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3.1 Introduction

Methods of registering images can be broadly divided into label based and non-label based. Label

based techniques identify homologous features (labels) in the image and template and �nd the

transformations that best superpose them. The labels can be points, lines or surfaces. Homol-

ogous features are often identi�ed manually, but this process is time consuming and subjective.

Another disadvantage of using points or lines as landmarks is that there are very few readily iden-

ti�able discrete points or lines in the brain. However, surfaces are more readily identi�ed, and in

many instances they can be extracted automatically (or at least semi-automatically). Once they

are identi�ed, the spatial transformation is e�ected by bringing the homologies together. If the

labels are points, then the required transformations at each of those points is known. Between the

points, the deforming behaviour is not known, so it is forced to be as `smooth' as possible. There

are a number of methods for modelling this smoothness. The simplest models include �tting

splines through the points in order to minimise bending energy (Bookstein, 1997a; Bookstein,

40
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1989). More complex forms of interpolation are often used when the labels are surfaces. For

example Thompson et al.(1996) map surfaces together using a uid model.

Non-label based approaches identify a spatial transformation that minimises some index of the

di�erence between a source and a template image, where both are treated as unlabeled continuous

processes. The matching criterion is usually based upon minimising the sum of squared di�erences

or maximising the correlation between the images. For this criterion to be successful, it requires

the template to appear like a warped version of the image. In other words, there must be

correspondence in the grey levels of the di�erent tissue types between the source image and

template.

A potentially enormous number of parameters are required to describe the nonlinear trans-

formations that warp two images together (i.e., the problem is very high dimensional). However,

much of the spatial variability can be captured using just a few parameters. Low spatial fre-

quency global variability of head shape can be accommodated by describing deformations by a

linear combination of low frequency basis functions. One very widely used basis function regis-

tration method is part of the AIR package (Woods et al., 1998a; Woods et al., 1998b), which

uses polynomial basis functions to model shape variability. For example, a two dimensional third

order polynomial basis function mapping can be de�ned something like:
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(3.1)

The small number of parameters will not allow every feature to be matched exactly, but it will

permit the global head shape to be modelled. The method of nonlinear registration described

in this chapter is a similar approach, but uses discrete cosine transform basis functions instead

of polynomials. The rational for adopting the low dimensional approach is that it allows rapid

modelling of the global brain shape.

The deformations required to transform images to the same space are not clearly de�ned.

Unlike rigid body transformations, where the constraints are explicit, those for warping are more

arbitrary. Regularisation schemes are therefore necessary when attempting image registration

with many parameters, thus ensuring that voxels remain close to their neighbours. Regularisation

is normally incorporated by some form of Bayesian scheme, using estimators such as the maximum

a posteriori (MAP) estimate or the minimum variance estimate (MVE). The MAP estimate is the

single solution that has the highest posterior probability of being correct, and is the estimate used

for the fully automatic non-label based spatial normalisation method described in this chapter.
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3.2 Methods

This section begins by introducing a modi�cation to the optimisationmethod described in Section

2.4, such that more robust maximum a posteriori (MAP) parameter estimates can be obtained.

The �rst step in registering images from di�erent subjects involves determining the optimum

12 parameter aÆne transformation. A procedure for doing this using the MAP optimisation

scheme is described. Because the variability of head sizes is known a priori, the registration

can be made more robust by incorporating this knowledge. The next part describes nonlinear

registration for correcting gross di�erences in head shapes that can not be accounted for by the

aÆne normalisation alone. The nonlinear warps are modelled by linear combinations of smooth

basis functions, and a fast algorithm for determining the optimum combination of basis functions

is described. For speed and simplicity, a relatively small number of parameters (approximately

1000) are used to describe the nonlinear components of the registration. The MAP scheme requires

some form of prior distribution for the basis function coeÆcients, so a number of di�erent forms

for this distribution are then presented. The last part of this section describes a variety of possible

models for intensity transforms. In addition to spatial transformations, it is sometimes desirable

to also include intensity transforms in the registration model, as one image may not look exactly

like a spatially transformed version of the other.

3.2.1 A Maximum A Posteriori Solution

A Bayesian registration scheme is used in order to obtain a maximum a posteriori estimate

of the registration parameters. Given some prior knowledge of the variability of brain shapes

and sizes that may be encountered, a MAP registration scheme is able to give a more accurate

(although biased) estimate of the true shapes of the brains. This is illustrated by a very simple

one dimensional example in Figure 3.1. The use of a MAP parameter estimate reduces any

potential over-�tting of the data, which may lead to unnecessary deformations that only reduce

the residual variance by a tiny amount. It also makes the registration scheme more robust by

reducing the search space of the algorithm, and therefore the number of potential local minima.

Bayes' rule can be expressed as:

p(qjb) / p(bjq)p(q) (3.2)

where p(q) is the prior probability of parameters q, p(bjq) is the conditional probability that

b is observed given q and p(qjb) is the posterior probability of q, given that measurement b

has been made. The maximum a posteriori (MAP) estimate for parameters q is the mode of

p(qjb). The maximum likelihood (ML) estimate is a special case of the MAP estimate, in which

p(q) is uniform over all values of q. For our purposes, p(q) represents a known prior probability

distribution from which the parameters are drawn, p(bjq) is the likelihood of obtaining the data

b given the parameters, and p(qjb) is the function to be maximised. The optimisation can be

simpli�ed by assuming that all probability distributions can be approximated by multi-normal

(multidimensional and normal) distributions, and can therefore be described by a mean vector

and a covariance matrix.

A probability is related to its Gibbs form by p(a) / e�H(a). Therefore the posterior probability

is maximised when its Gibbs form is minimised. This is equivalent to minimising H(bjq) +
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Figure 3.1: This �gure illustrates a hypothetical example with one parameter, where the prior

probability distribution is better described than the likelihood. The solid Gaussian curve (a)

represents the prior probability distribution (p.d.f), and the dashed curve (b) represents a maxi-

mum likelihood parameter estimate (from �tting to observed data) with its associated certainty.

The true parameter is known to be drawn from distribution (a), but it can be estimated with

the certainty described by distribution (b). Without the MAP scheme, a more precise estimate

would probably be obtained for the true parameter by taking the most likely a priori value, rather

than the value obtained from a maximum likelihood �t to the data. This would be analogous

to cases where the number of parameters is reduced in a maximum likelihood registration model

in order to achieve a better solution (e.g., see page 45). The dotted line (c) shows the posterior

p.d.f obtained using Bayesian statistics. The maximumvalue of (c) falls at the MAP estimate. It

combines previously known information with that from the data to give a more accurate estimate.
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H(q) (the posterior potential). In this expression, H(bjq) (the likelihood potential) is related

to the residual sum of squares. If the parameters are assumed to be drawn from a multi-normal

distribution described by a mean vector q0 and covariance matrix C0, then H(q) (the prior

potential) is simply given by:

H(q) = (q� q0)
T
C0

�1 (q � q0) (3.3)

Eqn. 2.22 gives the followingmaximum likelihood updating rule for the parameter estimation:

qML
(n+1) = q(n) �

�
ATA

��1
ATb (3.4)

Assuming equal variance for each observation (�2) and ignoring covariances among them, the

formal covariance matrix of the �t on the assumption of normally distributed errors is given by

�2
�
ATA

��1
. When the distributions are normal, the MAP estimate is simply the average of the

prior and likelihood estimates, weighted by the inverses of their respective covariance matrices:

q(n+1) =
�
C0

�1 +ATA=�2
��1 �

C0
�1q0 +ATA=�2qML

(n+1)
�

(3.5)

The MAP optimisation scheme is obtained by combining Eqns. 3.4 and 3.5.

q(n+1) =
�
C0

�1 +ATA=�2
��1 �

C0
�1q0 +ATAq(n)=�2 �ATb=�2

�
(3.6)

For the sake of the registration, it is assumed that the exact form for the a priori probability

distribution (q0 and C0) is known. However, because the registration may need to be done on a

wide range of di�erent image modalities, with di�ering contrasts and signal to noise ratios, it is

not possible to easily and automatically know what value to use for �2. In practice, �2 is assumed

to be the same for all observations, and is estimated from the sum of squared di�erences from

the current iteration:

�2 =
IX
i=1

bi(q)
2=� (3.7)

where � refers to the degrees of freedom. If the sampling is sparse relative to the smoothness,

then � ' I � J , where I is the number of sampled locations in the images and J is the number

of estimated parameters 1.

However, complications arise because the images are smooth, resulting in the observations not

being independent, and a reduction in the e�ective number of degrees of freedom. The degrees of

freedom are corrected using the principles described by Friston (1995a) [although this approach is

not strictly correct (Worsley & Friston, 1995), it gives an estimate that is close enough for these

purposes]. The e�ective degrees of freedom are estimated by assuming that the di�erence between

f and g approximates a continuous, zero-mean, homogeneous, smoothed Gaussian random �eld.

The approximate parameter of a Gaussian point spread function describing the smoothness in

direction k (assuming that the axes of the Gaussian are aligned with the axes of the image

co-ordinate system) can be obtained by (Poline et al., 1995):

wk =

vuut PI
i=1 bi(q)

2

2
PI

i=1(rkbi(q))2
(3.8)

1Strictly speaking, the computation of the degrees of freedom should be more complicated than this, as this

simple model does not account for the regularisation (See Section 7.3).
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Multiplying wk by
p
8loge(2) produces an estimate of the full width at half maximum of the

Gaussian. If the images are sampled on a regular grid where the spacing in each direction is sk,

the number of e�ective degrees of freedom2 becomes approximately:

� = (I � J)
Y
k

sk

wk(2�)1=2
(3.9)

This is essentially a scaling of I � J by the number of resolution elements per voxel.

This approach has the advantage that when the parameter estimates are far from the solution,

�2 is large, so the problem becomes more heavily regularised with more emphasis being placed

on the prior information. For nonlinear warping, this is analogous to a coarse to �ne registration

scheme. The penalty against higher frequency warps is greater than that for those of low frequency

(see Section 3.2.4). In the early iterations, the estimated �2 is higher leading to a heavy penalty

against all warps, but with more against those of higher frequency. The algorithm does not �t

much of the high frequency information until �2 has been reduced. In addition to a gradual

reduction in �2 due to the decreasing residual squared di�erence, �2 is also reduced because

the estimated smoothness is decreased, leading to more e�ective degrees of freedom. Both these

factors are inuential in making the registration scheme more robust to local minima.

3.2.2 AÆne Registration

Almost all between subject co-registration or spatial normalisation methods for brain images

begin by determining the optimal nine or twelve parameter aÆne transformation that registers the

images together. This step is normally performed automatically by minimising (or maximising)

some mutual function of the images. The objective of aÆne registration is to �t the source image f

to a template image g, using a twelve parameter aÆne transformation (via a matrixM generated

from parameters q1 to q12). The images may be scaled quite di�erently, so an additional intensity

scaling parameter (q13) is included in the model. The objective function that is minimised is

therefore:

X
i

(f(Mxi) � q13g(xi))
2 (3.10)

Without constraints and with poor data, simple ML parameter optimisation (similar to that

described in Section 2.5) can produce some extremely unlikely transformations. For example,

when there are only a few slices in the image, it is not possible for the algorithms to determine

an accurate zoom in the out of plane direction. Any estimate of this value is likely to have very

large errors. When a regularised approach is not used, it may be better to assign a �xed value

for this diÆcult-to-determine parameter, and simply �t for the remaining ones.

By incorporating prior information into the optimisation procedure, a smooth transition be-

tween �xed and �tted parameters can be achieved. When the error for a particular �tted param-

eter is known to be large, then that parameter will be based more upon the prior information.

In order to adopt this approach, the prior distribution of the parameters should be known. A

suitable a priori distribution of the parameters (q0 and C0 from Eqn. 3.6) was determined from

2Note that this only applies when sk < wk(2�)
1=2, otherwise � = I � J. Alternatively, to circumvent this

problem the degrees of freedom can be better estimated by (I�J)
Q

k erf(2
�3=2

sk=wk). This gives a similar result

to the approximation by Friston (1995a) for smooth images, but never allows the computed value to exceed I � J.



CHAPTER 3. IMAGE WARPING USING BASIS FUNCTIONS 46

aÆne transformations estimated from 51 high resolution T1 weighted brain MR images using

the basic least squares optimisation algorithm. The transformation matrices were de�ned by

M = Mf
�1Ma

�1Mg, where Ma (refer back to Sections 2.2.1 and 2.2.2) is constructed from

parameters q:

Ma =

2
66664
1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

3
77775

2
66664
1 0 0 0

0 cos(q4) sin(q4) 0

0 �sin(q4) cos(q4) 0

0 0 0 1

3
77775

2
66664
cos(q5) 0 sin(q5) 0

0 0 0

�sin(q5) 0 cos(q5) 0

0 0 0 1

3
77775� : : :

2
66664
cos(q6) sin(q6) 0 0

�sin(q6) cos(q6) 0 0

0 0 1 0

0 0 0 1

3
77775

2
66664
q7 0 0 0

0 q8 0 0

0 0 q9 0

0 0 0 1

3
77775

2
66664
1 q10 q11 0

0 1 q12 0

0 0 1 0

0 0 0 1

3
77775 (3.11)

The results for the translation and rotation parameters (q1 to q6) are ignored, since these

depend only on the positioning of the subjects in the scanner, and do not reect variability of

head shape and size.

The mean zooms required to �t the individual brains to the space of the template (param-

eters q7 to q9) were 1.10, 1.05 and 1.17 in the left-right, posterior-anterior and inferior-superior

directions respectively, reecting the fact that the template was larger than a typical head. The

variance-covariance matrix for these parameters was:2
64
0:00210 0:00094 0:00134

0:00094 0:00307 0:00143

0:00134 0:00143 0:00242

3
75

giving a correlation coeÆcient matrix of:2
64
1:00 0:37 0:59

0:37 1:00 0:52

0:59 0:52 1:00

3
75

As expected, these parameters are correlated, since larger brains are generally larger in all

dimensions. This allows partial prediction of the optimal zoom in one direction given the zooms

in the others, a fact that is useful for spatially normalising images containing a limited number of

transverse slices. The means of the parameters de�ning shear were close to zero (-0.0024, 0.0006

and -0.0107 for q10, q11 and q12 respectively). The variances of the parameters are 0.000184,

0.000112 and 0.001786, with very little covariance.

A number of aÆne registrations were evaluated both with and without incorporating the MAP

scheme. This evaluation is described in Section 3.3.1.

3.2.3 Nonlinear Registration

The nonlinear spatial normalisation approach described here assumes that the image has al-

ready been approximately registered with the template according to a twelve-parameter aÆne

registration. This section illustrates how the parameters describing global shape di�erences (not

accounted for by aÆne registration) between an image and template can be determined.
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The model for de�ning nonlinear warps uses deformations consisting of a linear combination

of low-frequency periodic basis functions. The spatial transformation from co-ordinates xi, to

co-ordinates yi is:

y1i = x1i + u1i = x1i +
X
j

qj1dj(xi)

y2i = x2i + u2i = x2i +
X
j

qj2dj(xi)

y3i = x3i + u3i = x3i +
X
j

qj3dj(xi) (3.12)

where qjk is the jth coeÆcient for dimension k, and dj(x) is the jth basis function at position x.

The choice of basis functions depend upon the distribution of warps likely to be required, and

also upon how translations at borders should behave. If points at the borders over which the

transform is computed are not required to move in any direction, then the basis functions should

consist of the lowest frequencies of the three dimensional discrete sine transform (DST). If there

are to be no constraints at the borders, then a three dimensional discrete cosine transform (DCT)

is more appropriate. Both of these transforms use the same set of basis functions to represent

warps in each of the directions. Alternatively, a mixture of DCT and DST basis functions can

be used to constrain translations at the surfaces of the volume to be parallel to the surface

only (sliding boundary conditions). By using a di�erent combination of DCT and DST basis

functions, the corners of the volume can be �xed and the remaining points on the surface can be

free to move in all directions (bending boundary conditions) (Christensen, 1994). These various

boundary conditions are illustrated in Figure 3.2.

The basis functions used here are the lowest frequency components of the three (or two)

dimensional DCT. In one dimension, the DCT of a function is generated by pre-multiplication

with the matrix DT , where the elements of the I �M matrix D are de�ned by:

di1 =
1p
I
i = 1::I

dim =
q

2

I
cos
�
�(2i�1)(m�1)

2I

�
i = 1::I;m = 2::M (3.13)

A set of low frequency two dimensional DCT basis functions are shown in Figure 3.3, and a

schematic example of a two dimensional deformation based upon the DCT is shown in Figure

3.4.

As for aÆne registration, the optimisation involves minimising the sum of squared di�erences

between a source (f ) and template image (g). The images may be scaled di�erently, so an

additional parameter (w) is needed to accommodate this di�erence. The minimised function is

then:

X
i

(f(yi)�wg(xi))
2 (3.14)

The approach described in Section 2.4 is used to optimise the parameters q1, q2, q3 and w,

and requires derivatives of the function f(yi) � wg(xi) with respect to each parameter. These

can be obtained using the chain rule:

@f(yi)

@qj1
=

@f(yi)

@y1i

@y1i

@qj1
=

@f(yi)

@y1i
dj(xi)
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Figure 3.2: Di�erent boundary conditions. Above left: �xed boundaries (generated purely from

DST basis functions). Above right: sliding boundaries (from a mixture of DCT and DST basis

functions). Below left: bending boundaries (from a di�erent mixture of DCT and DST basis

functions). Below right: free boundary conditions (purely from DCT basis functions). These

deformation �elds were all computed using the same 4�4 randomly generated coeÆcients (normal

distribution of unit variance), and are assumed to cover a unit square.



CHAPTER 3. IMAGE WARPING USING BASIS FUNCTIONS 49

Figure 3.3: The lowest frequency basis functions of a two dimensional Discrete Cosine Transform.

@f(yi)

@qj2
=

@f(yi)

@y2i

@y2i

@qj2
=

@f(yi)

@y2i
dj(xi)

@f(yi)

@qj3
=

@f(yi)

@y3i

@y3i

@qj3
=

@f(yi)

@y3i
dj(xi) (3.15)

The approach involves iteratively computing ATA and ATb. However, because there are

many parameters to optimise, these computations can be very time consuming. There now

follows a description of a very eÆcient way of computing these matrices.

A Fast Algorithm

A fast algorithm for computing ATA and ATb is shown in Figure 3.5. The remainder of this

section explains the matrix terminology used, and why it is so eÆcient.

For simplicity, the algorithm is only illustrated in two dimensions, although it has been imple-

mented to estimate warps in three dimensions. Images f and g are considered as I�J matrices F

and G respectively. Row i of F is denoted by fi;:, and column j by f:;j. The basis functions used

by the algorithm are generated from a separable form from matricesD1 andD2, with dimensions

I �M and J �N respectively. By treating the transform coeÆcients as M �N matrices Q1 and

Q2, the deformation �elds can be rapidly constructed by computing D1Q1D2
T and D1Q2D2

T .

Between each iteration, image F is resampled according to the latest parameter estimates.

The derivatives of F are also resampled to give r1F and r2F. The ith element of each of these

matrices contain f(yi), @f(yi)=@y1i and @f(yi)=@y2i respectively.
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Dark − shift down, Light − shift up
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Deformation Field in Y

Field Applied To Image

Deformed Image

Figure 3.4: In two dimensions, a deformation �eld consists of two scalar �elds. One for horizontal

deformations, and the other for vertical deformations. The images on the left show deformations

as a linear combination of basis images (see Figure 3.3). The centre column shows the same

deformations in a more intuitive sense. The deformation is applied by overlaying it on a source

image, and re-sampling (right).

� =
h
0

i
� =

h
0

i

for j = 1 : : :J

C = d2j;:
Td2j;:

E1 = diag(r1f :;j)D1

E2 = diag(r2f :;j)D1

� = �+

2
64
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 (E1
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 (E1
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E2) �d2j;:
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 (E1
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 (E1
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� = � +

2
64
d2j;:

T

 (E1

T (f:;j �wg:;j))

d2j;:
T

 (E2

T (f:;j �wg:;j))

g:;j
T (f:;j � wg:;j)

3
75

end

Figure 3.5: A two dimensional illustration of the fast algorithm for computing ATA (�) and

ATb (�).
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The notation diag(r1f :;j)D1 simply means multiplying each element of row i ofD1 by r1f i;j,

and the symbol `
' refers to the Kronecker tensor product. If D2 is a matrix of order J �N , and

D1 is a second matrix, then:

D2 
D1 =

2
664
d211D1 : : : d21ND1

...
. . .

...

d2J1D1 : : : d2JND1

3
775 (3.16)

The advantage of the algorithm shown in Figure 3.5 is that it utilises some of the useful

properties of Kronecker tensor products. This is especially important when the algorithm is

implemented in three dimensions. The performance enhancement results from a reordering of a

set of operations like (D3
D2
D1)T (D3
D2
D1), to the equivalent (D3
TD3)
 (D2

TD2)


(D1
T
D1). Assuming that the matrices D3, D2 and D1 all have order I �M , then the number

of oating point operations is reduced from I3M3(M3 + 2) to approximately 3I(M2 +M )+M6.

If I equals 32, and M equals 4, then a performance increase of about a factor of 20,000 would be

expected. The limiting factor to the algorithm is no longer the time taken to create the curvature

matrix (ATA), but is now the amount of memory required to store it and the time taken to

invert it.

3.2.4 Linear Regularisation for Nonlinear Registration

Without regularisation in the nonlinear registration, it is possible to introduce unnecessary de-

formations that only reduce the residual sum of squares by a tiny amount. This could potentially

make the algorithm very unstable. Regularisation is achieved by minimising the sum of squared

di�erence between the template and the warped image, while simultaneously minimising some

function of the deformation �eld. The principles are Bayesian and make use of the MAP scheme

described in Section 3.2.1.

The �rst requirement for a MAP approach is to de�ne some form of prior distribution for the

parameters. For a simple linear3 approach, the priors consist of an a priori estimate of the mean

of the parameters (assumed to be zero), and also a covariance matrix describing the distribution

of the parameters about this mean. There are many possible forms for these priors, each of which

describes some form of `energy' term. If the true prior distribution of the parameters is known

(somehow derived from a large number of subjects), then C0 could be an empirically determined

covariance matrix describing this distribution. This approach would have the advantage that the

resulting deformations are more typically \brain like", and so increase the face validity of the

approach.

The three distinct forms of linear regularisation that will now be described are based upon

membrane energy, bending energy and linear-elastic energy. None of these schemes enforce a strict

one to one mapping between the source and template images, but this makes little di�erence

for the small deformations required here. Each of these models needs some form of elasticity

constants (� and sometimes �). Values of these constants that are too large will provide too

much regularisation and result in greatly underestimated deformations. If the values are too

3Although the cost function associated with these priors is quadratic, the priors are linear in the sense that

they minimise the sum of squares of a linear combination of the model parameters. This is analogous to solving a

set of linear equations by minimising a quadratic cost function.
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small, there will not be enough regularisation and the resulting deformations will over�t the

data. Section 7.3 will introduce one possible method of estimating what the best values for these

constants should be.

Membrane Energy

The simplest model used for linear regularisation is based upon minimising the membrane energy

of the deformation �eld u (Amit et al., 1991; Gee et al., 1997). By summing over i points in three

dimensions, the membrane energy of u is given by:

X
i

3X
j=1

3X
k=1

�

�
@uji

@xki

�2

(3.17)

where � is simply a scaling constant. The membrane energy can be computed from the coeÆcients

of the basis functions by q1THq1 + q2
THq2 + q3

THq3, where q1, q2 and q3 refer to vectors

containing the parameters describing translations in the three dimensions. The matrix H is

de�ned by:
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where the notation _D1 refers to the �rst derivatives of D1.

Assuming that the parameters consist of
h
q1

Tq2
Tq3

Tw

iT
, matrix C0

�1 from Eqn. 3.6 can

be constructed from H by:

C0
�1 =

2
66664
H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 0

3
77775 (3.19)

H is all zeros, except for the diagonal. Elements on the diagonal represent the reciprocal of the a

priori variance of each parameter. If all the DCT matrices are I�M , then each diagonal element

is given by:

hj+M(k�1+M(l�1)) = ��2I�2
�
(j � 1)2 + (k � 1)2 + (l � 1)2

�
over j = 1 : : :M , k = 1 : : :M and l = 1 : : :M . (3.20)

The nonlinear registration algorithm described here is implemented in three dimensions using

membrane energy as the cost functions. For completeness, the other two commonly used cost

functions will now be described, but only for the two dimensional case.

Bending Energy

Bookstein's thin plate splines (1997b; 1997a) minimise the bending energy of deformations. For

a two dimensional deformation, the bending energy is de�ned by:
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This can be computed by:
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where the notation _D1 and �D1 refer to the column-wise �rst and second derivatives of D1. This

is simpli�ed to q1THq1 + q2
THq2 where:
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Matrix C0
�1 from Eqn. 3.6 can be constructed from H as:

C0
�1 =

2
64
H 0 0

0 H 0

0 0 0

3
75 (3.24)

with values on the diagonals of H given by:
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over j = 1 : : :M and k = 1 : : :M (3.25)

Linear-Elastic Energy

The linear-elastic energy (Miller et al., 1993) of a two dimensional deformation �eld is:
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where � and � are the Lam�e elasticity constants. The elastic energy of the deformations can be

computed by:
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A regularisation based upon this model requires an inverse covariance matrix (C0
�1) that is

not a simple diagonal matrix. This matrix is constructed as follows:

C0
�1 =

2
64
H1 H3 0

H3
T H2 0

0 0 0

3
75 (3.28)
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where:
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3.2.5 Templates and Intensity Transformations

Sections 3.2.2 and 3.2.3 have modelled a single intensity scaling parameter (q13 and w respec-

tively), but more generally, the optimisation can be assumed to minimise two sets of parameters:

those that describe spatial transformations (qs), and those for describing intensity transforma-

tions (qt). This means that the di�erence function can be expressed in the generic form:

bi(q) = f(s(xi;qs))� t(xi;qt) (3.30)

where f is the source image, s() is a vector function describing the spatial transformations based

upon parameters qs and t() is a scalar function describing intensity transformations based on

parameters qt. xi represents the co-ordinates of the ith sampled point.

The previous subsections simply considered matching one image to a scaled version of another,

in order to minimise the sum of squared di�erences between them. For this case, t(xi;qt) is simply

equal to qt1g(xi), where qt1 is a simple scaling parameter and g is a template image. This is most

e�ective when there is a linear relation between the image intensities. Typically, the template

images used for spatial normalisation will be similar to those shown in the top row of Figure 3.6.

The simplest least squares �tting method is not optimal when there is not a linear relationship

between the images. Examples of nonlinear relationships are illustrated in Figure 3.7, which

shows histograms (scatter-plots) of image intensities plotted against each other.

An important idea is that a given image can be matched not to one reference image, but to

a series of images that all conform to the same space. The idea here is that (ignoring the spatial

di�erences) any given image can be expressed as a linear combination of a set of reference images.

For example these reference images might include di�erent modalities (e.g., PET, SPECT, 18F-

DOPA, 18F-deoxy-glucose, T1-weighted MRI T�
2
-weighted MRI .. etc.) or di�erent anatomical

tissues (e.g., grey matter, white matter, and CSF segmented from the same T1-weighted MRI)

or di�erent anatomical regions (e.g., cortical grey matter, sub-cortical grey mater, cerebellum ...

etc.) or �nally any combination of the above. Any given image, irrespective of its modality could

be approximated with a function of these images. A simple example using two images would be:X
i

(f(Mxi)� (qt1g1(xi) + qt2g2(xi)))
2 (3.31)

In Figure 3.8, a plane of a T1 weighted MRI is modelled by a linear combination of the �ve other

template images shown in Figure 3.6. Similar models were used to simulate T2 and PD weighted

MR images. The linearity of the scatter-plots (compared to those in Figure 3.7) shows that MR

images of a wide range of di�erent contrasts can be modelled by a linear combination of a limited

number of template images. Visual inspection shows that the simulated images are very similar

to those shown in Figure 3.6.

Alternatively, the intensities could vary spatially (for example due to inhomogeneities in the

MRI scanner). Linear variations in intensity over the �eld of view can be accounted for by
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Figure 3.6: Example template images. Above: T1 weighted MRI, T2 weighted MRI and PD

weighted MRI. Below: Grey matter probability distribution, White matter probability distri-

bution and CSF probability distribution. All the data were generated at the McConnel Brain

Imaging Centre, Montr�eal Neurological Institute at McGill University, and are based on the

averages of about 150 normal brains. The original images were reduced to 2mm resolution and

convolved with an 8mmFWHMGaussian kernel to be used as templates for spatial normalisation.
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Figure 3.7: Two dimensional histograms of template images (intensities shown as log(1+n), where

n is the value in each bin). The histograms were based on the whole volumes of the template

images shown in the top row of Figure 3.6.
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Figure 3.8: Simulated images of T1, T2 and PD weighted images, and histograms of the real

images versus the simulated images.

optimising a function of the form:X
i

(f(xi;qs)� (qt1g(xi) + qt2x1ig(xi) + qt3x2ig(xi) + qt4x3ig(xi)))
2 (3.32)

More complex variations could be included by modulating with other basis functions (such as the

DCT basis function set described in Section 3.2.3) (Friston et al., 1995c). The examples shown so

far have been linear in their parameters describing intensity transformations. A simple example

of an intensity transformation that is nonlinear would be:X
i

(f(xi;qs)� qt1g(xi)
qt2)2 (3.33)

Collins et al.(1994b) suggested that { rather than matching the image itself to the template

{ some function of the image should be matched to a template image transformed in the same

way. He found that the use of gradient magnitude transformations lead to more robust solu-

tions, especially in cases of partial volume coverage or intensity inhomogeneity artifacts (in MR

images). Other spatially invariant moments may also contain other useful matching information.

The algorithms described here perform most eÆciently with smooth images. Much of the high

frequency information in the images is lost in the smoothing step, but information about im-

portant image features may be retained in separate (smoothed) moment images. Simultaneous

registrations (comparable to those in the previous chapter that matched grey matter with grey

matter, and white matter with white matter) using these extracted features may be a useful

technique for preserving information, while still retaining the advantages of using smooth images

in the registration.
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Another idea for introducing more accuracy would be to simultaneously spatially normalise

co-registered images to corresponding templates. For example, by simultaneously matching a

PET image to a PET template, at the same time as matching a structural MR image to a

corresponding MR template, more accuracy could be obtained than by matching the images

individually. Section 2.6 described a method of between modality registration where the �rst

step involves simultaneous aÆne registration of a pair of images to a pair of templates in order

to extract the rigid body transformation that maps the images together. There is no reason why

nonlinear warping can not also be included in this model to further increase the accuracy of the

rigid registration, while also improving the spatial normalisation.

3.3 Evaluation

The criteria for `good' spatial transformations can be framed in terms of validity, reliability and

computational eÆciency. The validity of a particular transformation device is not easy to de�ne

or measure and indeed varies with the application. For example a rigid body transformation may

be perfectly valid for realignment but not for spatial normalisation of an arbitrary brain into a

standard stereotactic space. Generally the sorts of validity that are important in spatial trans-

formations can be divided into (i) Face validity, established by demonstrating the transformation

does what it is supposed to and (ii) Construct validity, assessed by comparison with other tech-

niques or constructs. Face validity is a complex issue in functional mapping. At �rst glance, face

validity might be equated with the co-registration of anatomical homologues in two images. This

would be complete and appropriate if the biological question referred to structural di�erences or

modes of variation. In other circumstances however this de�nition of face validity is not appro-

priate. For example, the purpose of spatial normalisation (either within or between subjects) in

functional mapping studies is to maximise the sensitivity to neurophysiological change elicited by

experimental manipulation of sensorimotor or cognitive state. In this case a better de�nition of

a valid normalisation is that which maximises condition-dependent e�ects with respect to error

(and if relevant inter-subject) e�ects. This will probably be e�ected when functional anatomy is

congruent. This may or may not be the same as registering structural anatomy.

One approach is illustrated for assessing validity by comparing aÆne registrations both with

and without the incorporation of the MAP scheme. It was found that the aÆne transformations

derived using the Bayesian scheme are much more robust, and that the rate of convergence

is greater. The �nal part of the evaluations illustrate that the nonlinear registration reduces

structural variability on a global scale.

3.3.1 Evaluation of the MAP Scheme for AÆne Registration

The aÆne registration scheme relies on optimising a set of 12 parameters that de�ne the overall

size and position of the head. The optimisation searches for the closest local minimum to the

initial estimates, so it relies on these starting estimates being reasonably close to the optimum

solution. In practice, this should not be problem. For PET images of the brain, the position of

the subject within the scanner should not vary greatly. Also, the images are almost exclusively

reconstructed in the same transverse orientation. Once a suitable set of starting estimates for

one subject has been determined, it should be possible to use the same one for all subsequent
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subjects. The situation is slightly more complicated for MR images, where the images can be

acquired in any orientation. However, in most medical image format standards, the orientation

and position of the images is stored within the headers. This information can be automatically

extracted and used as starting estimates for the registration.

The MAP optimisation scheme from Section 3.2.1 was evaluated for aÆne registrations with

respect to the same optimisations performed without using the MAP scheme. It was found to

converge more rapidly to a good solution, and also give much more robust and reliable results for

limited data. These evaluations are detailed below.

Plots of convergence { with and without Bayesian extension

The aÆne registration algorithm was applied to 100 T1 weighted images, in order to match the

images to a T1 template image. All images were smoothed with a Gaussian kernel of 8mm

full width at half maximum. The voxels were reduced to 2 � 2 � 4mm with a �eld of view of

256� 256� 128mm in x, y and z respectively, in order to facilitate faster computations.

The optimisations were performed three times: (A) Without the Bayesian scheme, for a

12 parameter aÆne transformation. (B) With the Bayesian scheme, for a 12 parameter aÆne

transformation. (C) Without the Bayesian scheme, for a six parameter rigid body transformation

(to demonstrate that the Bayesian scheme is not simply optimising a rigid body transformation).

During the optimisation procedure, the images were sampled approximately every 8mm. 32

iterations were used, and the residual variance (�2) recorded for each iteration. 50 of the subjects

were given good starting estimates (i), and 50 were given starting estimates that deviated from

the optimal solution by about 10cm (ii).

There were 2 cases from (ii) in which the starting estimates were insuÆciently close to the

solution, for either (A) or (B) to converge satisfactorily. These cases have been excluded from

the results.

Figure 3.9 shows the average �2 for all images plotted against iteration number. As can be

seen from these plots, (B) leads to a more rapid estimation of the optimal parameters, even

though convergence appears faster at the start of (A). The plot of convergence for (C) illustrates

the point that the Bayesian method is not over-constrained and simply optimising a set of rigid

body parameters.

Figure 3.10 compares the number of iterations required by (A) and (B) in order to reduce

the �2 to within 1% of the minimum of both schemes. In several cases of (A), the optimisation

had not converged within the 32 iterations. There were only 5 cases where (B) does not obtain

a value for �2 that is as low as that from (A). In two of the cases, the results from (A) were

very close to those from (B). However, in the other three cases, examination of the parameter

estimates from scheme (A) showed that it had found a minimum that was clearly not a proper

solution. The zooms determined, after 32 iterations, were (0.96,0.98,0.11), (2.10,0.72,0.0003) and

(1.09,0.24,0.02). These are clearly not correct!

The algorithm requires relatively few iterations to reach convergence. The speed of each

iteration for the aÆne normalisation depends upon the number of sampled voxels. On a SPARC

Ultra 2, an iteration takes one second when about 26000 points (and their gradients) are sampled

using tri-linear interpolation.
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Figure 3.9: The average �2 for the images plotted against iteration number. Left: given good

starting estimates (i). Right: given poor starting estimates (ii). The dashed lines (A) show

convergence for a 12 parameter aÆne transformation without using the Bayesian scheme. The

solid lines (B) show the same, but with the Bayesian scheme. Convergence for a six parameter

rigid body transformation (C) is shown in the dotted lines.
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Figure 3.10: The number of iterations in which convergence to within 1% of the minimummean

residual sum of squares had not been reached. The non-Bayesian scheme (A) is on the X axis,

with the Bayesian scheme (B) on the Y axis. Results from optimisations given good starting

estimates are shown as circles, whereas those with bad starting estimates are shown as crosses.
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Figure 3.11: Plots of the parameter estimates from reduced data, against estimates using the

complete data. As expected, the Bayesian scheme makes little di�erence for the estimates of the

zoom in the X direction [(a) and (b)], whereas the Bayesian scheme heavily biases the zoom in

Z towards the mean of the prior distribution [(c) and (d)].

Comparisons of AÆne Normalisation with Limited Data

Occasionally the image that is to be spatially normalised is of poor quality. It may have a low

signal to noise ratio, or it may contain only a limited number of slices. When this is the case,

the parameter estimates for the spatial normalisation are likely to be unreliable. Here, a further

comparison of aÆne registrations, with and without the incorporation of prior information [(E)

and (D) respectively], is presented. This time, only four planes from the images were sampled, to

simulate an e�ective �eld of view of 16 mm. The optimisations were given good initial parameter

estimates, and the results compared with those obtained using the complete data.

The resulting parameter estimates from (D) and (E) are plotted against those from (B) in

Figure 3.11. As can be seen from the plots, where the parameters can be estimated accurately,

the results from (D) and (E) are similar. However, where there is not enough information in

the images to determine an accurate parameter estimate, the results of (E) are properly biased

towards the prior estimate.

3.3.2 Comparing Spatial Normalisation both With and Without Non-

linear Deformations

This section provides an anecdotal evaluation of the nonlinear warping techniques. Spatial nor-

malisation is compared both with and without nonlinear deformations, and nonlinear deforma-
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Figure 3.12: Means and standard deviations of spatially normalised T1 weighted images from 12

subjects. The images on the left of each pair were derived using only aÆne registration. Those

on the right used nonlinear registration in addition to the aÆne registration.

tions compared with and without using Bayesian priors.

T1 weighted MR images of 12 subjects were spatially normalised to the same anatomical space.

The normalisations were performed twice, �rst using only 12 parameter aÆne transformations

and then using aÆne transformations followed by nonlinear warps. In both cases, the registration

was weighted using the image shown in Figure 6.5 (page 129), so that any confounding e�ects of

skull and scalp di�erences could be discounted. The nonlinear transformation used 392 (7�8�7)

parameters to describe deformations in each of the directions, and four parameters to model a

linear scaling and simple linear image intensity inhomogeneities (making a total of 1180 param-

eters in all). The basis functions were those of a three dimensional DCT, and the regularisation

minimised the membrane energy of the deformation �elds (using a value of 0.01 for �). Twelve

iterations of the nonlinear registration algorithm were performed.

Figure 3.12 shows pixel by pixel means and standard deviations of the normalised images. In

order to create these mean and standard deviation images, the spatially normalised images were

�rst scaled such that each of their weighted mean intensities was unity, where the weighting was

done using the image in Figure 6.5. The mean image from the nonlinear normalisation shows

more contrast and has edges that are slightly sharper. The standard deviation image for the

nonlinear normalisation shows decreased intensities, demonstrating that the intensity di�erences

between the images have been reduced. However, the di�erences tend to reect changes in the

global shape of the heads, rather than di�erences between the cortical anatomy. More examples

of aÆne versus nonlinearly warped images are shown in Figures 4.15 and 4.16 of the next chapter.

The average weighted residual squared di�erence between the normalised images and the mean

image of the group was computed. Again, the weighting was done so that the residual squared

di�erences were derived primarily from voxels in the brain. The average squared di�erence was

0.0237 for the aÆne only normalised images and 0.0187 for those that had also been nonlinearly

warped. This shows that a 20% reduction of residual variance can be achieved by following an

aÆne registration by the nonlinear warping described here.

This evaluation should illustrate the fact that nonlinear normalisation clearly reduces the sum

of squared intensity di�erences between the images. The amount of residual variance could have

been reduced further by decreasing the amount of regularisation. This however, may lead to some

very un-natural looking distortions being introduced, due to an over-estimation of the a priori

variability.
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Evaluations like this tend to show more favourable results for less heavily regularised al-

gorithms. With less regularisation, the optimum solution is based more upon minimising the

di�erence between the images, and less upon knowledge of the a priori distribution of the pa-

rameters. This is illustrated for a single subject in Figure 3.13, where the distortions of gyral

anatomy clearly have a very low face validity (lower right panel).

3.4 Discussion

Because the deformations are only de�ned by a few hundred parameters, the nonlinear registra-

tion method described here does not have the potential precision of some other methods. High

frequency deformations can not be modelled because the deformations are restricted to the lowest

spatial frequencies of the basis functions. This means that the current approach is unsuitable for

attempting exact matches between �ne cortical structures.

The current method is relatively fast, (taking in the order of 30 seconds per iteration {

depending upon the number of basis functions used). The speed is partly a result of the small

number of parameters involved, and the simple optimisation algorithm that assumes an almost

quadratic error surface. Because the images are �rst matched using a simple aÆne transformation,

there is less `work' for the algorithm to do, and a good registration can be achieved with only a

few iterations (less than 20). The method does not rigorously enforce a one-to-one match between

the brains being registered. However, by estimating only the lowest frequency deformations and

by using appropriate regularisation, this constraint is rarely broken.

The approach in this chapter searches for a MAP estimate of the parameters de�ning the

warps. However, optimisation problems for complex nonlinear models such as those used for

image registration can easily get caught in local minima, so there is no guarantee that the estimate

determined by the algorithm is globally optimum. Even if the best MAP estimate is achieved,

there will be many other potential solutions that have similar probabilities of being correct. A

further complication arises from the fact that there is no one-to-one match between the small

structures (especially gyral and sulcal patterns) of any two brains. This means that it is not

possible to obtain a single objective high frequency match however good an algorithm is for

determining the best MAP estimate. Because of these issues, registration using the minimum

variance estimate (MVE) may be more appropriate. Rather than searching for the single most

probable solution, the MVE is the average of all possible solutions, weighted by their individual

probabilities of being correct. Although useful approximations have been devised (Miller et al.,

1993; Christensen, 1994), this estimate is still diÆcult to achieve in practice because of the

enormous amount of computing power required. The MVE is probably more appropriate than

the MAP estimate for spatial normalisation, as it is (on average) closer to the \true" solution.

However, if the errors associated with the parameter estimates and also the priors are normally

distributed, then the MVE and the MAP estimate are identical. This is partially satis�ed by

smoothing the images before registering them.

When higher spatial frequency warps are to be �tted, more DCT coeÆcients are required to

describe the deformations. There are practical problems that occur when more than about the

8� 8� 8 lowest frequency DCT components are used. One of these is the problem of storing and

inverting the curvature matrix (ATA). Even with deformations limited to 8� 8� 8 coeÆcients,
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Figure 3.13: The image shown at the top-left is the template image. At the top-right is an

image that has been registered with it using a 12-parameter aÆne registration. The image at the

bottom-left is the same image registered using the 12-parameter aÆne registration, followed by a

regularised global nonlinear registration (using 1180 parameters, 12 iterations and a � of 0.01).

It should be clear that the shape of the image approaches that of the template much better after

nonlinear registration. At the bottom right is the image after the same aÆne transformation

and nonlinear registration, but this time without using any regularisation. The mean squared

di�erence between the image and template after the aÆne registration was 472.1. After the

regularised nonlinear registration this was reduced to 302.7. Without regularisation, a mean

squared di�erence of 287.3 is achieved, but this is at the expense of introducing a lot of unnecessary

warping.
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there are at least 1537 unknown parameters, requiring a curvature matrix of about 18Mbytes

(using double precision oating point arithmetic). High-dimensional registration methods that

search for more parameters should be used when more precision is required in the deformations.

These include the method of Collins et al.(1994a), high dimensional linear-elasticity model (Miller

et al., 1993) and the viscous uid models (Christensen et al., 1996; Thompson & Toga, 1996).

The next chapter also describes one such method.

In practice however, it may be meaningless to even attempt an exact match between brains

beyond a certain resolution. There is not a one-to-one relationship between the cortical structures

of one brain and those of another, so any method that attempts to match brains exactly must

be folding the brain to create sulci and gyri that do not really exist. Even if an exact match is

possible, because the registration problem is not convex, the solutions obtained by high dimen-

sional warping techniques may not be truly optimum. High-dimensional registrations methods

are often very good at registering grey matter with grey matter (for example), but there is no

guarantee that the registered grey matter arises from homologous cortical features.

Also, structure and function are not always tightly linked. Even if structurally equivalent

regions can be brought into exact register, it does not mean that the same is true for regions that

perform the same or similar functions. For inter-subject averaging, an assumption is made that

functionally equivalent regions lie in approximately the same parts of the brain. This leads to

the current rationale for smoothing images from multi-subject functional imaging studies prior

to performing statistical analyses. Constructive interference of the smeared activation signals

then has the e�ect of producing a signal that is roughly in an average location. In order to

account for substantial �ne scale warps in a spatial normalisation, it is necessary for some voxels

to increase their volumes considerably, and for others to shrink to an almost negligible size. The

contribution of the shrunken regions to the smoothed images is tiny, and the sensitivity of the

tests for detecting activations in these regions is reduced. This is another argument in favour of

registering only on a global scale.

The constrained normalisation described here assumes that the template resembles a warped

version of the image. Modi�cations are required in order to apply the method to diseased or

lesioned brains. One possible approach is to assume di�erent weights for di�erent brain regions.

Lesioned areas can be assigned lower weights, so that they have much less inuence on the �nal

solution.

The registration scheme described in this chapter is constrained to describe warps with a

few hundred parameters. More powerful and less expensive computers are rapidly evolving,

so algorithms that are currently applicable will become increasingly redundant as it becomes

feasible to attempt more precise registrations. Scanning hardware is also improving, leading

to improvements in the quality and diversity of images that can be obtained. Currently, most

registration algorithms only use the information from a single image from each subject. This is

typically a T1 MR image, which provides limited information that simply delineates grey and

white matter. For example, further information that is not available in the more conventional

sequences could be obtained from di�usion weighted imaging. Knowledge of major white matter

tracts should provide structural information more directly related to connectivity and implicitly

function, possibly leading to to improved registration of functionally specialised areas.


