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Abstract: This work represents an attempt to bring together two important themes in neuronal dynamics.
The first is the characterization of dynamic correlations in multiunit recordings of spike activity using
joint-peri-stimulus time histograms (J-PSTHs) [Aertsen and Preissl, 1991: Non Linear Dynamics and
Neural Networks]. The second is transient phase-locking at high (gamma) frequencies, either in terms of
spiking in separable spike trains [e.g., Eckhorn et al., 1988: Biol Cybern 60:121–130, Gray and Singer, 1989
Proc Natl Acad Sci USA86:1698–1702], or using continuous electrical or biomagnetic signals [e.g., Desmedt
and Tomberg, 1994 Neurosci Lett 168:126–129]. In this paper we suggest that transient phase-locking is
necessary for frequency-specific, dynamic event-related correlations. This point is demonstrated using the
gamma-frequency (36 Hz) component of neuromagnetic signals measured in the prefrontal and partial
regions of a subject during self-paced movements. A J-PSTH analysis revealed dynamic changes in
prefronto-parietal correlations in relation to movement onset. These frequency-specific dynamic correla-
tions were associated with changes in the degree of phase-locking, of the sort reported by Desmedt and
Tomberg [1994 Neurosci Lett 168:126–129].Hum. Brain Mapping 5:48–57, 1997. r 1997Wiley-Liss,Inc.
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INTRODUCTION

This paper is about fast dynamic interactions in the
brain, as measured with magneto-encephalography
(MEG). Its principal aim is to suggest that transient
phase-locking, of high-frequency neuronal oscilla-
tions, can result in dynamic or time-dependent changes
in the correlation between two neuronal processes, at

the frequency in question, following a salient sensory
or behavioral event. If true, this would establish a
relationship between two important aspects of neuro-
nal dynamics. The first is the characterization of dynamic
correlations in multiunit recordings of spike activity
using joint-peri-stimulus time histograms (J-PSTHs)
[Aertsen and Preissl, 1991] as exemplified by the recent
paper of Vaadia et al. [1995]. The second is phase-locking
at high (gamma) frequencies, either in terms of the
probability of spiking in separable spike trains [e.g.,
Eckhorn et al., 1988; Gray and Singer, 1989] or using
continuous electrical and biomagnetic signals [e.g.,
Desmedt and Tomberg, 1994]. (See also Thatcher et al.
[1994] for a summary of related work at lower (theta)
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frequencies.) The contention here is that event-related
phase-locking is necessary for the emergence of fre-
quency-specific, event-related correlations in neuronal
activity.
A fundamental phenomenon observed by Vaadia et

al. [1995] is that, following behaviorally salient events,
the degree of coherent firing between two neurons can
change profoundly and systematically over the ensu-
ing second or so. Furthermore, the mean firing rate
(averaged over epochs) does not, necessarily, change.
One implication is that a ‘‘better’’ metric of neuronal
interactions could be framed in terms of dynamic
changes in correlations, modulated on time scales of
100–1,000 msec. Dynamic correlations are measured,
not over time, but over trials or epochs as a function of
time after an event. These correlations can be character-
ized using J-PSTHs, which are effectively crosscorrela-
tion matrices referred to an event of interest [Aertsen
and Preissl, 1991]. J-PSTHs can reveal the emergence
and subsequent decay of ‘‘excess’’ correlations follow-
ing an event. Recently, it was noted that these dynamic
correlations could result from the correlated expres-
sion of stereotyped and transient changes in the
propensity to fire [Friston, 1995], where these tran-
sients have the same time course as the dynamic
correlations they produce. Desmedt and Tomberg [1994]
demonstrated recently a transient phase-locking of
gammawaves (35–45 Hz) in the prefrontal and parietal
cortex using electroencephalography. This transient
phase-locking was observed during selective attention
and enabled the authors to make some interesting
inferences about the role of electrophysiological syn-
chronization and the integration of perceptual features
into the behaviorial domain.
In this paper, J-PSTH analysis was applied to MEG

data obtained during self-paced movements in man.
To discount dynamic correlations due to the correlated
expression of slow transients [Friston, 1995], the data
were filtered to leave only a high (gamma) frequency.
The analysis revealed dynamic changes in prefronto-
parietal correlations in relation to movement onset.
These frequency-specific dynamic correlations were
taken to imply changes in the degree of phase-locking
of the sort reported by Desmedt and Tomberg [1994].
We were able to find evidence for modulation of
phase-locking using a post hoc analysis of phase
differences.
This paper is divided into two sections. The first

section provides a brief mathematical description of
the relationship between phase-locking and dynamic

correlations. The second section deals with the empiri-
cal (MEG) data used and the results of a J-PSTH
analysis demonstrating frequency-specific dynamic cor-
relations. The section concludes with a demonstration
of phase-locking using the distribution of prefronto-
parietal phase differences, estimated over trials or
epochs.

PHASE-LOCKING AND FREQUENCY-SPECIFIC
DYNAMIC CORRELATIONS

This section provides a mathematical discussion of
the intuitively obvious idea that if two neuronal
processes show phase-locking, at some specific time
after an event, then the activities, at this time, mea-
sured over repeated trials or epochs, will be correlated.
In other words, consider two sets of signals, of the
same frequency, that are observed at a particular point
in time. The two values observed will only correlate if
there is some systematic phase relationship between
the two sets of signals. If the phase relationships are
random, then the observed values will not be corre-
lated. More specifically, it is shown that a systematic
phase relationship is necessary for the emergence of
dynamic correlations, measured at a given frequency.
This is important because the demonstration of these
frequency-specific correlations is an implicit demonstra-
tion of phase-locking.
Let the activities of two neuronal processes (e.g.,

discharge rates in two separable spike-trains or signals
in two MEG channels), at time t in the post-event
period, at a particular frequency (v), be modelled by x1
and x2, where:

x1(t) 5 a1 sin (vt 1 t 1 d)

x2(t) 5 a2 sin (vt 1 t) (1)

where, for a given epoch, a1 and a2 represent the
amplitudes of this frequency component, t is the phase
at which sampling occurred, and d is the phase
difference between the two processes. It should be
noted that Equation (1) holds for any signals in the
Fourier domain. a1, a2, t, and d are stochastic variables
that pertain to a series of epochs, observed at time t. a1

and a2 are independent of d and a1, a2 . 0. t has a
uniform distribution in the range (2p, p) and is
independent of d (i.e., the sampling has no systematic
phase relationship to the processes). The phase relation-
ship between the two processes is described by the
probability density function P(d) again in the range
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(2p, p). By direct calculation, the covariance between
x1(t) and x2(t) is given by

g (t) 5 7x1(t) · x2(t)8

5 7a1 · a2 cos (d)8

(by independence) 5 7a1 · a28 e P (d) cos (d) dd (2)

where 7·8 denotes expectation . and the integral is from
2p to p. Equation (2) implies that for a dynamic
covariance g(t) to exist, the integral involving d must
be nonzero. This integral will only be nonzero if there
is some systematic phase relationship between the two
processes. In other words, phase-locking is a necessary
condition for the expression of frequency-specific dy-
namic correlations. Note that phase-locking is not a
sufficient condition (e.g., the phase difference could be
p/2). Note also that covariance in the amplitude
[cov 5a1, a26] [e.g., see Pfurtscheller andAranibar, 1979]
over epochs can affect the observed dynamic covari-
ance. This is because 7a1 · a28 5 7a187a28 1 cov 5a1, a26.
However, this effect can only be realized in the pres-
ence of phase-locking. In short, if one observes fre-
quency-specific dynamic correlations, one can infer a
degree of phase-locking. The argument presented above
holds even if themeasured brain signals are attenuated
(or even phase-delayed) differentially by the measure-
ment system. It is assumed, however, that themeasure-
ments are independent in the sense that the first signal
does not contribute to the measurement of the second
and vice versa.

Frequency-specific correlations and coherence

It is important to make a distinction between fre-
quency-specific correlations and coherence. Although
they are very similar, coherence does not change with
d, the phase difference. The Appendix includes an
expression for coherence in terms of P(d). Compare
this equation [Eq. (A3)] with Equation (2). The differ-
ence can be seen most clearly if we assume exact
phase-locking at some phase ≠. P(d) is then a delta-
function centered on ≠. The integral in Equation (2)
then reduces to cos (≠), whereas the integrals in Equa-
tion (A3) sum to unity. In other words, in the context of
phase-locking, frequency-specific correlations are peri-
odic functions of the phase-difference ≠, whereas coher-
ence is not. This is of practical importance because the
phase-difference can include differences due to ‘‘lag’’
l, when computing the crosscovariance between x1(t)
and x2(t 1 l) in the J-PSTHs below. These crosscovari-
ance (and crosscorrelation) functions are consequently

periodic functions of l at the frequency being exam-
ined.

ANALYSIS OF MEG DATA

In this section, MEG data were subject to J-PSTH
analysis to demonstrate frequency-specific dynamic
correlations in the gamma range and their event-
related modulation. On the basis of the results ob-
tained we then estimated the distribution of phases (cf.
P(d) in the previous section) when dynamic correla-
tions were expressed to the greatest and least extents.
As predicted theoretically, these distributions did in-
deed suggest prefronto-parietal phase-locking.

MEG data

MEG data were obtained from a normal subject
during self-paced movements of a joystick using a
Siemens KRENIKONt 37-channel machine. The sub-
ject was trained to perform the movement, with the
right hand, every 2 sec or so. The data were acquired
every millisecond for 72 movements. ECG artifacts
were removed using linear regression. In order to
enhance the spatial resolution of the multichannel data
we used a V3 transformation [Ioannides et al., 1990]
and selected two time-series from a prefrontal (ante-
rior cingulate/SMA) and a parietal (left superior pari-
etal/somatosensory) region (the exact locations are
shown in Fig. 1, top right). The V3 transformation uses
spatial derivatives to effect something like an ‘‘edge-
enhancement’’ and attenuates spurious correlations
between regions that could be attributed to the low
spatial resolution of MEG.
The prefrontal and parietal MEG time-series were

sorted into 72 epochs of 2,000 msec, time-locked to the
onset of electromyographic (EMG) activity at 1,000
msec. EMG onset was defined whenever the activity
exceed 20% of its maximum, after the EMG data were
squared and smoothed with a Gaussian kernel (256
msec wide). The average (square) of EMG activity over
epochs is shown in Figure 1 (top left).
A frequency component at v 5 36 Hz was extracted

from the MEG data xi(t) using the following device:

fi (t) 5 xi(t) # 5h(t) · exp (2j2pvt)6

x*i (t) 5 real 5fi (t)6 (3)

where i 5 1 or 2. Here # denotes convolution and h(t)
is some suitable windowing function. A 512-msec
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Figure 1.
Top right: Location of the two MEG time-series chosen for the
analysis. These data were selected after a V3 transformation of
37-channel MEG data obtained during self-paced movements. The
37 channels were located symmetrically, over both hemispheres, in
5 rows. Rows were arranged in equally-spaced coronal planes. V
denotes the nose, and left corresponds to right. Lower square is

over the anterior cingulate and SMA region. Upper square is over
the left superior parietal region.Top left: Average of the square of
EMG activity over all epochs used in the analysis. Below: The
(complex) convolution kernel used to extract a gamma (36 Hz)
frequency component from the data and to assess the phase
relationships (solid line, real; dotted line, imaginary).



Hanning function was used in this paper. Figure 1
(bottom) shows the real and imaginary parts of the
convolution kernel 5h(t) · exp (2j2pvt)6. x*i(t) can be
thought of as a filtered version of xi(t) with similar
power and phase relationships but retaining only the
frequency component v.

Joint-PSTH analysis

The two sets of epochs (x*1 and x*2) were subject to
J-PSTH analysis as described in Vaadia et al. [1995]. For
this analysis the data were reduced by resampling
every 8msec. The results are seen in Figure 2 and could
be compared with Figure 2 in Vaadia et al. [1995]. The

side panels correspond to the variance of the two
time-series over epochs, and the main panel is an
image representation of the crosscorrelation matrix
(referred to the stimulus event at 1,000 msec). The
crosscorrelation matrix shows an ‘‘excess’’ of correla-
tions (200 msec) before and (400 msec) after EMG
onset. These increases are preceded by a (200-msec)
period of profoundly reduced correlations around 600
msec before EMG onset. The event-related profile of
correlations is shown along the diagonal on the right,
andmore clearly reveals their time-dependentmodula-
tion. The crosscorrelogram (conventional crosscorrela-
tion function) is shown at upper right. Remember that
becausewe are dealingwith frequency-specific correla-

Figure 2.
Joint peri-stimulus time histogram ( J-PSTH) based on MEG data.
Left: Signal variance over epochs (side panels). These data replace
the conventional peri-stimulus time histogram (PSTH) usually
depicted in this format. Main panel is an image representation of
the crosscorrelation matrix (referred to the stimulus event at
1,000 msec). The horizontal axis corresponds to the prefrontal
channel, and the vertical axis to the parietal channel. The color
scale employed does not differentiate between positive and
negative correlations. This is because the sign of the correlation is
not important: as discussed in the text, the crosscorrelation

function is a periodic function of lag (with the same periodicity as
the frequency at which the correlations are measured). The
important aspect of this function is its amplitude. Note the initial
reduction and then excess of correlations just before and after
EMG onset. Right: Correlations as a function of time during the
epoch (cf. a coincidence-time histogram). This is the main diagonal
of the crosscorrelation matrix, showing the time-dependent na-
ture of the correlations (referred to the stimulus event). The
conventional time-averaged crosscorrelogram is shown at upper
right.
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tions, the crosscorrelation functions are themselves
periodic.
To demonstrate that this dynamic modulation is

event-specific we repeated an identical analysis but
chose (nonoverlapping) epochs at random (i.e., using
epochs with no relationship to EMG onset. The corre-
sponding J-PSTH is seen in Figure 3 and shows that the
correlations are extant throughout the epoch with little
obvious modulation.

Statistical inference

To ensure that the event-related modulation of
dynamic correlations was significant, we normalized
the leading diagonal of the J-PSTH in Figure 2, after
smoothing with a 32-msec Gaussian kernel. This nor-
malization used the estimates of its mean and standard
deviation under the null hypothesis of no event-
related modulation (i.e., using the observed mean and

variance of the smoothed leading diagonal in Fig. 3).
The resulting process Z(t) was then treated as a
stochastic Gaussian process of the Z statistic, and
extreme values were characterized using standard
results from statistical parametric mapping [see Fris-
ton et al., 1995]. These expressions allow one to
determine a P value for each time-bin that reflects the
significance of very high or low correlations. This P
value P(t) is the probability that the observed value of
Z(t) or higher would have been found by chance over
the entire epoch. In essense this P value is corrected for
the length of the epoch and the autocorrelations in Z(t):

P (t) # S(2pW)21 exp (2Z(t)2/2) (4)

where

W 5 Var 5≠Z(t)/≠t621/2.

Figure 3.
J-PSTH analysis of null data. As for Figure 2, only using epochs that were not time-locked to EMG
onset. Note that the leading diagonal of the crosscorrelation matrix shows little modulation over the
epoch.
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S is the length of the epoch and W is a parameter
related to the smoothness or the autocorrelations in
Z(t). In brief, this approach uses the theory of stochas-
tic processes to calculate corrected P values based on
the Z scores that comprise the process Z(t). This
correction takes account of the fact that the Z scores are
not independent [i.e., smoothness in Z(t)]. The assump-
tions implicit in this analysis are the same for statistical
parametric maps of the Z statistic that show autocorre-
lations, namely (1) that the process Z(t) is a reasonable
point-representation of an underlying continuous ran-
dom Gaussian process under the null hypothesis; (2)
that this process is stationary (themultivariate probabil-
ity density functions, over many realizations, are not a
function of t); and (3) the Z scores one makes infer-
ences about are relatively high (this is because the
distributional approximations used are asymptotically
true at very high thresholds).
Figure 4, top, shows the two smoothed leading

diagonals (or correlations at zero lag) from the epochs
time-locked to EMG onset at 1,000 msec (solid line)
and the epochs that were not (broken line). Figure 4,
bottom, plots P(t) and shows significant early de-
creases (P , 0.0001) followed by increases (P , 0.01) in
correlations immediately before EMG onset. Immedi-
ately after movement onset, there is a further decrease
(P , 0.01). In conclusion, prefronto-parietal MEG
gamma oscillations show nonspecific correlations. Self-
pacedmovements are associatedwith significantmodu-
lations that include a profound attenuation of these
correlations, at about 600 msec, which reverses to give
an excess of correlations about 200 msec before EMG
onset.

Distribution of phase relationships

To demonstrate that the dynamic correlations shown
in Figure 1 were associated with changes in the
systematic phase relationship, we computed the phase
differences between the prefrontal and parietal signals
at 760 msec (maximum correlation) and 352 msec
(minimal correlation), for all the epochs. These differ-
ences (estimates of d) were computed using

angle 5f1 (tk)6 2 angle 5f2 (tk)6 (5)

where tk was either 760 msec or 352 msec. The
distributions of phase differences are shown in Figure
5 and can be thought of as estimates of the form of P(d).
Clearly, when dynamic correlations are more pro-

nounced (Fig. 5, top) there is a tendency towards a zero
phase difference, with the distribution being fairly
tight (i.e., more phase-locking). Around 352 msec the
distribution is much flatter and shifted to a positive
nonzero phase relationship.

DISCUSSION

In this paper we suggest that the emergence of
event-related transient phase-locking at a particular
frequency is necessary for, and a likely concomitant of,
dynamic correlations at that frequency. We demon-
strated this point using a gamma-frequency compo-
nent of MEG data taken from the prefrontal and
parietal regions of a subject performing self-paced
movements. A J-PSTH analysis of dynamic correla-
tions showed attenuated and augmented correlations
in relation to EMG onset that were associated with
changes in phase-locking.

Qualifications

We have not presented an exhaustive study of
dynamic correlations in relation to self-paced move-
ments. The small set of data presented here serves to
illustrate an idea. Anecdotally it appears that the
modulation of dynamic correlations varies with the re-
gions selected and with minor variations in the experi-
mental design (e.g., joystick movement to the left or in
random directions) (data not shown). It is possible that
the background correlations, e.g., those seen in Figure
3, could reflect artifactual phase-locking due to the low
spatial resolution of MEG. We made efforts to mini-
mize this effect by using the V3 transformation; how-
ever, it cannot be completely discounted. Event-related
modulation of correlations could conceivably be attrib-
uted to transient bursts of power in the same neuronal
generator, as picked up by both channels. However,
this is an unlikely explanation for the event-related
modulation of correlations seen in Figure 2 because the
phase-relationships, during maximal correlations, are
skewed to the right of 0 (Fig. 5). The modulation is
therefore more likely to reflect real changes in long-
range neuronal interactions.
As noted in an earlier section, phase-locking is not a

sufficient condition for correlations to emerge (e.g., the
mean phase difference could be p/2). This means that
the observed crosscorrelations at any given lag will be
a function of the relative phase difference. In terms of
characterizing transient phase-locking, or frequency-
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Figure 4.
Statistical inference. Above: Smoothed leading diagonals of the
crosscorrelation matrices for epochs that were (solid line) and
were not (broken line) time-locked to EMG onset. Below:
Corrected P values testing the alternative hypothesis that the

normalized correlations (solid line, above) were different from
those predicted under the null hypothesis of no modulation. This is
a plot of p(t) in the text. The broken horizontal line corresponds to
P , 0.05.



specific dynamic correlations, this highlights the
usefulness of the J-PSTH. The crosscorrelation matrix
comprising the J-PSTH includes the crosscorrelations
at all lags and will therefore provide evidence for

correlations, irrespective of the underlying phase differ-
ence.

Spike trains vs. MEG

The answer to the question, ‘‘Are phase-locking and
dynamic correlations the same thing?’’ is a qualified
yes. The qualification is that the dynamic correlations
have to be frequency-specific. It should be noted that the
J-PSTH analyses applied to multiunit recording data
[e.g., Vaadia et al., 1995] used all the frequency compo-
nents of binned firing rate data. The fact that these data
represent sparse point processes may preclude the
sort of frequency-specific J-PSTH presented here. The
possibility that the sorts of dynamic correlations pre-
sented in Vaadia et al. [1995] can be attributed to
phase-locking is unlikely, because the crosscorrelo-
grams and crosscorrelation matrices do not show any
periodic structure. Such periodicity would be expected
if the correlations were a result of systematic phase
relationships at a particular frequency. This periodic
structure is expected, because at a certain lag between
the two signals they must be p/2 out of phase and the
correlation must be zero. With increasing lag, the
phase difference will fall and rise periodically with
concomitant increases and decreases in the correlation
(compare this to coherence that is not sensitive to the
phase difference). However, when it comes to continu-
ous electrical or biomagnetic data, we hope to have
illustrated an important link between frequency-
specific dynamic correlations and transient phase-
locking.

CONCLUSIONS

In conclusion, we can assert that frequency-specific
dynamic correlations and transient phase-locking are
the same, using a purely theoretical analysis; and that
this phenomenon can be demonstrated in human
biomagnetic signals. Dynamic correlations that do not
show frequency specificity (no periodic modulation

Figure 5.
Distribution of phase differences over epochs. Top: Distribution
of phase differences between the prefrontal and parietal time-
series at 760 msec (i.e., when correlations were expressed the
most). This distribution was based on the data used in Figure 2.
Bottom: Equivalent distribution at 352 msec. Note that both
distributions suggest a tendency to phase-locking, with the distribu-
tion associated with greater correlations (top) being slighter
‘‘tighter’’ (i.e., more phase-locking).
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of the crosscorrelation functions) may or may not
be associated with transient phase-locking at high
frequencies and can be more generally framed in
terms of the conjoint expression of neuronal transients
with a wide range of frequency components [Friston,
1995].
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APPENDIX

Relationship between distribution of phase
differences and coherence

Let the activity of neuronal processes i (e.g., discharge
rates in a separable spike-train or biomagnetic signal in
a MEG channel), at a particular time in the postevent
period, be xi(t), where the Fourier transform pair

xi (t) 5
1

2p
e si (v) · e2ivt dv 1A1a2

si (v) 5 e xi(t) · e ivt dt 1A1b2

provides representations of the activities in time t and
frequency space v. These equations are generally appli-
cable to any time-series. Equation (A1a) says that the
time-series can be represented as the superposition of
many frequency components distributed according to
the complex vector si(v) that is the Fourier transform of
xi(t). si(v) can be equivalently expressed in terms of its
absolute value ai and phase fi where si(v) 5 ai exp (ifi).
ai corresponds to the magnitude of the frequency compo-
nent at v and fi its phase. We are interested in charac-
terizing coherence in terms of the phase relationship.
Let the two processes have spectral representations:

si (v) 5 ai exp (ifi )

sj (v) 5 aj exp (ifi 1 d) 1A22

where d is the phase-difference between processes i
and j. Coherence is based on the crossspectral density
gij(v) 5 7si(v)sj(v)*8 5 7aiaj. exp (2id)8. Here 7.8 denotes
expectation over epochs or realizations of the pro-
cesses and * the complex conjugate. The coherence is
given by:

C 5
0gij (v) 0 2

gii (v)gjj(v)
5

7aiaj8
2

7a i
2 87aj

2 8 [(e2p

p
P(d) cos (d) dd) 2

1 (e2p

p
P(d) sin(d) dd) 2]. (A3)
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