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We investigated the accuracy of spatial basis func-
tion normalization using anatomical landmarks to de-
termine how precisely homologous regions are colo-
calized. We examined precision in terms of: (1) the
number of nonlinear basis functions used by the nor-
malization procedure; (2) the degree of (Bayesian) reg-
ularization; and (3) the effect of substituting different
templates and how this interacted with the number of
basis functions. The face validity of spatial normaliza-
tion was assessed as a function of these parameters,
using the colocalization of homologous landmarks in a
test sample of 20 normally developing children and 5
children with bilateral hippocampal pathology. Our
results suggest that when optimal normalization pa-
rameters are used, anatomical landmarks in the me-
dial temporal lobes are colocalized to within a stan-
dard deviation of about 1 mm. When suboptimal
parameters are used this standard deviation can in-
crease up to 3 mm. Interestingly the optimal parame-
ters are those that provide a rather constrained nor-
malization as opposed to those that optimize intensity
matching at the expense of rendering the warps “un-
likely.” The implications of our results, for users of
voxel-based morphometry, are discussed. © 2002 Elsevier

Science (USA)

INTRODUCTION

This technical note deals with the precision of spatial
normalization in terms of its ability to colocalize a
number of medial temporal lobe anatomical land-
marks, from subject to subject. The motivation for the
work reported came from a series of neurodevelopmen-
tal studies looking at bilateral medial temporal lobe
abnormalities using voxel-based morphometry. In par-
ticular, we were interested in assessing the construct
validity of nonlinear warping in terms of landmark
507
coregistration. The results do not represent a compre-
hensive validation of the spatial normalization proce-
dures we used but do point to the interesting fact that
precision, in terms of landmark coregistration, is not
necessarily achieved by increasing the degrees of free-
dom of the nonlinear transformations used to normal-
ize brain images.

Voxel-based morphometry was developed to charac-
terize cerebral gray and white matter differences in
structural MRI scans. In contrast to methods that
frame the search in terms of regions of interest, voxel-
based morphometry can detect structural differences
with uniform sensitivity throughout the brain. Voxel-
based morphometry is essentially a technique that
compares images of gray matter (or white matter) (ob-
tained from segmented MR images). This comparison
uses statistical parametric mapping to identify, and
make inferences about, regionally specific differences.

Voxel-based morphometry depends on spatially nor-
malizing all the images into the same stereotactic
space, extracting the gray (or white) matter from the
normalized images, smoothing, and finally performing
a statistical analysis to localize and make inferences
about group differences. The output of the method is a
statistical parametric map (SPM) showing regions
where gray (or white) matter density differs signifi-
cantly among groups.

Normalization is required to ensure that homologous
regions are compared across subjects. It is not intended
to be an exact process (since this would remove all
anatomical differences among the groups, rendering
the differences in gray matter segments negligible).
The normalization should therefore remove only ana-
tomical differences down to a specified spatial scale so
that structures are registered but their relative tissue
composition is preserved. The accuracy of colocaliza-
tion of anatomical structures across subjects is a crit-
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ical factor in ensuring that the results can be inter-
preted in terms of gray matter changes per se.

Spatial Normalization

Normalization is essentially the process of warping
MR images from different subjects into a standard
space as defined by a template image (Friston et al.,
1995). One way of normalizing data involves identify-
ing certain brain “landmarks” by inspection and then
manipulating the images so that these landmarks are
brought into register. However, to overcome the inher-
ent subjectivity of this method, voxel-based analyses
generally use non-label-based techniques that are fully
automated.

Non-label-based normalization techniques minimize
some index of the difference between the source image
and the template image (Ashburner and Friston,
1999a,b). SPM99 minimizes the sum of the squared
differences between the image to be normalized and
the template while maximizing the prior probability of
the transformation (also known as regularization). The
maximum a posteriori solution is found iteratively: the
algorithm starts with an initial parameter estimate
and searches from there. The algorithm stops when
criterion is achieved (when the weighted sum of square
differences no longer decreases or after a finite number
of iterations).

Normalization can be divided into two components:
affine (or linear) and nonlinear transformations. Affine
transformations are generally carried out first and ac-
count for differences in position, orientation, and over-
all brain size. Then nonlinear normalization is used to
account for low spatial frequency global variability in
head shape. In SPM99, the nonlinear transformations
are restricted to linear combinations of three-dimen-
sional discrete cosine functions (Ashburner and Fris-
ton, 1999b).

The normalization is therefore shaped by a number
of constraints: hard constraints (such as the number of
discrete cosine functions employed) and soft con-
straints (such as the degree of regularization). The
construct validity of the normalization procedure has
been addressed by Ashburner and Friston (1999c).
These investigations focused on ensuring that the nor-
malization procedure minimizes various measures of
template and data differences (such as membrane en-
ergy). In the present work, we assess face validity in
terms of the precision of the normalization procedure,
by examining the variation in the coordinate location
of various anatomical landmarks across a group of
individuals. The effects of changing the constraints
on the nonlinear transformations as well as the de-
pendency of the results on the template used are in-
vestigated.

Voxel-Based Morphometry

Although the issues addressed in this note are rele-
vant to all forms of neuroimaging (that encompass
multisubject studies), we have focused on their rele-
vance for voxel-based morphometry (VBM) in the me-
dial temporal region. Voxel-based morphometry is just
one of a number of computational techniques that can
be used to assess anatomical differences among differ-
ent cohorts.

There are essentially three different approaches to
this sort of computational anatomy. The first is voxel-
based morphometry in which the warpings used to
normalize each subject’s brain are constrained to be
relatively smooth. Critically, this smoothness must be
greater than the kernel used to smooth the gray matter
partitions when creating gray matter density maps.
The idea behind voxel-based morphometry is to place
anatomical regions in register but not change their
relative local tissue composition. This is ensured by
using smooth warps that, to a first approximation,
simply move structures around without dilating or
compressing them at the spatial scale at which infer-
ences are made.

The alternative approach is to use warps that have
many more degrees of freedom, allowing them to re-
move both position and size or shape differences down
to the finest anatomical scale. Following normaliza-
tion, with these high-dimensional techniques, all the
information pertaining to anatomical differences is en-
coded by the deformation fields. These differences can
then be assessed by comparing the deformation fields
directly (deformation field-based morphometry) or us-
ing tensor-based morphometry. Tensor-based mor-
phometry retains the regional specificity of voxel-based
morphometry by computing a sensible scalar metric at
each point in the brain from the deformation field. The
most common metric used is the Jacobian, which can
be thought of as a measure of local volume change (see
Christensen et al., 1995; Davatzikos, 2001; Thompson
et al., 2000).

In this work we were concerned exclusively with
voxel-based morphometry and smooth deformations.
This smoothness is enforced by expressing the defor-
mation field as a linear combination of smooth basis
functions. The degree of smoothness is controlled by
how many basis functions are used and this is a key
parameter we manipulated to assess precision in terms
of landmark coregistration.

CHANGING THE NUMBER OF BASIS FUNCTIONS
(HARD CONSTRAINTS)

Materials and Methods

All subjects (20 children, mean age 13 years, 11
males, 9 females, with no known neurological or psy-
chiatric history) were scanned, unsedated, on a 1.5-T
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Siemens Vision scanner, using a T1-weighted 3D
MPRAGE sequence (Mugler and Brookeman, 1990)
with the following parameters: TR 9.7 ms, TE 4 ms, TI
300 ms, flip angle 12°, matrix size 256 � 256 � 128,
field of view 250 � 250 � 160 mm.

The 3D data sets were analyzed in SPM99 (Wellcome
Department of Imaging Neuroscience, London, UK).
Each scan was normalized (Friston et al., 1995; Ash-
burner and Friston, 1999a) to the T1 template supplied
with SPM99. This template is constructed from 152
T1-weighted scans from the MNI [supplied by Alan
Evans, Montreal Neurological Institute, Canada
(ICBM, NIH P-20 project, Principal Investigator John
Mazziotta)]. Normalization was performed using dif-
ferent numbers of nonlinear basis functions in three
orthogonal directions to give four levels of constraint:

● Level 1—No nonlinear transformations
● Level 2—4 � 5 � 4 nonlinear basis functions
● Level 3—7 � 8 � 7 nonlinear basis functions
● Level 4—10 � 11 � 10 nonlinear basis functions

All other normalization parameters were constant
across the groups (medium regularization, 16 itera-
tions). To assess face validity, eight anatomical land-
marks were identified as described in Table 1. These
comprised “bounding box”-like landmarks and specific
landmarks in the medial temporal region (see Fig. 1).
We were particularly interested in medial temporal
precision, given our analyses below of data from chil-
dren with hippocampal atrophy.

The coordinates of these landmarks were measured
on each normalized scan, with the assessor blinded to
the level of constraint. The mean position for each
anatomical landmark was calculated within each level
and the standard deviation about this position was
calculated. Measurements were carried out twice on
Level 3 to assess test–retest reliability. The precision

data (i.e., the standard deviation of the eight landmark
locations) were analyzed in SPSS using repeated mea-
sures and Pearson’s correlation coefficients.

Results and Discussion

The reliability of anatomical landmark identification
was confirmed by Pearson’s correlation coefficients for
all eight landmarks. All correlation coefficients were
significant at P � 0.05 (r � 0.5). Figure 2 shows that
the four landmarks in the plane z � 0 were colocalized
to within �1 mm (�1 voxel) regardless of how many
nonlinear basis functions were used. This is a reflection
of the fact that these “basic” aspects of colocalization
are well accommodated by linear transformations. The
four landmarks in the coronal plane through the pons
intersection were significantly less well localized than
these basic measures [F(3.7,71.1) � 35; P � 0.001]. In
addition, from Fig. 2, it can be seen that 4 � 5 � 4
nonlinear basis functions give significantly better colo-
calization (significantly smaller standard deviation
from mean anatomical location) for all four medial
temporal landmarks.

These results suggest that a smaller number of non-
linear basis functions can be “better” than a larger
number. This may appear counterintuitive, since more
basis functions endow the transformation with more
degrees of freedom, which in turn should make the
normalization more accurate. However, this intensity
matching is not spatial matching and does not neces-
sarily give the most spatially precise registration. In
other words, it is possible that while the algorithm
minimizes the difference between the template and the
image, the amount of regularization fails to prevent
anatomically unlikely transformations, i.e., the algo-
rithm prioritizes reducing the difference between the
template and the image at the expense of anatomical

TABLE 1

Anatomical Landmark Locations

Label Category z coordinate Localization

Front Basic landmarks In-plane z � 0 Maximal y value
Back Basic landmarks In-plane z � 0 Minimal y value
Left Basic landmarks In-plane z � 0 Minimal x value
Right Basic landmarks In-plane z � 0 Maximal x value
Left white matter Medial temporal landmarks In coronal plane through superior

pons–brain-stem join (chosen in the
sagittal plane x � 0)

Most medial white matter on
lateral border of left hippocampus

Right white matter Medial temporal landmarks In coronal plane through superior
pons–brain-stem join (chosen in the
sagittal plane x � 0)

Most medial white matter on
lateral border of right
hippocampus

Left pons Medial temporal landmarks In coronal plane through superior
pons–brain-stem join (chosen in the
sagittal plane x � 0)

Widest point of the pons brain stem
on left

Right pons Medial temporal landmarks In coronal plane through superior
pons–brain-stem join (chosen in the
sagittal plane x � 0)

Widest point of the pons brain stem
on right
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validity. This possibility was investigated in the next
analyses, in which we looked for evidence of an inter-
action between the basis functions and regularization.

CHANGING THE DEGREES OF REGULARIZATION
(SOFT CONSTRAINTS)

Regularization refers to the inclusion of a penalty
term for unlikely warps (based on specified priors) that
enter into the minimization. This log likelihood term
penalizes rough, quickly changing warps. Operation-
ally this implies penalizing the use of high spatial
frequency basis functions more than lower frequencies
(see Ashburner and Friston, 1999b).

Materials and Methods

The 3D data sets (as described above) were normal-
ized with two different sets of nonlinear basis functions
with high regularization to form two additional nor-
malization levels:

● Level 2A—4 � 5 � 4 nonlinear basis functions

● Level 3A—7 � 8 � 7 nonlinear basis functions

The data were otherwise normalized exactly as de-
scribed above. The coordinates of landmarks were mea-
sured and analyzed as in the previous section.

Results and Discussion

As Fig. 3 shows, the normalization precision was
unchanged by increasing regularization with 7 � 8 � 7
nonlinear basis functions. With 4 � 5 � 4 nonlinear
basis functions, the accuracy was reduced by increas-
ing the regularization. These results suggest that re-
ducing the importance of minimizing the template and
image difference relative to the probability of the ana-
tomical warping interacts with the number of basis
functions in terms of face validity. Regularizing the
larger basis set has little effect. However, regularizing
the smaller (optimal for these eight landmarks) set
overly constrains the warp and reduces the precision.
These findings suggest that having a greater number of
basis functions does not necessarily improve normal-
ization accuracy and the hard constraints offered by
basis functions can actually lead to better spatial
coregistration.

It should be noted that while 4 � 5 � 4 nonlinear
basis functions gave the most accurate normalization

FIG. 1. Anatomical landmarks, (a) Landmarks in z � 0. (b) The coronal slice for white matter and pons landmarks. (c) Medial temporal
landmarks.

FIG. 2. Standard deviation from mean position of landmarks
using medium regularization. Group 1, no nonlinear transforma-
tions; Group 2, 4 � 5 � 4 nonlinear transformations; Group 3, 7 �
8 � 7 nonlinear transformations; Group 4, 10 � 11 � 10 nonlinear
transformations.

FIG. 3. Standard deviation from mean position of landmarks
using varying levels of regularization. Group 2, 4 � 5 � 4 nonlinear
transformations; Group 3, 7 � 8 � 7 nonlinear transformations.
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in the range tested, it may not be the optimal number
for all landmarks. However since 4 � 5 � 4 nonlinear
basis functions colocalized all eight landmarks to
within �1.5 mm and this is the size of the voxels in the
normalized images, it is likely that this accuracy is
adequate for most applications.

CHANGING THE TEMPLATE

Normalization procedures are intended to provide
good anatomical colocalization in relation to the tem-
plate the data are normalized to. The more basis func-
tions used in the nonlinear normalization, the greater
the possibility that the data are overfitted, rendering
the results sensitive to the choice of template. In this
section we investigated whether the colocalization ac-
curacy was template dependent. Having established
registration accuracy in the medial temporal lobe to
within 3 mm using the landmark approach, we pro-
ceeded to examine the impact of changing templates on
the anatomical precision of VBM per se. To do this we
used a test sample consisting of patients with bilateral
hippocampal atrophy. To extend the analysis of the
previous sections, we also assessed the effect of tem-
plate on landmark colocalization using 7 � 8 � 7 basis
functions.

Materials and Methods

Five patients (mean age 12.4, four males, one female)
who had developmental amnesia associated with early
hypoxic–ischemic episodes comprised the test sample.
All these patients have been shown to have bilateral
hippocampal atrophy using volumetric methods in ad-
dition to VBM (Gadian et al., 2000). Eight controls
(mean age 13.9, three males, five females) were se-
lected for comparison. All subjects were scanned unse-
dated on a 1.5-T Siemens Vision scanner, using a T1-
weighted 3D MPRAGE sequence as described before.

The 3D data sets were analyzed in SPM99 (Wellcome
Department of Imaging Neuroscience). Normalization
was carried out using two different templates: the MNI
template (supplied with SPM99, 152 adult T1 scans)
and an inhouse template (GOS template; 27 children
scanned on the same scanner with the same image
acquisition sequence as for the subjects used in this
analysis; mean age 14). Normalization was carried out
using two different sets of nonlinear functions: 4 � 5 �
4 and 7 � 8 � 7 with medium regularization. The data
were otherwise normalized as described above. The
data were then segmented (Ashburner and Friston,
1997), smoothed with a Gaussian isotropic kernel of
FWHM 4 mm, and analyzed to look for decreases in
gray matter density in the amnesic patients versus the
controls. Gray matter density is simply the average
volume of MRI-classified gray matter per unit volume
of the brain.

The extent and location of the abnormalities within
the hippocampal formation were then compared be-
tween the two templates at both 4 � 5 � 4 and 7 � 8 �
7 nonlinear basis function levels.

In addition, the scans of the 20 controls used in
previous sections were normalized to the GOS tem-
plate with 7 � 8 � 7 nonlinear basis functions to
determine whether the template chosen affected the
colocalization precision.

Results and Discussion

Figure 4 shows the results of the analysis (with 7 �
8 � 7 nonlinear basis functions) of the left hippocampal
formation. The extent of the abnormality appeared
greater using the GOS template relative to the MNI
template analysis. In contrast, Fig. 5 shows that using
4 � 5 � 4 nonlinear basis functions results in similar
extent and location abnormalities within the left hip-
pocampal formation [this pattern is also present in the
right hippocampal formation (not shown)].

Figures 4 and 5 suggest that when 4 � 5 � 4 non-
linear basis functions are used, the results of the anal-
yses are minimally dependent on the template used.
This suggests that use of the default template even
comparing children is suitable when using the optimal
number of nonlinear basis functions in the medial tem-
poral lobe. However, with larger basis function sets,

FIG. 4. Significant areas of decreased gray matter in the amnesic
children versus controls in left hippocampal formation (7 � 8 � 7
nonlinear basis functions). Results are superimposed on the mean
normalized images and thresholded at uncorrected P � 0.001. (a)
GOS template. (b) T1 template.

FIG. 5. Significant areas of decreased gray matter in the amnesic
children versus controls in left hippocampal formation (4 � 5 � 4
nonlinear basis functions). Results are superimposed on the mean
normalized images and thresholded at uncorrected P � 0.001 (a)
GOS template. (b) T1 template.
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the template does appear to affect the results of the
analysis. Investigators using a larger number of basis
functions need to consider which template might be
most appropriate for their study and allow for the
possibility of overfitting. Template dependencies such
as those seen in Fig. 4 remain when the smoothing was
raised to 8 mm from 4 mm FWHM (data not shown).

There was no significant difference between the nor-
malization precision of any of the eight landmarks
regardless of which template was used. It is important
to note that the precision of the normalization, as re-
flected in the landmark colocalization, does not depend
on the template. This is to be expected as long as the
warps required to match an image to the template are
not too “unlikely.” This finding moderates enthusiasm
for “custom” templates unless one is dealing with very
different brains (e.g., patients with gross pathology).

Finally, it should be noted that the stereotactic
space, defined operationally by the template used for
intensity matching during spatial normalization, is not
necessarily the best coordinate system to minimize
registration error.

CONCLUSION

In conclusion, our results suggest that when opti-
mum normalization parameters are used, anatomical
landmarks in the medial temporal lobe are colocalized
to within a standard deviation of about 1 mm. When
suboptimal parameters are used this standard devia-
tion can increase up to 3 mm. Interestingly the optimal
parameters are those that provide a more constrained
normalization. Although less constrained normaliza-
tions allow for a more precise intensity matching they
do so at the expense of making the warps more un-
likely. The face validity of the normalization was not
improved by the use of “custom” templates, even for
children.

Restricting the number of basis functions, which pro-
duced empirically better results, effectively meant that
warps above a certain frequency were penalized infi-
nitely. This could imply that the form of regularization
used by the warping algorithm may need to impose
much higher penalties against high-frequency defor-
mations. Currently the model minimizes the mem-

brane energy of the warps, which is based on the sum
of squares of the first derivatives of the deformations.
It is possible that the regularization should minimize
the sum of squares of a higher derivative. Regulariza-
tion based on higher order derivatives has the effect of
increasing the penalty against higher frequency defor-
mations relative to those of lower frequencies. These
forms may turn out to be better models of the true
distribution of warps likely to be needed for registering
brain images.
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