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Multivariate SPM: Application to basis function characterisations of event-
related fMRI responses 
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 Most existing statistical methods for analysing neuroimaging data are univariate, testing the significance of, for 
example, a single parameter estimated from the least mean squares fit between a model and the data. Below we 
describe one implementation of a multivariate statistical technique, within Statistical Parametric Mapping (SPM), 
and ill ustrate its potential application to tests of multiple basis function parameterisations of event-related fMRI 
responses in a Random Effects analysis across subjects. 

Multivariate Tests using Wilks Lambda 
Multivariate tests are analyses that consider more than one dependent variable. In simple terms, they identify linear 
combinations of the variates and apply standard analyses of variance to these linear compounds. More precisely, 
assume n observations of p variates. Using the general li near model, the fitted response, Y, and residuals, r, are: 

  Y=Xpinv(X)y r=y-Y 

where y is a nxp data matrix (potentially adjusted for confounds) and X is the design matrix (model) comprising one 
or more regressors. Wilks Λ-statistic is defined through the likelihood ratio: 

  Λ=|R|/(|H|+|R|) 

where H is the matrix of squares and products of the fitted response, YTY, and R is the corresponding matrix for the 
residuals, rTr. These determinants can be vewied as a multivariate characterisation of variance, with Λ decreasing as 
the variance ratio of f itted response to residuals increases. The Λ-statistic can be expressed as a function of the 
eigenvalues, θi, i=1..p of the matrix HR-1 (Chatfield & Colli ns, 1980): 
        p 

  Λ=Π 1/(1+θi) 
       i=1 

which allows a good approximation to the F-ratio using the transformations described by Rao (1951). For example, 
with one degree of freedom (df) in the model (i.e., rank(H)=1), the transformation is: 

  (1-Λ)/Λ (s-p+1)/p  ~  F(p, r-p+1)  

where s is the residual df, a ratio equivalent to that derived from Hotelli ng’s T2-test. The generalised eigenvalue 
decomposition of HR-1 is also equivalent to a canonical variate analysis, where θi are the canonical values. The fitted 
response and residuals can be projected onto the first canonical vector, which can be viewed as the direction (linear 
compound) that maximises the variance of f itted responses while simultaneously minimising the residual error. 

Example Application 
12 subjects made old-new decisions to words 
presented every 5s in an episodic recognition task. 
Event-related responses to words were modelled 
with a canonical haemodynamic response function 
(HRF; Friston et al., 1998) and an HRF delayed by 3 
seconds. Differences in parameter estimates between 
old and new words for both the canonical and the 
delayed basis function were then entered into a one-
sample multivariate analysis to produce SPMs of the 
F-statistic (see above). Regions evidencing 
differences significant at p<.001 uncorrected 
included Precuneus and Posterior Cingulate (Fig 
1A/1B, SPM99 MIP). Parameter estimates for each 
subject from the maximum of the Precuneus region 
(+6 –69 +36), F(2,10)=43.8, are plotted in Fig 1C, 
together with the direction of the canonical vector. 
The fitted differential response derived from the 
basis functions is plotted in Fig 1D and is consistent 
with a greater earlier  response in this region to old 
than new words. 

Conclusion 
Multivariate analyses offer potential advantages, such as eschewing the sphericity assumptions made in univariate 
repeated measures designs. The example given here is a multiple basis function characterisation of haemodynamic 
responses; another example is multivariate analysis of the proportions of grey matter, white matter and CSF in 
Voxel-Based Morphometry (Ashburner & Friston, in press). One disadvantage is that multivariate tests are only 
powerful when n>>p (ideally with ten times as many observations as variates), potentially requiring large subject 
samples.  
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