in each series varied considerably (word presentation

rate was varied from 10 to 90 words/min). These effects were

supplemented with confounding and nuisance effects. These

comprised a mean and the first few components of a discrete

cosine transform, removing drifts lower than 1/128 Hz.

The data were analyzed with a first-level model where X(1)

comprised a session-specific partition for each block of 120 scans.

The design matrices are shown in Fig. 3 (the cosine terms have

been omitted for clarity). We used 20 covariance components Qi
(1)

for the first level. These modeled session-specific variances and

serial correlations using an AR(1) model (for the precise definition,

see Eq. (2) in Friston et al., 2002b). The corresponding hyper-

parameter estimates are shown in Fig. 4. The variance components

show fairly typical values ranging from about 0.8 to 1.7. Note that

session-specific variance can vary by over a factor of two. The

serial correlations, as indexed by their AR coefficients, were

largely trivial, apart from session 8 with pronounced positive

correlations (middle panel). This session also had the biggest error

variance.



Fig. 2. This is an illustration of the two regressors for two sessions that entered the first-level design matrix. These regressors show the variation in word

presentation rates over the three epochs that comprised each session. The regressors were formed by convolving a stick function, encoding the occurrence of

words, with a canonical hemodynamic response function and its temporal derivative. The left panel shows the regressors in the time domain and the right panel

in the frequency domain (the grey bar represents the cut-off of the high-pass filter).
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To demonstrate the flexibility of the analysis, we took both

parameter estimates to the second level, enabling inferences about

differences in either the canonical response form or its temporal

derivative. This requires separate covariance components at the

second level: for between-session variance in the canonical and the

derivative parameters (Q1
(2) and Q2

(2)) and for the covariance

between them (Q3
(2))
2ð Þ
1 ¼ IS 


1 0

0 0

� �
;

2ð Þ
2 ¼ IS 


0 0

0 1

� �
;

2ð Þ
3 ¼ IS 


0 1

1 0

� �
ð9Þ
Q

Q

Q

where S denotes the number of sessions, see Eq. (2), IS represents

the S 	 S identity matrix, and 
 represents the Kronecker product.

The associated hyperparameters are shown in the lower panel of

Fig. 4. The second-level design matrix implemented a simple one-

way ANOVAwith two levels (see Fig. 3) and allowed us to use an

SPM{F} to test for any response in terms of the canonical response

or its derivative.

Up to this point, the two analyses using the two-stage

procedure and the full mixed-effects approach, respectively, do

not differ. As explained above, the crucial difference lies in

the assumptions about the non-sphericity of the second-level

error that is induced by first-level error covariance compo-

nents. The conventional two-stage procedure only models

within-level non-sphericity. Thus, when entering the first-level

parameter estimates (two for each session) into a second-level



Fig. 3. First- and second-level design matrices used in both exemplar

analyses.

   

Fig. 4. ReML estimates of the hyperparameters for within- and between-

session error covariance components at the first level. The first 10

hyperparameters correspond to the error variance for each session at the first

level and are shown in the upper panel. The middle panel shows hyper-

parameters controlling serial correlations (the first AR coefficient). The lower

panel shows three second-level hyperparameters reflecting the components

induced in the response variable by: (i) variation around the grandmean of the

first parameter (the canonicalHRF), (ii) variation in the second parameter (the

temporal derivative), and (iii) covariation between the two parameters.
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analysis, the ReML estimate for the second-level error

covariance used

V ¼
X
j

k 2ð Þ
j Q

2ð Þ
j ð10Þ

with Qj
(2) as specified by Eq. (9). In contrast, the full mixed-

effects approach allows for the impact of first-level non-

sphericity on parameter estimates at the second level. Here the

ReML estimate used:

V ¼
X
j

k 2ð Þ
j Q

2ð Þ
j þ

X
i

k 1ð Þ
i X 1ð Þ�Q

1ð Þ
i X 1ð Þ�T ð11Þ

This is a generalization of Eq. (7) that includes i covariance

components from the first level and j from the second. The results

of these two analyses are presented in Fig. 5 and have been

thresholded at P = 0.05 (corrected for the entire search volume).

Details about the maxima and associated P values are provided in

Table 1. It is evident that the inferences obtained from these two

procedures are almost identical, with the MFX analysis being

slightly more sensitive (which is compatible with analyses based

on simulated data, see Beckmann et al., 2003). The results remain

relatively unchanged despite the fact that we allowed for

heteroscedasticity at the first level and the first-level designs were

not balanced. Both factors contribute to non-sphericity at the

second level. This non-sphericity is illustrated in Fig. 6 for the two-

stage and MFX analyses (upper and lower panels, respectively).

This figure shows the heteroscedasticity can vary by up to a factor

of 4. In this figure, we have only shown non-sphericity for the first

parameter estimate (corresponding to the session-specific canonical

HRF). In case of the two-stage procedure (upper panel of Fig. 6),

this is simply proportional to Is.

It should be noted that the first-level estimation and both

second-level analyses allowed for within-level non-sphericity. As

noted above, we modeled session-specific error variances and

serial correlations using an AR(1) model at the first level. At the

second level, we allowed for different variances in parameter

estimates pertaining to the canonical response function, its time

derivative, and for covariation between these estimators (see

Eq. (9)). For the conventional two-stage analysis, this within-level

non-sphericity was estimated using exactly the same pooling

device and ReML estimation scheme as described for the mixed-

effects analysis. The only difference was that the MFX estimate of
non-sphericity included extra covariance components X(1)Qi
(1)

X(1)�T induced by the first level (see Eq. (11)).
Discussion

In conclusion, we have described a simple procedure for

implementing full mixed-effects analyses in SPM. This procedure

uses restricted maximum likelihood estimates of different variance

components induced by the hierarchical structure of observation

models in multisession fMRI studies. These ReML estimates are

based upon the sample covariance matrix of the response variable

in, and only in, responsive voxels. The reason that this procedure

was developed was to provide a reference for the commonly used

two-stage procedure, when its assumptions are violated.



Fig. 5. SPMs of the F contrast I2 testing for the effect of words at the

second level. This corresponds to a one-way ANOVA of the first-level

parameter estimates. The upper panel shows the SPM for a conventional

two-stage procedure. The lower panel shows the equivalent results for a full

mixed-effects analysis. The only difference between these two analyses was

in the form of the non-sphericity assumed for the residuals at the second

level. See main text for details.
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Why is iterative covariance component estimation necessary?

A frequent and natural question is about the need for iterative

estimation of covariance components. The reason that, in most

cases, one cannot solve directly for ReML estimates of covariance

components is simple: these estimators are based on the variance of

the residuals averaged over [integrating out] the conditional

distribution of the parameters. However, the conditional distribu-

tion of the parameters depends on the ReML estimates. This

circular dependence usually precludes a closed-form expression for

the ReML estimates; in some special cases, of balanced data in

mixed models, analytical solutions exist for the covariance

components (see Laird et al., 1987; Searle et al., 1992; Szatrowski

and Miller, 1980 for a formal treatment of this issue). However,

iterative schemes like the EM algorithm, are required in most

cases. In these schemes, the conditional expectation of the

parameters is estimated in an E-Step using the current non-

sphericity estimate, and then the ReML hyperparameters are

estimated in an M-Step using the current parameter estimates
(see Dempster et al., 1977 and Appendix A in Friston et al.,

2002a). Although parameter estimation can proceed non-iteratively

at each hierarchical level, given the hyperparameters (and vice

versa), one cannot estimate both the parameters and the hyper-

parameters without considering all components and all levels of a

hierarchical model.

Why does the MFX analysis require two steps?

The implementation of the MFX analyses above includes two

steps: the first step computes first-level parameters and ReML

hyperparameters that are used by the second step to estimate

second-level parameters (Fig. 1). Why not use the covariance

component ReML estimates to assess contrasts of the first-level

estimates directly? In other words, why bother re-estimating a

further hyperparameter r2 at the second level? There are two

reasons for this. First, recall that the ReML estimates are based

on thousands of voxels and therefore correspond to expectations

over voxels. They are not covariance component estimators from

the point of view of any voxel. In fact, they are extremely

precise estimates of non-sphericity, which is why they can be

treated as known quantities in our application. This renders the

neuroimaging application of MFX analyses more accurate than

equivalent univariate procedures. Secondly, even if we used a

ReML scheme at each and every voxel, classical statistics (e.g.,

the Satterthwaite procedure as used in Worsley and Friston,

1995) cannot accommodate joint uncertainty over multiple

covariance component estimates. This is quite a complicated

issue that is dealt with, in the context of fMRI data analysis, in a

previously published note (Kiebel et al., 2003). In brief, the

precision (degrees of freedom) of the standard error of any

contrast depends on the form of the contrast and on the

assumptions about the form of the likelihood p(yjk). Alter-

natively, techniques like Markov Chain Monte Carlo (MCMC)

methods could be used, but these are computationally very

expensive. The above implementation of MFX analyses repre-

sents a simple approximation that eschews these complications

and allows one to use classical expressions for F and t statistics

and their degrees of freedom.

Conclusion

The empirical example presented above suggests that the

conventional two-stage procedure is robust to differences

among the first-level design partitions and to unequal error

variances at the first level. In our experience, the two-stage

procedure with sphericity assumptions about the impact of first-

level variance components on second-level parameter estimates

(as in Eq. (10)) is a very reasonable approximation in the vast

majority of experimental situations. The main contribution of this

note is to highlight that the differences between a two-stage

procedure and a full mixed-effects analysis reduce to non-

sphericity assumptions about the second-level error. Furthermore,

a simple procedure now exists for performing a full mixed-

effects analysis in situations where one is worried about the

robustness of the two-stage approach. This mixed-effects

analysis uses completely standard restricted maximum like-

lihood techniques that were established in the 1970s (Dempster

et al., 1977; Harville, 1977). The only difference between these

classical ReML approaches and the neuroimaging application

described here is that the sample covariance matrix over voxels



Table 1

Maxima and associated statistics for the SPMs presented in Fig. 5

Voxels in cluster P value Statistics (F and Z) (mm)

Two-stage procedure

984 0.000 261.41 7.44 58 �18 2

218.68 7.23 58 �44 4

156.17 6.83 64 �34 6

1415 0.000 160.21 6.86 �60 �12 14

154.49 6.82 �64 �26 14

148.57 6.77 �54 �16 18

6 0.005 50.29 5.35 58 8�2

1 0.008 47.76 5.28 �50 �42 34

1 0.016 43.29 5.15 �66 �52�6

1 0.037 38.50 4.98 �40 �84 12

2 0.038 38.45 4.98 �40 �28 8

2 0.039 38.23 4.97 58 �28 0

ReML MFX procedure

1536 0.000 289.84 7.56 58 �18 2

247.94 7.38 56 �40 4

229.08 7.29 64 �34 6

2039 0.000 239.44 7.34 �60 �12 14

234.74 7.32 �70 �16 8

224.43 7.26 �70 �2 2

14 0.000 87.62 6.10 �50 �42 34

33 0.000 72.61 5.85 58 8�2

14 0.003 54.92 5.48 60 �54 22

7 0.004 52.27 5.41 64 �40 30

2 0.007 48.43 5.30 �40 �56 8

2 0.012 44.96 5.20 �52 �4 28

2 0.012 44.89 5.20 �52 �80 18

4 0.013 44.41 5.18 68 �42 16

1 0.016 43.38 5.15 �60 �54 18

1 0.016 43.06 5.14 �42 60 2

2 0.019 42.26 5.11 �20 �80 30

2 0.023 41.09 5.07 58 �8�4
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replaces the outer product of univariate data sequences (see

Appendix A). It is hoped that this material will be useful to

those researchers who cannot always guarantee fully balanced

designs at the first level.
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Fig. 6. Non-sphericity (of the session-specific canonical response) assumed

for the second-level analyses under (i) sphericity assumptions (conventional

two-stage procedure; upper panel) and (ii) embodying components from the

first level (full MFX analysis; lower panel).
Appendix A

ReML estimates of the hyperparameters obtained by a Fisher

scoring ascent on the ReML objective function that is exactly the

same as the negative free energy in expectation maximization (see

Friston et al., 2002a for further details).

Until convergence {

E-Step

V ¼
X

kiQi

C ¼ XTV�1X
� ��1
M-Step

P ¼ V�1 � V�1XCXTV�1

gi ¼ � 1

2
tr PQif g þ 1

2
tr PTQiPYY

T=n
� �

Hij ¼
1

2
tr PQiPQj

� �

kpk þ H�1g

g

Here, C is the conditional covariance of the parameters associated

with the design matrix X, and YYT/n is the sample covariance

matrix over n voxels (exceeding an uncorrected F threshold of P b

0.001 for effects of interest) over which ReML estimates are

pooled. In the application considered in the main text X =
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[X0X
(1)X(2)], and the covariance components are Q =

{Q1
(1),. . .,X(1)Q1

(2)X(1)T,. . .}.
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