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This paper introduces the general framework, con-
cepts, and procedures of anatomically informed basis
functions (AIBF), a new method for the analysis of
functional magnetic resonance imaging (fMRI) data.
In contradistinction to existing voxel-based univari-
ate or multivariate methods the approach described
here can incorporate various forms of prior anatomi-
cal knowledge to specify sophisticated spatiotemporal
models for fMRI time-series. In particular, we focus on
anatomical prior knowledge, based on reconstructed
gray matter surfaces and assumptions about the loca-
tion and spatial smoothness of the blood oxygenation
level dependent (BOLD) effect. After reconstruction of
the grey matter surface from an individual’s high-res-
olution T1-weighted MRI, we specify a set of anatom-
ically informed basis functions, fit the model parame-
ters for a single time point, using a regularized
solution, and finally make inferences about the esti-
mated parameters over time. Significant effects, in-
duced by the experimental paradigm, can then be vi-
sualized in the native voxel-space or on the
reconstructed folded, inflated, or flattened cortical
surface. As an example, we apply the approach to a
fMRI study (finger opposition task) and compare the
results to those of a voxel-based analysis as imple-
mented in the Statistical Parametric Mapping pack-
age (SPM99). Additionally, we show, using simulated
data, that the approach offers several desirable fea-
tures particularly in terms of superresolution and lo-
calization. © 2000 Academic Press

Key Words: fMRI; computational neuroanatomy;
modelling; spatiotemporal model; statistical infer-
ence.

INTRODUCTION

In functional brain imaging, the analysis of fMRI data
has become an increasingly important issue. The under-
lying task is to characterize the functional data observed
in space and time in terms of some interpretable and
reduced representation of the experimentally induced ef-
fects. Many methods have been proposed that can be
divided into univariate and multivariate approaches.
6561053-8119/00 $35.00
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With a univariate approach, one typically uses prior
knowledge about experimentally evoked signals over
time to project the time-series, at any voxel position, into
a low-dimensional parameter space (typically defined by
a design matrix). The remaining task is then to assess the
spatial autocorrelations and make inferences about the
observations in voxel-space. The overwhelming propor-
tion of methods published belong to this class. In con-
trast, multivariate approaches can identify a few spatio-
temporal components that summarize the observed data
without reference to any predictions. Though the latter
approach appears to be more comprehensive, because it
is explicitly spatiotemporal (e.g., eigenimage analysis), it
is often rather difficult to interpret the spatiotemporal
components that ensue, largely because this sort of data-
led characterization does not embody prior information
about interesting temporal responses. Although design
matrices can be used in multivariate analyses (e.g., ca-
nonical variates analysis), these analyses are compro-
mised by the sample-size (number of scans) to dimension-
ality (number of voxels) ratio.

Mass-univariate, voxel-based approaches have an
advantage over multivariate data-led approaches,
because the temporal projection space (design ma-
trix) is defined explicitly by the researcher. Conven-
tional analyses of this sort start by convolving the
data with a lowpass spatial filter, which (i) renders
the point spread function (PSF) approximately sta-
tionary and (ii) enhances sensitivity to underlying
(extended) physiological signal sources by virtue of
the matched filter theorem. However, the resolution
of the resulting statistical maps is compromised.
Furthermore, convolution with a lowpass filter im-
plicitly implements a spatial model of the inherent
spatial smoothness of the BOLD effect. If one as-
sumes that the source of underlying signal is re-
stricted to the gray matter, it is obvious that the
spatial model implied by a spherical lowpass filter is
inappropriate: It does not incorporate knowledge
about the local anatomical distribution of potential
signal sources in the folded cortical sheet.

Anatomically informed basis functions (AIBF), pre-

sented in this work, define a new class of models, which
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657ANATOMICALLY INFORMED BASIS FUNCTIONS
allow the incorporation of prior neuroanatomical
knowledge provided that this information can be rep-
resented as a set of basis functions. As an example, we
describe an anatomical model based on an individual’s
reconstructed cortical surface and show that spatial
resolution and sensitivity for extended cortical sources
is improved as compared to a conventional voxel-wise
analysis. We thereby implicitly introduce a general
framework for including other types of prior anatomi-
cal knowledge.

We applied the method to fMRI measurements (fin-
ger opposition task) of five subjects and to simulated
data, where the exact locations and time courses of the
underlying signals were known. We show, by compar-
ison with a voxel-based approach (SPM99), that the
method enhances resolution and interpretability of the
resulting statistical maps.

ANATOMICALLY INFORMED BASIS FUNCTIONS

Overview

The problem addressed by anatomically informed basis
functions can be stated as follows: Given the assumptions
that (i) the BOLD effects are located somewhere on the
cortical surface and (ii) can be characterized by a spa-
tially smooth distribution on that surface, what is the
spatial distribution of the BOLD signal, which best ex-
plains the functional observations?

If both assumptions are valid, we can describe an
anatomically informed model that enables us to char-
acterize any measured functional data directly on the
cortical surface. As we will show later there are three
major advantages of the technique when compared to
voxel-based methods: (i) The method does not use any
additional three-dimensional spatial lowpass filtering,
but operates directly on the realigned unsmoothed
data. (ii) The method provides superresolution and (iii)
by virtue of the partially distinct spatial characteristics
of underlying effects, AIBF can be used to further
differentiate among underlying signal sources.

AIBF can also be used to implement an anatomically
constrained least-squares deconvolution of the PSF for
low-resolution data to remove PSF effects. This applies
when the intrinsic PSF is large relative to voxel size.
However, we do not deal with this application in this
paper, because we restrict ourselves to fMRI analyses.

In the following, we describe the approach in three
subsections. First, we will specify the spatial model
that embodies anatomical a priori knowledge about a
unctional observation. In the second subsection, the
natomical model is fitted to a series of functional
olumes observed over time, to generate a spatiotem-
oral parameter matrix. Finally, we deal with infer-
nce about the effects in the time domain. In this
aper, we are assuming that the spatiotemporal basis
et can be factorized into a spatial and temporal basis
et, where the latter corresponds to conventional re-
gressors in a design matrix. This allows us to first
estimate the spatial distribution of sources at each
time point and then estimate, and make inferences
about, their expression over time.

The Spatial Model

Surface reconstruction. A necessary prerequisite to
the specification of a set of surface-based basis func-
tions is the reconstruction of cortical surfaces. These
reconstructions were obtained with the software pack-
age BrainVoyager (Version 3.5, Brain Innovations,
Rainer Goebel). For each subject, a T1-weighted ana-
tomical image was acquired on a clinical 1.5 T Siemens
Vision unit (Siemens GmbH, Erlangen) with TR 5 15
ms, TE 5 5 ms, flip angle 5 30°. Each image matrix
consisted of 256 3 256 voxels, 192 partitions, sagittal
orientation, voxel size 1 3 1 3 1 mm3.

The process of surface reconstruction, inflation, and
flattening as implemented in BrainVoyager is de-
scribed elsewhere (Linden et al., 1999). We focus here
on the properties of the various surfaces generated.

To reconstruct the individual cortical surface, we seg-
ment the cerebral white matter, the ventricles, and deep
gray matter structures like the putamen and thalamus of
both hemispheres. The segmented voxel-based partition
of each hemisphere is transformed to a vertex-based sur-
face S0 5 (V0, F) by triangularization of the outside voxel
aces, where V0 is a NV0 3 3-matrix of vertex coordinates,

is a NF 3 3-matrix of vertex indices, NV0
and NF are

he number of vertices and faces. Since the surface
0, lying between white and gray matter partitions,

reflects the coarse voxel-based discretized approxi-
mation to the (real) underlying surface, which is
assumed to be spatially smooth (i.e., local Gaussian
curvature values are bound by some maximum
value), the coordinates described by V0 are spatially
smoothed, with respect to the local vertex neigh-
bourhood. V0 is thus transformed to a smooth repre-
sentation of the white matter surface SW 5 (VW, F).
n the next step, a surface lying within the gray
atter sheet is identified by translating the vertices

n VW using a local iterative intensity-based optimi-
zation routine. This gives a representation of the
underlying gray matter surface SG 5 (VG, F) (Fig.
1a). We then compute an inflated surface SI 5 (VI, F)
Fig. 1b) of the approximation to the cortical sheet

G. After placing several cuts on the medial side of
the hemisphere, we project the inflated brain surface
onto a plane and reduce distortions that arise from
the projection and intrinsic curvature of the cortical
surface. The result is a flattened map (Fig. 1c) of one
cortical hemisphere SF 5 (VF, F).

Note that in all surface representations the face ma-
trix F never changes, only the vertex coordinates ma-
trices VW, VG, VI, and VF are modified to describe dif-
ferent surfaces. In this way, the coordinate
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FIG. 1. Cortical surface of the left hemisphere in three different representations: (a) folded, (b) inflated, (c) flattened.
FIG. 2. Concept of smooth overlapping spatial basis functions: The distribution on the left can be expressed as a linear combination of

he three basis functions on the right.
FIG. 3. Different representations of a basis function. (Left) Two-dimensional Gaussian kernel with 1 mm width in x- and y-direction.

Middle) The same basis function transformed to the original reconstructed cortical surface. (Right) A transverse slice of its representation
n voxel-space.

FIG. 4. Results of a voxel-based analysis (SPM99) of a single subject (thumb versus middle finger tapping task). Maximum peak

isplayed on a (a) coronal, (b) sagittal, and (c) transverse slice.
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659ANATOMICALLY INFORMED BASIS FUNCTIONS
transformation between two surfaces is implemented
by an exchange of vertex coordinates matrices.

Specification of spatial model. We assume that the
individual gray matter surface SG 5 (VG, F) is a good
pproximation to the real underlying gray matter sur-
ace in the individual’s anatomical space. Given a func-
ional observation vector Y in voxel-space, our aim is to

estimate a smooth distribution f on the vertices VG of
the reconstructed gray matter surface that best (in
some sense) explains the observed Y, i.e.,

Y 5 g~ f ~VG!! 1 e, (1)

where e is the residual component and g is an operator
to be described later), which transforms intensities
efined in vertex-space to the voxel-space of Y. Typi-

cally, one reconstructed hemisphere consists of roughly
130,000 vertices, whereas the number of observed gray
matter voxels in one hemisphere (e.g., 20 partitions,
128 3 128 matrices, voxel size 1.8 3 1.8 3 3 mm3) is
much less, roughly 12,000; i.e., the problem is under-
determined. One key to solve this problem is the as-
sumption about the smoothness of f. A smooth distri-
bution can be modelled by less parameters Np than the
number of vertices NVG so the idea is to approximate f
by a model that is determined by a small set of param-
eters. We choose to model the distribution f with a
inear combination of local, smooth, and partially over-
apping spatial basis functions defined on VG. Figure 2

illustrates the concept behind this approach.
A necessary prerequisite for the specification of spa-

tial basis functions on the surface SG is the existence of
a two-dimensional coordinate system, but due to the
folded nature of the gray matter surface, there is no
simple way to define such a coordinate system. How-
ever, the cortical flat map SF 5 (VF, F) is the result of
a coordinate transformation from the vertex coordi-
nates VG to a plane; i.e., for any vertex coordinate vG

i on
G its associated location on SF is stored in vF

i . Since
there is a two-dimensional coordinate system avail-
able on the cortical flat map SF, we define the basis
unctions on SF and reproject them onto the cortical

sheet SG by a coordinate exchange.
Specification of basis functions. There are three

conditions the basis set must conform to: (i) Each basis
function must cover a small patch of SF, (ii) the linear
combination of basis functions is able to model smooth
distributions on SF, and (iii) the approximation of f at
any vertex location is implemented as sparsely as pos-
sible. Any form of two-dimensional Gaussian, sinc-
function, or similar lowpass-kernel functions fulfill the
first two criteria, provided that each basis function
overlaps with its neighbors to a certain degree. The
third condition means that this overlap is not unnec-
essarily large.

In this work, we use circular Gaussian basis func-
tions in a hexagonal configuration such that the center
of each basis function has a fixed (user-specified) dis-
tance to the center of its six neighbors. Given a two-
dimensional coordinate system on the cortical flat map
SF, the basis function bF

j with its center at coordinates
(xj, yj) is defined by

b F
j ~x, y! 5 c1 exp S 2 ~~x 2 xj!

2 1 ~y 2 yj!
2

2w 2 D , (2)

where c1 is a constant and w is the (user-specified)
width of the Gaussian basis function in the x- and
y-directions. The hexagonal pattern of the centers of
the basis functions are defined by induction; i.e., given
that (xj, yj) is the center of bF

j , then the centers of its
six-neighbor basis functions are (x 1 d/2, y 1 do),
(x 1 d, y), (x 1 d/2, y 2 do), (x 2 d/2, y 2 do),
(x 2 d, y), (x 2 d/2, y 1 do), where d is the fixed dis-
ance between centers and do 5 sin (60°)d. The posi-

tion of the first basis function is chosen arbitrarily. A
basis function is defined only if its center is enclosed
by a face of the cortical flat map SF.

After specification of the basis functions on the cor-
tical flat map bF

j , j 5 1, . . . , Np, where Np is the
number of basis functions, each bF

j is reprojected onto
the original folded surface SG by a vertex coordinate
exchange between VF and VG to give folded basis
functions bG

j . Since the bG
j are still in vertex-space,

the final step is to embed each basis function bG
j into

the voxel-space. To do this, we define an operator g
(Eq. (1)), which integrates over each voxel k the
surface of a given basis function bG

j multiplied by the
height of the basis function; i.e., g returns the inte-
gral of each basis function in folded vertex-space
encompassed by the voxel. This transforms the basis
functions bG

j in vertex-space to bY
j ~bY

j 5 bY1

j , . . . , bYNK

j )
in voxel-space, where NK is the number of functional
voxels. This basis set is now used to model, in a
linear combination, the functional observation Y.

In Fig. 3, we show the process of transforming a basis
unction from its initial representation on the cortical
at map to its intermediate state on the folded cortical
ap and to its final representation in voxel-space.
Note that one could apply an additional convolution L

o the basis functions in voxel-space bY
j , if the width of

the image PSF is larger than the voxel size. This is
not necessary for fMRI, since here we assume that L
5 I (in Toeplitz notation, where I is the identity
matrix). For example with PET (positron emission
tomography) data, one could model the positron
travel by convolution of bY

j with an isotropic lowpass
filter kernel and the effects of the measurement pro-
cess itself by an additional convolution with an
anisotropic lowpass filter kernel. This particular ex-
tension will be dealt with in a separate communica-
tion.

Estimating the spatial distribution of activity for one

time point. Let A be a NK 3 Np-matrix, where column
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j of A is the basis function bY
j in voxel-space. Gener-

ally, A 5 L @bY
1 | . . .| bY

Np], but for fMRI we set L 5 I
nd omit L in the following equations. Then, the
odel (compare to Eq. (1)) is

Y 5 Ab 1 e, (3)

where Y is the NK-dimensional observation vector in
voxel-space, b is a Np-dimensional parameter vector
and e is a NK-dimensional residual error vector.

The unknown parameter vector b is assessed by a
least-squares estimate with zeroth-order regulariza-
tion (Press et al., 1992), which yields

b̂ 5 ~A T A 1 lI! 21 A TY, (4)

where l is a regularization factor and I is the identity
matrix of dimension Np. The zeroth-order regulariza-
tion tends to minimize the overall length of the vector
b̂, which is necessary if the distance d between centers
of neighboring basis functions is large compared to
their width w, i.e., adjacent basis functions overlap
extensively and are close to collinearity.

The choice for the regularization factor l depends on
the spatial overlap and therefore their degree of non-
orthogonality. A standard choice for l (Press et al.,
1992) is

l 5
trace~A T A!

Np
(5)

and yields acceptable results in our case. In the ex-
treme that adjacent basis functions do not have any
overlap or only a small overlap, the regularization fac-
tor can be set to zero and Eq. (4) reduces to a standard
least-squares solution

b̂ 5 ~A T A! 21 A T Y. (6)

The Temporal Domain

Given a series of functional observations Y1, . . . ,
YNY

,we estimate for each Yl a parameter vector b̂ l by
Eq. (4) to assemble a (NY 3 Np) estimated parameter
matrix

BT 5 @b̂1| . . . | b̂NY
# 5 ~A T A 1 lI! 21 A T @Y1|| YNY

#,

(7)

which represents the estimate of functional observa-
tions, projected into the space of anatomically informed
basis functions. The estimated signal in voxel-space is
given by

B voxel
T 5 AB T. (8)
Equivalently, let the columns of matrix Avertex be the
folded basis functions in vertex-space bG

j , then the
estimated signal in vertex-space is given by

B vertex
T 5 AvertexB T. (9)

Inferences about evoked responses over time. To
make inferences about evoked responses, we have to
characterize the parameter matrix B in the temporal
domain. This could be done at three levels: (i) The first
is in the space of the basis functions (Eq. (7)). (ii) The
second is in the vertex-space (Eq. (9)), where we char-
acterize the responses at each vertex in two dimensions
and embed the results in three-dimensional space. (iii)
Finally, we could project B back into voxel-space (Eq.
(8)) and proceed with a conventional voxel-based anal-
ysis.

Either a univariate or a multivariate technique could
be used at all three levels. In this paper, we will illus-
trate a multivariate approach in basis function space.
We use a combined approach of singular value decom-
position (SVD), multivariate analysis of covariance
(Mancova) and canonical variates analysis (CVA) as
described in detail in (Friston et al., 1995) and (Chat-
field and Collins, 1980).

As with a conventional analysis in voxel-space (e.g.,
as implemented in SPM99), we use various types of
temporal basis functions or regressors: (i) condition
encoding vectors, (ii) a constant, and (iii) a vector of
global intracortical mean intensities. The condition en-
coding basis functions are the covariates of interest,
the remainder represent covariates of no interest. Prior
to fitting the model, we applied a highpass temporal
filter with a cut-off frequency at 120 s/cycle.

Since we acquired the data using a rather long in-
terscan time of 4 s, we assumed that the highpass filter
accounts for temporal auto-correlations, which are es-
pecially prominent at lower frequencies (Zarahn et al.,
1997) and (Aguirre et al., 1997).

Let the temporal basis functions be T 5 [T1 |T2],
here T is a (NY 3 NT)-matrix, NT is the number of

temporal basis functions, T1 and T2 are NY 3 NT1 and
Y 3 NT2-matrices, T1 and T2 are orthogonal to each

other, and NT 5 NT1 1 NT2. T1 contains the covariates
of interest and T2 the covariates of no interest.

First we remove the effects of no interest by

BC 5 B 2 T2 ~T 2
T T2!

21 T 2
TB. (10)

The SVD of the corrected parameter matrix BC is
given by

BC-UVW T, (11)

where U and W are orthogonal matrices and V is a
iagonal matrix. Let BP 5 UJVJ a NY 3 NJ matrix,

where the columns of B contain the temporal expres-
P
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661ANATOMICALLY INFORMED BASIS FUNCTIONS
sion of the first NJ spatial modes over observations. NJ

is found by thresholding the associated singular values
contained in V as described in (Friston et al., 1995) and
UJ and VJ are the accordingly reduced versions of U
and V.

Then the temporal model is given by

BP 5 T1 g 1 eT, (12)

where g is a NT1 3 NJ-matrix and eT (the residual
errors) a NY 3 NJ-matrix.

The least-squares estimate of g is

ĝ 5 ~T 1
T T1!

21 T 1
T BP. (13)

Then the sums of squares and products due to error
are

RE 5 ~BP 2 T1 ĝ! T ~BP 2 T1ĝ!. (14)

The sum of squares and products due to the effects of
nterest are

H 5 ~T1ĝ! T ~T1ĝ! (15)

nd the sum of squares and products under the null
ypothesis (that the effects due to T1 do not exist) are

R0 5 B P
T BP. (16)

The significance of the effects of interest can be
tested with Wilk’s Lambda

L 5
|RE|

|R0|
(17)

as described in (Chatfield and Collins, 1980).
The characterization of the significant effects em-

ploys CVA, i.e., we find a matrix of canonical images C
5 [c1, . . . , cJ] such that the variance ratio ~cm

T Hc m)/
~cm

T R Ecm) is maximized successively for m 5 1,. . ., J
under the condition that cov (cm, cn) 5 0 for any m, n

ith 1 # m, n # J and m Þ n. As it is shown below,
he significant canonical modes can be visualized in
he native voxel-space (functional or structural) or in
ertex-space (folded, inflated, and flattened sur-
aces).

VALIDATION STUDIES

mpirical Data

Functional data and coregistration.

The functional data (EPI, gradient echo) were ac-
uired on a clinical 1.5 T Siemens Vision unit (Siemens
mbH, Erlangen) with TR 5 168 ms, TE 5 79 ms, flip
ngle 5 90°. Each image consisted of 128 3 128 voxels,
0 partitions, transverse orientation, voxel size 1.8 3
.8 3 3 mm3. For each of the five subjects, the position

and orientation of the slices were chosen to cover all
the brain volume superior to the corpus callosum, in
particular the primary sensorimotor hand area.

We acquired the T1-weighted structural and the EPI
data in two successive measurements, i.e., the struc-
tural and the first scan of the functional data were
already roughly in register. Subjects were instructed to
keep still during the interval between sequences. To
correct for small movements, the first functional scan
was manually coregistered to the corresponding struc-
tural scan. Using SPM99 the functional scans were
aligned to the first such that all measurements were in
the same space.

Simulated Data

This section describes the simulated fMRI data used
to validate AIBF and compare it with a voxel-based
technique (i.e., SPM99).

All simulated data were generated from a single
fMRI data set consisting of 93 volumes, acquired from
one of the five subjects above using the same EPI
gradient echo sequence. The only difference was that
there was no activation condition; i.e., all scans were
acquired under a continuous rest condition. As ex-
pected, this null data set showed no significant activa-
tions when tested with SPM99 (maximum t score 4.39,
orresponding to a P value of 0.93, corrected for mul-
iple comparisons). In particular, there were no activa-
ions in the region of the left primary sensorimotor
ortex.
The next step was the addition of some well-defined

imulated activations. We used the left hemisphere of
he reconstructed cortical surface SF of subject and

condition encoding temporal basis functions of the fin-
ger-tapping study to define the activation signal. We
first chose a subset of vertices of VF (e.g., a circle of 3
mm diameter on the surface SF) and defined these as
the source of a BOLD effect. Then, we specified a (sig-
nal) time series in each vertex consisting of the condi-
tion encoding basis function. Next, we embedded the
signal into voxel-space as described above. The voxel-
based signal time-series was scaled such that the mean
intensity difference between conditions was 5% of the
mean (intracortical) global signal of the null data. Fi-
nally, we added the simulated signal in voxel-space to
null data.

We generated three different sets of simulated data.
These sets differed in their spatial configuration, i.e.,
in each set, a specific underlying cortical pattern of
activation was simulated:

Single source. In this simulated data, we defined a
single circular patch of 3-mm diameter on the gray
matter surface as the source of an experimentally in-
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FIG. 5. AIBF results of one subject (left hemisphere) displayed on (a) the cortical flat map, (b) the inflated cortex, and (c) the folded gray
matter surface.

FIG. 6. AIBF results in voxel-space (left hemisphere, central sulcus at level of presumed hand representation). Maximum of first
canonical mode displayed on (a) the surface and (b) in voxel-space. In (c), the result of a SPM99-analysis for this slice is provided.



s res

v e, (

663ANATOMICALLY INFORMED BASIS FUNCTIONS
duced BOLD-effect. This patch was located on the an-
terior bank of the central sulcus roughly at the level of
the presumed hand representation. In this analysis,

FIG. 7. Results on simulated data set “Single Source”: (a) simul
uperimposed on transverse plane, (d) fit in voxel-space, (e) SPM99-

FIG. 8. Results on simulated data set “Two adjacent sources”
ertex-space superimposed on transverse plane, (d) fit in voxel-spac
the questions were, (i) whether the location and extent
of the underlying BOLD-effect is precisely character-
ized by a linear combination of AIBF and, (ii) whether

d configuration, (b) activation found by AIBF, (c) fit in vertex-space
ult.

) simulated configuration, (b) activation found by AIBF, (c) fit in
e) SPM99-result.
ate
: (a



a
d
b
o
d
t
w
t

F

s
s
m
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any activation is spuriously mapped to the posterior
bank of the sulcus.

Two adjacent sources. In this data set, we gener-
ted two sources of signal (circular patches of 3-mm
iameter), where one patch was located on the anterior
ank of the central sulcus and the second was located
n the opposite posterior bank, such that the Euclidean
istance between the patches was minimal. The ques-
ion here was whether AIBF separate the sources,
hich are close in Euclidean terms, but remote in

erms of distance on the cortical surface.
Single source (extensively folded). Here, we gener-

ated a single circular patch of 5-mm diameter around
the fundus of the central sulcus at the level of the
presumed hand representation.

Voxel-Based Analysis (SPM99)

To characterize the differences between AIBF and a
conventional voxel-based analysis, we analyzed all our
data with SPM99. To do this, we smoothed the re-
aligned data with a three-dimensional Gaussian low-
pass-filter ([4 4 6] FWHM x-, y-, and z-direction). Sta-
tistical results were assessed using the general linear
model and the theory of Gaussian random fields. All
statistical results were thresholded at a significance
level of p , 0.05 (corrected for multiple comparisons).

RESULTS

ingertapping—Voxel-Based Analysis

The results of a voxel-based analysis (SPM99) of one
ubject are displayed in Fig. 4. As described in previous
tudies of motor tasks (Grafton et al., 1991; Wasser-
ann et al., 1996; Puce et al., 1995; Schnitzler et al.,

1997; Yousry et al., 1997), e.g., we found significant
activation (P , 0.05 corrected) in the contralateral cen-
tral sulcus (Fig. 4) and in the contralateral supplemen-
tory motor area. In two subjects, we observed signifi-
cant (P , 0.05) ipsilateral activations in premotor and
parietal areas. Due to the limited field of view, we did
not assess effects in other locations, e.g., the cerebel-
lum.

Fingertapping—Anatomically Informed
Basis Functions

For each subject, we applied AIBF to the left hemi-
spheres. We used basis functions with a distance of 2
mm between their centers and a width of 1 mm, giving
between 1242 and 2044 basis functions for each sub-
ject. In all five subjects, we identified a highly signifi-
cant canonical mode within the left hemisphere
(P , 0.001).

To visualize the first canonical spatial mode in ver-
tex-space, we took the linear combination of basis func-
tions corresponding to this mode.
In Fig. 5, we display the thresholded mode of one
subject on the individual folded, inflated, and flattened
cortical surface. The arbitrary threshold (60% of the
maximum value) was used to enable the visualization
of the highest canonical scores relative to the gyral
pattern. We found, in each subject, a region of high
canonical scores on the anterior bank of the central
sulcus on the lateral side of the characteristic inverted
Omega (Yousry et al., 1997). In all subjects except for
one, this region also comprised the basis function with
the maximal canonical score. In all subjects, there were
also regions of high canonical scores on the posterior
bank of the central sulcus close to those on the anterior
bank.

To compare these findings to the results of a voxel-
based analysis, we overlayed the two-dimensional
color-coded gray matter surface on each transverse
slice. In Fig. 6a the transverse slice containing the
maximum of the canonical mode is displayed for one
subject. Equivalently, we overlayed the thresholded
first canonical mode defined in voxel-space (Eq. (3))
onto this slice (Fig. 6b). This encodes the same infor-
mation as the surface representation, but shows the
canonical mode in the space in which the regularized
least-squares-fit to the functional observations was im-
plemented. Finally, the result of the voxel-based anal-
ysis (SPM99) for this slice is shown in Fig. 6c.

Simulated Data

In all three simulated studies, we used a distance of
2 mm between centers of the basis functions and a
width of 1 mm for each basis function.

Single source. The location of the simulated acti-
vation is shown in Fig. 7a. The result of using AIBF is
shown in Figs. 7b–7d. The original location of the sim-
ulated activation was correctly identified on the corti-
cal surface. The SPM99 result (Fig. 7e) is slightly
blurred due to the smoothing, but the maximum peak
of the cluster still correctly identifies the location.

Two adjacent sources. The locations of the two
simulated activations is shown in Fig. 8a and the result
of using AIBF in Figs. 8b–8d. Clearly, AIBF were able
to identify and localize the two simulated activation
sites, where AIBF seems to favor the source on the
posterior bank. As shown in Fig. 8e, when employing a
voxel-based method (SPM99) for the same data, we
observe a contiguous cluster of activation, where the
maximum peak is located between the two underlying
sources.

Single source (extensively folded). The simulated
activation was located in the fundus of the central
sulcus and is shown in Fig. 9a. This location was cor-
rectly identified by AIBF (Figs. 9b–9d). However, the
voxel-based analysis (Fig. 9e) localizes the maximum of
the activation several mm lateral to the main source of
activation. Again, this is a spurious effect due to the
smoothing used prior to voxel-based analysis.
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DISCUSSION

In this work, we have proposed the use of anatomi-
cally informed basis functions (AIBF) for the analysis
of functional MRI data. The method utilizes a new
class of models, in which prior anatomical knowledge
can be harnessed to better qualify the analysis in a
neuroanatomical sense. We chose the reconstructed
gray matter surface and the intrinsic smoothness of
the BOLD effect over space as prior anatomical con-
straints in the examples presented in this paper. We
applied AIBF to fMRI measurements of a motor task
(fingertapping) in five subjects and compared the re-
sults with a voxel-based analysis (SPM99). Addition-
ally, we analyzed three sets of simulated data to char-
acterize the salient differences between AIBF and
voxel-based techniques.

In the following, we discuss the results as assessed
by AIBF and SPM99. As an introductory remark, we
note that a formal comparison between AIBF and
SPM99 is a difficult task because of the differences in
models and inference used in both methods. However,
it is not our intention to show that AIBF or SPM is
better or worse in some aspects than the other method.
Our aim is to show that AIBF is a useful tool to look at
functional data sets from a different and informed per-
spective.

There are three important differences between a
voxel-based analysis and the class of AIBF presented.

Three-Dimensional vs Two-Dimensional Smoothing

When using AIBF, one does not apply any spatial
lowpass filter to the data as is typical in a voxel-based
analysis. In conventional analyses, a smoothing filter
is used to enhance the sensitivity for a given signal
width. The important point is that smoothing implic-
itly implements a model of the underlying data,
namely one assumes that the underlying signal shape
is independent of its location. Clearly, this model is not
correct, since activations observed with fMRI usually
follow the gyral pattern of gray matter such that there
is a substantial interaction between position and the
shape of the activation. The disadvantage of using a
3D-lowpass filter model is that activation effects at a
given location are smeared into all adjacent locations,
which can lead to physiologically implausible results
(e.g., activations in white matter). For the same reason,
it is difficult to differentiate between activation sites
that are close in Euclidean space, but remote from each
other on the cortical surface (e.g., opposite banks of a
sulcus). There is no doubt that one must spatially
smooth functional observations to detect signal sources
of a given width. However, the cortical sheet is highly
convoluted and a voxel-based analysis of fMRI data
based on exogenous smoothing is suboptimal in the
sense that prior knowledge about structure–function
relationships is not exploited. This renders it difficult
to interpret statistical results in terms of the underly-
ing physiology. AIBF, on the other hand, can be re-
garded as a spatially dependent smoothing filter,
where the kernel is an explicit function of location.
Intuitively, AIBF smoothes along the cortical surface
such that any signal on the cortical surface, that con-
forms to the form of the basis functions, is detected
with high sensitivity. In other words, AIBF intrinsi-
cally defines a space-varying smoothing kernel, which
introduces only as much smoothness as is necessary for
signal detection, while preserving functional topology.

Superresolution

AIBF introduces superresolution into the estimated
solution, i.e., one can characterize the functional data
on the high-resolution reconstructed surface. Since the
gray matter surface can be approximated with sub-
voxel accuracy, we effectively exploit high-resolution
knowledge in a low-resolution space by placing con-
straints on the solution. The benefit is that one can
characterize the estimated solution not only in low-
resolution (functional) voxel-space, but also, unambig-
uously, in the high-resolution vertex-space. The impor-
tant point here is that the degree of superresolution
depends primarily on the characteristics of the model
specified, not on the data. Of course, in practice, the
ultimate restriction is that the basis functions specified
in vertex-space should lead to a sparse basis set in
voxel-space, i.e., the lower the functional resolution,
the less basis functions (as defined in Eq. (2)) are
needed to span the measurement space in a sparse
fashion.

Effective Physiological Resolution

By constraining the spatially dependent smoothing
performed by AIBF to the gray matter surface, one
implicitly suppresses signal in extraparenchymal
space, e.g., from draining veins, which are located in
CSF and can be several millimeters away from the
original location of the neuronal activation. It is known
that draining veins contribute to the BOLD-effects in-
duced experimentally (Lai et al., 1993; Hoogenraad et
al., 1999), particularly when using gradient-echo se-
quences as we did in our study. If one is interested in
the temporal hemodynamic response of a given brain
area, then the spatial differentiation between two un-
derlying signal sources is not overly important. How-
ever, if one is interested in a spatial high-resolution
characterization of activations, then the pattern of
draining veins may limit the effective physiological
resolution of gradient-echo fMRI.

Surface Reconstruction

The specification of a valid anatomical model is only
possible in the context of AIBF, if (i) the reconstructed
grey matter approximates the real cortical surface and
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(ii) the reconstructed grey matter surface also approx-
imates the gray matter surface as measured in the
low-resolution functional EPI-sequences. Visual in-
spection of the reconstructed surfaces overlayed on
each individual’s T1-weighted MRI showed that the
first assumption was valid. The second assumption
seems to be violated in the prefrontal region, where we
observed some inconsistencies between functional and
structural scans. However, for the primary sensorimo-
tor cortical areas, we found that the second assumption
was reasonable. A necessary prerequisite for this as-
sumption is an accurate coregistration between the
surface and functional observations.

Distortions in Flat Maps

The geometric distortions between the folded and
flattened cortical surface, due to the curvature of the
gray matter sheet, are unavoidable, especially when a
whole hemisphere is transformed. Although cuts can
diminish the ensuing distortions, they should be used
sparsely to preserve the structure–function topology.
Since our goal is to model a smooth distribution on the
(folded) cortical surface (observed in voxel-space), the
effect of geometric distortions is to render the local
smoothness of the basis functions slightly variable and
the ensuing change in fit (Eq. (7)) is minimal.

Practical Issues

Some practical issues must be considered when ap-

FIG. 9. Results on simulated data set “Single Source (extensivel
fit in vertex-space superimposed on transverse plane, (d) fit in voxe
plying the method to functional data. In the current
description, the Brainvoyager software was used to
construct the anatomically informed model. However,
the use of other surface reconstruction packages is
possible at any stage of processing. We implemented
our AIBF code in Matlab (Matlab 5.3, The Mathworks
Inc.).

With regard to computer resources, the number of
basis functions used to model the functional data is a
limiting factor, since the parameter estimation (Eq.
(4)) includes the matrix inversion of (ATA 1 gI). In our
experience, the analysis of whole head volumes by
AIBF is possible at a reasonable resolution (basis func-
tions of 2-mm width) on a conventional workstation
(256 MByte RAM, tested on a Sparc-Station and a
Linux-PC). Note that the matrix inversion (Eq. (4))
need only to be done once, after this all functional
volumes are fitted using the same projection matrix.
The run-time of the whole process (generation of
model, matrix inversion and fitting the data) is in the
range of 5–60 min, again largely depending on the
number of basis functions used.

Generalization

We want to identify an underlying spatiotemporal
distribution of activity on a surface, where we only
observe a low-resolution, noisy image of this distribu-
tion. Any valid prior spatial or spatiotemporal knowl-
edge that can be used to constrain the solution will be
usefully embodied in a set of AIBF; e.g., one could try to

lded)”: (a) simulated configuration, (b) activation found by AIBF, (c)
ace, (e) SPM99-result.
y fo
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model thick/thin stripes in the secondary visual area
V2 directly on the cortical sheet.

AIBF can accomodate any form of prior anatomical
knowledge given that an appropriate model can be rep-
resented as a set of basis functions. As in any inverse
problem, the ensuing solution depends on the validity of
the prior anatomical knowledge and the model specified.
The generalization of the approach presented can be de-
scribed in terms of potential adaptions.

The first obvious component is the definition of basis
functions. Our choice of Gaussian basis functions was
arbitrary. These can be replaced by any smooth, uni-
modal two-dimensional function, effectively imple-
menting a lowpass filter kernel, e.g., sinc-functions.
However, the change in the resulting fit is not as large
as one might expect, because the transformation from
high-resolution vertex- to low-resolution voxel-space
effectively acts as an additional lowpass filter that
renders different sets similar. A conceptually distinct
kind of basis functions is a set of spatial cosine func-
tions of different frequencies as used in stereotactic
normalization (Ashburner and Friston, 1999).

In the case of other modalities like PET or SPECT
(single photon emission computed tomography), one
can model the intrinsic PSF by an additional convolu-
tion with a lowpass kernel L, which emulates the ef-
ects of underlying physical processes and its measure-
ent. It is important to note that in this context the

olution effectively implements a deconvolution of the
riginal observations, since the estimated parameters
an be used to project the observations in AIBF-space
ack into voxel-space without applying L.
We have used a zero-order regularization, which ef-

ectively weighs the solution in favor of small param-
ters. Although the regularization does not improve
he overall fit, it stabilizes the fits of a specific basis
unction over time, since the associated parameter es-
imates are less susceptible to random errors of esti-
ation. As a result, the contribution induced by the

xperimental paradigm is better reflected in the
hanges over time. Other regularization schemes can
e used, e.g., first- or higher-order regularization as
escribed by Press et al. (1992).
Finally, one could substitute the simple optimization
ethod used to an iteratively adaptive scheme. An inter-

sting extension would be to iteratively change the basis
ets with respect to some goal function. Modifiable pa-
ameters could include the widths of basis functions in x-
nd y-direction or positions on the cortical surface.

CONCLUSION

We have applied anatomically informed basis func-
ions (AIBF) to a fMRI study and to simulated data.
e have shown that the method provides superreso-
ution and higher sensitivity for signal sources
ithin the gray matter sheet. In this work, we have
sed the location of the gray matter sheet as prior
natomical knowledge. More generally, AIBF can be
sed to incorporate any anatomical knowledge into
unctional analyses to constrain the resulting solu-
ion.
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