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Abstract

A conjunction is de�ned in the brain mapping literature as the occurrence of the same event at the same location in
two or more independent 3D brain images. The images are smooth isotropic 3D random �elds of test statistics, and the
event occurs when the image exceeds a �xed high threshold. We give a simple approximation to the probability of a
conjunction occurring anywhere in a �xed region, so that we can test for a local increase in the mean of the images at
the same unknown location in all images, a generalization of the split-t test. This is the corollary to a more general result
on the expected Minkowski functionals of the set of points where a conjunction occurs. c© 2000 Elsevier Science B.V.
All rights reserved
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1. Introduction

Let Xi(t) be the value of image i at location t ∈R D; 16i6n, and let x be a �xed threshold. The set of
points where a conjunction occurs is

C = {t ∈ S: Xi(t)¿x for all 16i6n}:

An example is shown in Fig. 1 for n = 6. We are interested in the probability that C is not empty, that is,
the probability that all images exceed the threshold at some point inside S, or that the maximum over t ∈ S
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Fig. 1. Conjunction of n = 6 fMRI images during a visual task (only one slice of the 3D data is shown). The excursion sets of each
Xi(t)¿1:64; i = 1; : : : ; 6 are shown in white on a background of brain anatomy (top). The set of conjunctions C is the intersection of
these sets (bottom). The visual cortex at the back of the brain appears in C, but the most interesting feature is the appearance of the
lateral geniculate nuclei (LGN) (arrows).

of the minimum over i of Xi(t) exceeds x:

P{C 6= ∅}=P

{
max
t ∈ S

min
16i6n

Xi(t)¿x
}

: (1)

If the images are independent stationary random �elds then the expected Lebesgue measure or volume
of C is

E{|C|}=pn|S|; (2)

where p = P{Xi(t)¿x}. Our main result is that (2) holds if Lebesgue measure is replaced by a vector of
Minkowski functionals, and p is replaced by a matrix of Euler characteristic intensity functions for the random
�eld. This gives (2) as a special case, and other interesting quantities such as the expected surface area of C,
which comes from the (D − 1)-dimensional Minkowski functional. But the component of most interest to us
is the zero-dimensional Minkowski functional, or Euler characteristic (EC). For high thresholds, the expected
EC of C is a very accurate approximation to probability (1) that we seek (Adler, 1999). We apply this result
to some real data in brain mapping in Section 5.
This also allows us to set the level of the split-t test. Shaywitz et al. (1995) used this test to determine

whether the functional organization of the brain for language di�ered according to sex. Thirty eight independent
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fMRI images were randomly divided into n= 2 groups, and an image Xi(t) of t-statistics was calculated for
each group i=1; 2. The split-t test rejects if the null hypothesis is rejected for both groups at the same point t,
that is, if X1(t)¿x and X2(t)¿x for some threshold x, taken as the upper level 5% point of the t-distribution
with 17 degrees of freedom. The resulting image of conjunctions C appears on the cover of Nature that
contains Shaywitz et al. (1995).

2. Integral geometry and stereology

In this section we shall state some results from integral geometry and stereology that will be used to prove
our main result (see, for example, Santal�o, 1976).
Let �i(A) be the ith Minkowski functional of a set A⊂R D, scaled so that it is invariant under embedding

of A into any higher-dimensional Euclidean space. If A has a twice di�erentiable boundary @A, then it can
be de�ned as follows. Let si = 2�i=2=�(i=2) be the surface area of a unit (i − 1)-sphere in R i. For M an
m × m matrix let detrj(M) denote the sum of the determinant of all j × j principal minors of M , so that
detrm(M)=det (M); detr1(M)=tr(M) and we de�ne detr0(M)=1. Let Q be the (D−1)×(D−1) curvature
matrix of @A. Then for 06i6D,

�i(A) =
1

sD−i

∫
@A
detrD−1−i(Q) dt

and de�ne �D(A) = |A|. Note that �0(A) is the EC of A by the Gauss–Bonnet Theorem, and �D−1(A) is half
the surface area of A. For example, the Minkowski functionals of a ball A of radius r in R 3 are

�0(A) = 1; �1(A) = 4r; �2(A) = 2�r2; �3(A) = (4=3)�r3: (3)

We shall use the result that any set functional  (A) that obeys the additivity rule

 (A ∪ B) =  (A) +  (B)−  (A ∩ B) (4)

is a linear combination of the Minkowski functionals. Let A; B⊂R D, then the Kinematic Fundamental Formula
of integral geometry relates the integrated EC of the intersection of A and B to their Minkowski functionals:∫

�0(A ∩ B) = s2 : : : sD
D∑

i=0

�i(A)�D−i(B)
cD
i

; (5)

where the integral is over all rotations and translations of A, keeping B �xed, and

c D
i =

�(1=2)�((D + 1)=2)
�((i + 1)=2)�((D − i + 1)=2)

:

3. Random �elds

If X (t); t ∈R D, is an isotropic random �eld with excursion set A= {t: X (t)¿x} then

E{�0(A ∩ S)}=
D∑

i=0

�i�i(S) (6)

for some constant �i. This follows from the fact that  (S) = E{�0(S ∩ A)} obeys the additivity rule (4),
since �0 does, so it must be a linear combination of the Minkowski functionals �i(S). The coe�cients �i,
called Euler characteristic (EC) intensities in R i, can be evaluated for a variety of random �elds (Adler,
1981; Worsley, 1994, 1999; Siegmund and Worsley, 1995; Cao and Worsley, 1999a,b). For example, for a
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Gaussian random �eld with E{X (t)}=0; Var{X (t)}=0; Var{@X (t)=@t}= �I , where I is the D×D identity
matrix, then �0 =P{X (t)¿x} and for i¿ 0

�i = �i=2(2�)−(i+1)=2Hei−1(x)e−x2=2; (7)

where Hej(x) is the Hermite polynomial of degree j in x. We now extend (6) to higher Minkowski functionals.

Lemma 1.

E{�i(A ∩ S)}=
D∑

j= i

c j
i �j−i�j(S):

Proof. Clearly,  (S) = E{�i(A ∩ S)} obeys the additivity rule (4), since �i does, so we can write

E{�i(A ∩ S)}=
D∑

j= 0

aij�j(S) (8)

for some constants aij that do not depend on S. To evaluate these constants, replace S in (8) by Ek , a bounded
convex set in a k-plane, k6D. Since the ith Minkowski functional of a set in Rk is zero for i¿ k, then aik

is zero for i¿ k. For i6k,

E{�i(A ∩ Ek)}
�k(Ek)

=
D∑

j= i

aij
�j(Ek)
�k(Ek)

→ aik (9)

as Ek → Rk . We can thus interpet aik as the density of the ith Minkowski functional of the excursion set of
X in Rk . To evaluate aik , apply the Kinematic Fundamental Formula (5) to A ∩ ED and S:

∫
�0((A ∩ ED) ∩ S) = s2 : : : sD

D∑
i=0

�i(A ∩ ED)�D−i(S)
cD
i

:

Dividing both sides by s2 : : : sD�D(ED) and taking limits, we get

E{�0(A ∩ S)}=
D∑

i=0

lim
ED→R D

E{�i(A ∩ ED)}
�D(ED)

�D−i(S)
cD
i

:

Comparing this with (6) we get

lim
ED→R D

E{�i(A ∩ ED)}
�D(ED)

= cD
i �D−i

and combining this with (9), we get for i6j,

aij = c j
i �j−i :

Substituting into (8) completes the proof.
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4. Geometry of the set of conjunctions

Theorem 2. Let bi=�((i+1)=2)=�(1=2) and de�ne the upper triangular Toeplitz matrix Rk and the vector
�(B) by

Rk =




�0k =b0 �1k =b1 · · · �Dk=bD

0 �0k =b0 · · · �(D−1)k =bD−1
...

...
. . .

...

0 0 · · · �0k =b0


 ; �(B) =




�0(B)b0
�1(B)b1

...

�D(B)bD


 ;

where �ik is the EC intensity of Xk(t) in R i ; 16k6n, and B⊂R D. Then

E{�(C)}=
(

n∏
i=1

Ri

)
�(S):

Proof. The proof follows by induction on n. From the lemma, we see that it is clearly true for n = 1. Let
Ak be the excursion set for Xk(t), so that C = A1 ∩ · · · ∩ An ∩ S. If the result is true for n = k then by �rst
conditioning on Ak+1 and replacing S by Ak+1 ∩ S we get

E{�(A1 ∩ · · · ∩ Ak ∩ (Ak+1 ∩ S)}=
(

k∏
i=1

Ri

)
E{�(Ak+1 ∩ S)}=

(
k∏

i=1

Ri

)
Rk+1�(S)

by the result for n= 1. This completes the proof.

Comparing this result with (2) we see that it has the same form, with volume replaced by the vector of
weighted Minkowski functionals, and probability replaced by the matrix of weighted EC intensities. The last
element is the same as in (2), and the �rst element is the expected EC of the set of conjunctions that we
shall use as an approximation to the probability of a conjunction anywhere in S:

P{C 6=0}=P

{
max
t ∈ S

min
16i6n

Xi(t)¿x
}

≈ E{�0(C)} = (1; 0; : : : ; 0)
(

n∏
i=1

Ri

)
�(S) (10)

for high thresholds x.

5. Application

We shall apply the result to some D = 3 dimensional functional magnetic resonance imaging (fMRI) data
fully described in Friston et al. (1999). The purpose of the experiment was to determine those regions of the
brain that were consistently stimulated by all subjects while viewing a pattern of radially moving dots. To do
this, subjects were presented with a pattern of moving dots, followed by a pattern of stationary dots, and this
was repeated 10 times, during which a total of 120 3D fMRI images were obtained at the rate of one every
3.22 s. For each subject i and at every point t ∈R3, a test statistic Xi(t) was calculated for comparing the
fMRI response between the moving dots and the stationary dots. Under the null hypothesis of no di�erence,
Xi(t) was modeled as an isotropic Gaussian random �eld with zero mean, unit variance and �=4:68 cm−2. A
threshold of x = 1:64, corresponding to an uncorrected level 5% test, was chosen, and the excursion sets for
each subject are shown in Fig. 1, together with their intersection, which forms the set of conjunctions C. The
search region S is the whole brain area that was scanned, which was an approximate spherical region with
a volume of |S| = 1226 cm3. Finally, the approximate probability of a conjunction, calculated from (3), (7)
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and (10), is 0.0126. We can thus conclude, at the 1.26% level, that conjunctions have occured in the visual
cortex, and more interesting, the lateral geniculate nuclei (see Fig. 1).
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