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5.1 Introduction

Healthy brain tissue can generally be classi�ed into three broad tissue types on the basis of an MR

image. These are grey matter (GM), white matter (WM) and cerebro-spinal uid (CSF). This

classi�cation can be performed manually on a good quality T1 image, by simply selecting suitable

image intensity ranges which encompass most of the voxel intensities of a particular tissue type.

However, this manual selection of thresholds is highly subjective.

Some groups have used clustering algorithms to partition MR images into di�erent tissue

types, either using images acquired from a single MR sequence, or by combining information

from two or more registered images acquired using di�erent scanning sequences or echo times

(eg. proton-density and T2-weighted). The approach adopted here is a modi�ed version of one

of these clustering algorithms. The clustering algorithm of choice is the maximum likelihood

`mixture model' algorithm (Hartigan, 1975), which has been extended to include spatial maps of

prior belonging probabilities, and also a correction for image intensity non-uniformity that arises

for many reasons in MR imaging. Because the tissue classi�cation is based on voxel intensities,

partitions derived without the correction can be confounded by these smooth intensity variations.

The model assumes that the MR image (or images) consists of a number of distinct tissue

types (clusters) from which every voxel has been drawn. The intensities of voxels belonging to
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Figure 5.1: The a priori probability images of GM, WM, CSF and non-brain tissue. Values range

between zero (white) and one (black).

each of these clusters conform to a multivariate normal distribution, which can be described by

a mean vector, a covariance matrix and the number of voxels belonging to the distribution. In

addition, the model has approximate knowledge of the spatial distributions of these clusters, in

the form of prior probability images.

Prior to classifying an image, it is necessary to determine the spatial transformation that

maps from each voxel in the image to its equivalent location in the a priori probability images,

thus allowing simple `on-the-y' sampling of the probability images. The mapping is normally

achieved by least squares matching with template images in the same stereotactic space as the

prior probability images. This can be done using nonlinear warping, but the examples provided

in this chapter were done using aÆne registration.

One of the greatest problems faced by tissue classi�cation techniques is non-uniformity of the

images intensity. Many groups have developed methods for correcting intensity non-uniformities,

and the scheme developed here shares common features. There are two basic models describing

image noise properties: multiplicative noise and additive noise. The multiplicative model de-

scribes images that have noise added before being modulated by the non-uniformity �eld (i.e.,

the standard deviation of the noise is multiplied by the modulating �eld), whereas the additive

version models noise that is added after the modulation (standard deviation is constant). The

current method uses a multiplicative noise model, which assumes that the errors originate from

tissue variability rather than additive Gaussian noise from the scanner. Figure 5.2 illustrates the

model used by the classi�cation.

Non-uniformity correction methods all involve estimating a smooth function that modulates

the image intensities. If the function is is not forced to be smooth, then it will begin to �t the

higher frequency intensity variations due to di�erent tissue types, rather than the low frequency

intensity non-uniformity artifact. Spline (Yan & Karp, 1995; Sled et al., 1998) and polynomial

(Van Leemput et al., 1999a; Van Leemput et al., 1999b) basis functions are widely used for

modelling the intensity variation. In these models, the higher frequency intensity variations are

restricted by limiting the number of basis functions. In the current method, a Bayesian model is

used, where it is assumed that the modulation �eld (U) has been drawn from a population for

which the a priori distribution is known, thus allowing high frequency variations of the modulation

�eld to be penalised.
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Figure 5.2: The MR images are modelled as a number of distinct clusters (top left), with di�erent

levels of Gaussian random noise added to each cluster (top right). The intensity modulation is

assumed to be smoothly varying (bottom left), and is applied as a straightforward multiplication

of the modulation �eld with the image (bottom right).
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5.2 Methods

Although a three dimensional implementation of the tissue classi�cation method has been devel-

oped, that can also be applied to multi-spectral images, the explanation of the algorithm will be

simpli�ed by describing its application to a single two dimensional image.

The tissue classi�cation model makes a number of assumptions. The �rst is that each of the

I �J voxels of the image (F) has been drawn from a known number (K) of distinct tissue classes

(clusters). The distribution of the voxel intensities within each class is normal (or multi-normal

for multi-spectral images) and initially unknown. The distribution of voxel intensities within

cluster k is described by the number of voxels within the cluster (hk), the mean for that cluster

(vk), and the variance around that mean (ck).

Because the images are matched to a particular stereotactic space, prior probabilities of the

voxels belonging to the grey matter (GM), white matter (WM) and cerebro-spinal uid (CSF)

classes are known. This information is in the form of probability images { provided by the

Montr�eal Neurological Institute (Evans et al., 1992; Evans et al., 1993; Evans et al., 1994) as part

of the ICBM, NIH P-20 project (Principal Investigator John Mazziotta). They were derived from

scans of 152 young healthy subjects (66 female and 86 male, 129 right handed, 14 left handed

and 9 unknown handedness, aged between 18 and 44, with a mean age of 25 and median age

of 24) that were segmented into binary images of GM, WM and CSF, and all normalised into

the same space using a 9 parameter (3 translations, 3 rotations and 3 orthogonal zooms) aÆne

transformation. The images were originally classi�ed using a neural network approach, and mis-

classi�ed non-brain tissue was removed by a masking procedure. The probability images are the

means of these binary images, and contain values in the range of zero to one. They represent the

a priori probability of a voxel being either GM, WM or CSF after an image has been normalised

to the same space using a 9 parameter aÆne transformation (see Figure 5.1). To increase the

stability of the classi�cation with respect to small registration errors, the prior probability images

have been convolved with an 8mm full width at half maximum Gaussian smoothing kernel. The

prior probability of a voxel at co-ordinate i; j belonging to cluster k is denoted by bijk
1.

The �nal assumption is that the intensity and noise associated with each voxel in the image

has been modulated by multiplication with an unknown smooth scalar �eld.

There are many unknown parameters to be determined by the classi�cation algorithm, and

estimating any of these requires knowledge of the others. Estimating the parameters that describe

a cluster (hk, vk and ck) relies on knowing which voxels belong to the cluster, and also the form

of the intensity modulating function. Estimating which voxels should be assigned to each cluster

requires the cluster parameters to be de�ned, and also the modulation �eld. In turn, estimating

the modulation �eld needs the cluster parameters and the belonging probabilities.

The problem requires an iterative algorithm (see Figure 5.3). It begins by assigning starting

estimates for the various parameters. The starting estimate for the modulation �eld is typically

uniformly one. Starting estimates for the belonging probabilities of the GM, WM and CSF

partitions are based on the prior probability images. Since there are no prior probability maps for

background and non-brain tissue clusters, they are estimated by subtracting the prior probabilities

1Note that ij subscripts are used for voxels rather than the single subscripts used in the previous chapters.

This is to facilitate the explanation of how the modulation �eld is estimated for 2D images as described in Section

5.2.3.
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Figure 5.3: A ow diagram for the tissue classi�cation.

for GM, WM and CSF from a map of all ones, and dividing the result equally between the

remaining clusters 2.

Each iteration of the algorithm involves estimating the cluster parameters from the non-

uniformity corrected image, assigning belonging probabilities based on the cluster parameters,

checking for convergence, and re-estimating and applying the modulation function. With each

iteration, the parameters describing the distributions move towards a better �t and the belonging

probabilities (P) change slightly to reect the new distributions. This continues until a con-

vergence criterion is satis�ed. The parameters describing clusters with corresponding a priori

probability images tend to converge more rapidly than the others. This may be partly due to the

better starting estimates. The �nal values for the belonging probabilities are in the range of 0 to

1, although most values tend to stabilise very close to one of the two extremes. The algorithm

is in fact an expectation maximisation (EM) approach, where the E-step is the computation of

the belonging probabilities, and the M-step is the computation of the cluster and non-uniformity

correction parameters. The individual steps involved in each iteration are now described in more

detail.

5.2.1 Estimating the Cluster Parameters

This stage requires the original image to be intensity corrected according to the most recent

estimate of the modulation function. Each voxel of the intensity corrected image is denoted by

gij, and the current estimate of the probability of voxel i; j belonging to class k is denoted by

pijk. The �rst step is to compute the number of voxels (h) belonging to each of the K clusters

2Where identical prior probability maps are used for more than one cluster, the a�ected cluster parameters

need to be modi�ed slightly. This is typically done after the �rst iteration, by assigning di�erent values for the

means uniformly spaced between zero and the intensity of the white matter cluster.
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as:

hk =
IX
i=1

JX
j=1

pijk over k = 1::K. (5.1)

Mean voxel intensities for each cluster (v) are computed. This step e�ectively produces a

weighted mean of the image voxels, where the weights are the current belonging probability

estimates:

vk =

PI
i=1

PJ
j=1 pijkgij

hk
over k = 1::K: (5.2)

Then the variance of each cluster (c) is computed in a similar way to the mean:

ck =

PI
i=1

PJ
j=1 pijk(gij � vk)

2

hk
over k = 1::K. (5.3)

5.2.2 Assigning Belonging Probabilities

The next step is to to re-calculate the belonging probabilities. It uses the cluster parameters com-

puted in the previous step, along with the prior probability images and the intensity modulated

input image. Bayes rule is used to assign the probability of each voxel belonging to each cluster:

pijk =
rijksijkPK

l=1 rijlsijl
over i = 1::I, j = 1::J and k = 1::K. (5.4)

where pijk is the a posteriori probability that voxel i; j belongs to cluster k given its intensity of

gij, rijk is the likelihood of a voxel in cluster k having an intensity of gik, and sijk is the a priori

probability of voxel i; j belonging in cluster k.

The likelihood function is obtained by evaluating the probability density functions for the

clusters at each of the voxels:

rijk = (2�ck)
�1=2 exp

��(gij � vk)2

2ck

�
over i = 1::I, j = 1::J and k = 1::K. (5.5)

The prior (sijk) is based on two factors: the number of voxels currently belonging to each

cluster (hk), and the prior probability images derived from a number of images (bijk). With no

knowledge of the a priori spatial distribution of the clusters or the intensity of a voxel, then the

a priori probability of any voxel belonging to a particular cluster is proportional to the number

of voxels currently included in that cluster. However, with the additional data from the prior

probability images, a better estimate for the priors can be obtained:

sijk =
hkbijkPI

l=1

PJ

m=1 blmk
over i = 1::I, j = 1::J and k = 1::K. (5.6)

Convergence is ascertained by following the log-likelihood function:

IX
i=1

JX
j=1

log

 
KX
k=1

rijksijk

!
(5.7)

The algorithm is terminated when the change in log-likelihood from the previous iteration becomes

negligible.
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5.2.3 Estimating and Applying the Modulation Function

To reduce the number of parameters describing an intensity modulation �eld, it is modelled by a

linear combination of low frequency discrete cosine transform (DCT) basis functions (see Section

3.2.3), which were chosen because there are no constraints at the boundary. The sensitivity

correction �eld is computed by estimating the coeÆcients (q) of the DCT basis functions that

minimise the weighted sum of squared di�erences between the data and the model, and also a

penalty function based on the smoothness of the modulation �eld. This can be expressed using

matrix terminology as a regularised weighted least squares �tting:

q =
�
A1

TA1 +A2

TA2 � � �+C0

�1
��1 �

A1

Tb1 +A2

Tb2 � � �+C0

�1q0
�

(5.8)

where q0 and C0 are the means and covariance matrices describing the a priori distribution of

the coeÆcients. Matrix Ak and column vector bk are constructed for cluster k from:

Ak = diag
�
pkc

�1=2
k

�
diag (f )D and bk = pkc

�1=2
k vk (5.9)

where matrixD contains the two or three dimensional DCT basis functions, and pk refers to the

belonging probabilities for the kth cluster considered as a column vector. Image F is similarly

considered as a column vector f . This model aims to �nd the smooth modulating function

(described by its DCT coeÆcients), that will bring the voxel intensities of each cluster as close

as possible (in the least squares sense) to the cluster means, where the vectors pkc
�1=2
k are voxel

by voxel weighting functions.

A two (or three) dimensional discrete cosine transform (DCT) is performed as a series of one

dimensional transforms, which are simply multiplications with the DCT matrix. The elements of

a matrix (D) for computing the �rst M coeÆcients of the one dimensional DCT of a vector of

length I is given by:

di1 =
1p
I
i = 1::I

dim =
q

2
I
cos
�
�(2i�1)(m�1)

2I

�
i = 1::I;m = 2::M (5.10)

The matrix notation for computing the �rst M �N coeÆcients of the two dimensional DCT

of a modulation �eld U is Q = D1

TUD2, where the dimensions of the DCT matrices D1 and

D2 are I �M and J �N respectively, and U is an I � J matrix. The approximate inverse DCT

is computed by U ' D1QD2

T . An alternative representation of the two dimensional DCT is

obtained by reshaping the I � J matrix U so that it is a vector (u). Element i + (j � 1)� I of

the vector is then equal to element i; j of the matrix. The two dimensional DCT can then be

represented by q = DTu, where D = D2 
D1 (the Kronecker tensor product of D2 and D1),

and u ' Dq.

Computing Ak

TAk and Ak

Tbk could be potentially very time consuming, especially when

applied in three dimensions. However, this operation can be greatly speeded up using the prop-

erties of Kronecker tensor products (see Chapter 3). Figure 5.4 shows how this can be done in

two dimensions using Matlab as a form of pseudo-code.

The Prior Probability Distribution

In Eqn. 5.8, q0 and C0 represent a multi-normal a priori probability distribution for the basis

function coeÆcients. The mean of the a priori distribution is such that it would generate a �eld
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alpha_k = zeros(M*N,M*N);

beta_k = zeros(M*N,1);

weight = P_k*(c_k^(-0.5));

img1 = weight.*F;

img2 = weight*v_k;

for j = 1:J,

tmp = (img1(:,j)*ones(1,M)).*D1;

alpha_k = alpha_k + kron(D2(j,:)'*D2(j,:), tmp'*tmp);

beta_k = beta_k + kron(D2(j,:)', tmp'*img2(:,j));

end;

Figure 5.4: The algorithm for computing Ak

TAk (alpha k) and Ak

Tbk (beta k) in two dimen-

sions using Matlab as a pseudocode (c.f., Figure 3.5). The symbol \�" refers to matrix multiplica-

tion, whereas \:�" refers to element by element multiplication. \ 0 " refers to a matrix transpose

and \^" to a power. The jth row of matrix \D2" is denoted by \D2(j; :)", and the jth column

of matrix \img2" is denoted by \img2(:; j)". The functions \zeros(a; b)" and \ones(a; b)" would

produce matrices of size a�b of either all zero or all one. A Kronecker tensor product of two

matrices is represented by the \kron" function. Matrix \F" is the I�J non-uniformity corrected

image. Matrix \P k" is the I � J current estimate of the probabilities of the voxels belonging to

cluster k. Matrices \D1" and \D2" contain the DCT basis functions, and have dimensions I�M

and J � N . \v k" and \c k" are scalers, and refer to the mean and variance of the kth cluster.

that is uniformly one. For this, all the elements of the mean vector are set to zero, apart from

the �rst element that is set to
p
IJ .

The covariance matrix C0 is such that (q � q0)TC0

�1(q � q0) produces an \energy" term

that penalises modulation �elds that would be unlikely a priori. There are many possible forms

for this penalty function (see Section 3.2.4). Some widely used simple penalty functions include

the \membrane energy" and the \bending energy", which (in three dimensions) have the forms

h =
P

i

P3
j=1 �

�
@u(xi)

@xji

�2
and h =

P
i

P3
j=1

P3
k=1 �

�
@2u(xi)

@xji@xki

�2
respectively. In these formulae,

@u(xi)

@xji
is the gradient of the modulating function at the ith voxel in the jth orthogonal direc-

tion, and � is a user assigned constant. However, for the purpose of modulating the images, a

smoother cost function is used that is based on the squares of the third derivatives (third order

regularisation):

h =
X
i

3X
j=1

3X
k=1

3X
l=1

�

�
@3u(xi)

@xji@xki@xli

�2

(5.11)

This model was chosen because it produces slowly varying modulation �elds that can represent

the variety of non-uniformity e�ects that are likely to be encountered in MR images (see Figure

5.5). In two dimensions it can be computed from:

C0

�1 = �
� ...
D2

T ...
D2

�


�
D1

TD1

�
+ 3�

�
�D2

T
�D2

�


�
_D1

T
_D1

�
+

3�
�
_D2

T _D2

�


�
�D1

T �D1

�
+ �

�
D2

TD2

�


� ...
D1

T ...
D1

� (5.12)

where the notation _D1, �D1 and
...
D1 refer to the �rst, second and third derivatives (by di�er-

entiating Eqn. 5.10 with respect to i) of D1, and � is a user speci�ed hyper-parameter.
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Figure 5.5: Randomly generated modulation �elds generated using the membrane energy cost

function (left), the bending energy cost function (centre) and the squares of the third derivatives

(right). These can be referred to as 1st, 2nd and 3rd order regularisation.

Applying the Correction

Finally, once the coeÆcients have been estimated, then the modulation �eld U can be computed

from the estimated coeÆcients (Q) and the basis functions (D1 and D2).

uij =
NX
n=1

MX
m=1

d2jnqmnd1im over i = 1::I and j = 1::J . (5.13)

The new estimate for the sensitivity corrected images are then obtained by a simple element by

element multiplication with the modulation �eld.

gij = fijuij over i = 1::I and j = 1::J . (5.14)

5.3 Evaluation

In order to provide a qualitative example of the classi�cation, Figure 5.6 shows a single sagittal

slice through six randomly chosen T1-weighted images. The initial registration to the prior

probability images was via the 12-parameter aÆne transformation described in Section 3.2.2. The

images were automatically classi�ed using the method described here, and contours of extracted

grey and white matter are shown superimposed on the images.

Tissue classi�cation was also evaluated using a number of simulated images (181� 217� 181

voxels of 1� 1� 1 mm) of the same brain generated by the BrainWeb simulator (Cocosco et al.,

1997; Kwan et al., 1996; Collins et al., 1998) with 3% noise (relative to the brightest tissue in the

images). The contrasts of the images simulated T1-weighted, T2-weighted and proton density

(PD) images (all with 1.5 Tesla �eld strength), and they were classi�ed individually and in a

multi-spectral manner 3. The T1-weighted image was simulated as a spoiled FLASH sequence,
3Note that di�erent modulation �elds that account for non-uniformity were assumed for each image of the

multi-spectral data-sets.
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Figure 5.6: A single sagittal slice through six T1-weighted images (2 Tesla scanner, with an

MPRAGE sequence, 12o tip angle, 9.7ms repeat time, 4ms echo time and 0.6ms inversion time).

Contours of extracted grey and white matter are shown superimposed on the images.
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Figure 5.7: The classi�cation of the simulated BrainWeb image. The top row shows the original

simulated T1-weighted MR image with 100% non-uniformity, and the non-uniformity corrected

version. From left to right, the middle row shows the a priori spatial distribution of grey matter

used for the classi�cation, grey matter extracted without non-uniformity correction, grey matter

extracted with non-uniformity correction and the \true" distribution of grey matter (from which

the simulated images were derived). The bottom row is the same as the middle, except that it

shows white matter rather than grey. Without non-uniformity correction, the intensity variation

causes some of the white matter in posterior areas to be classi�ed as grey. This was also very

apparent in the cerebellum because of the intensity variation in the inferior-superior direction.
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with a 30o ip angle, 18ms repeat time, 10ms echo time. The T2 and PD images were simulated

by a dual echo, spin echo technique, with 90o ip angle, 3300ms repeat time and echo times of

35 and 120ms. Three di�erent levels of image non-uniformity were used: 0%RF - which assumes

that there is no intensity variation artifact, 40%RF - that assumes a fairly typical amount of non-

uniformity, and 100%RF which is more non-uniformity than would normally be expected. The

simulated images were classi�ed, both with and without sensitivity correction. Three partitions

were considered in the evaluation: grey matter, white matter and other (not grey or white), and

each voxel was assigned to the most likely partition. Because the data from which the simulated

images were derived was available, it was possible to compare the classi�ed images with ground

truth images of grey and white matter using the � statistic (a measure of inter-rater agreement):

� =
po � pe

1� pe
(5.15)

where po is the observed proportion of agreement, and pe is the expected proportion of agreements

by chance. If there are N observations in K categories, the observed proportional agreement is:

po =
KX
k=1

fkk=N (5.16)

where fkk is the number of agreements for the kth category. The expected proportion of agree-

ments is given by:

pe =
KX
k=1

rkck=N
2 (5.17)

where rk and ck are the total number of voxels in the kth class for both the \true" and estimated

partitions.

The classi�cation of a single plane of the simulated T1 weighted BrainWeb image with the

100% non-uniformity is illustrated in Figure 5.7. It should be noted that no pre-processing

to remove scalp or other non-brain tissue was performed on the image. In theory, the tissue

classi�cation method should produce slightly better results if this non-brain tissue is excluded

from the computations. As the algorithm stands, a small amount of non-brain tissue remains in

the grey matter partition, which has arisen from voxels that lie close to grey matter and have

similar intensities.

The resulting � statistics from classifying the di�erent simulated images are shown in table

5.1. These results show that the non-uniformity correction made little di�erence to the tissue

classi�cation of images without any non-uniformityartifact. For images containing non-uniformity

artifact, classi�cations using the correction were of about the same quality as the classi�cations

without the artifact, and very much better than classi�cations without the correction. These

results show the same general trends as the results presented by Van Leemput et. al. (1999b).

The � statistics by themselves do not really provide much intuition about the quality of the

segmentation. As a guide, the segmentations shown in Figure 5.7 produced � values of 0.85 and

0.94.

A by-product of the classi�cation is the estimation of an intensity non-uniformity �eld. Figure

5.8 shows a comparison of the intensity non-uniformity present in a simulated T1 image with 100%

non-uniformity (created by dividing noisless simulated images with 100% non-uniformity and no
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non-uniformity) with that recovered by the classi�cation method. A scatter-plot of \true" versus

recovered non-uniformity shows a straight line, suggesting that the accuracy of the estimated

non-uniformity is very good.

5.3.1 Stability With Respect to Misregistration with the Prior Proba-

bility Images

In order for the Bayesian classi�cation to work properly, an image volume must be in register with

a set of a priori probability images used to instate the priors. Here the e�ects of misregistration on

the accuracy of segmentation are examined, by arti�cially translating (in the left-right direction)

the prior probability images by di�erent distances prior to segmenting the image. The 1mm slice

thickness, 40% non-uniformity, and 3% noise simulated T1-weighted image (described above) was

used for the classi�cation, which included the non-uniformity correction. The � statistic was

computed with respect to the \true" grey and white matter for the di�erent translations, and the

results are plotted in Figure 5.9.

In addition to illustrating the e�ect of misregistration, the �gure also gives an indication

of how far a brain can deviate from the normal population of brains (that constitute the prior

probability images) in order for it to be segmented adequately. Clearly, if the brain cannot be

well registered with the probability images, then the segmentation will not be as accurate. This

fact also has implications for severely abnormal brains, as they are more diÆcult to register with

images that represent the prior probabilities of voxels belonging to di�erent classes. Segmenting

such abnormal brains can be a problem for the algorithm, as the prior probability images are

based on normal healthy brains. The pro�le in Figure 5.9 depends on the smoothness or resolution

of the prior probability images. By not smoothing the prior probability images, the segmentation

would be optimal for normal, young and healthy brains. However, these images may need to be

smoother in order to encompass more variability when patient data are to be analysed.

5.4 Discussion

The segmentation method has been found to be robust and accurate for high quality T1 weighted

images, but is not beyond improvement. Currently, each voxel is assigned a probability of be-

longing to a particular tissue class based only on its intensity and information from the prior

probability images. There is a great deal of other knowledge that could be incorporated into

the classi�cation. For example, if all a voxel's neighbours are grey matter, then there is a high

probability that it should also be grey matter. Other researchers have successfully used Markov

random �eld models to include this information in a tissue classi�cation model (Yan & Karp,

1995; Vandermeulen et al., 1996; Van Leemput et al., 1999b). Another very simple prior, that

can be incorporated, is the relative intensity of the di�erent tissue types. For example, when seg-

menting a T1 weighted image, it is known that the white matter should have a higher intensity

than the grey matter, which in turn should be more intense than the CSF. When computing the

means for each cluster, this prior information could sensibly be used to bias the estimates.

In order to function properly, the classi�cation method requires good contrast between the

di�erent tissue types. However, many central grey matter structures have image intensities that
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Single image Multi-spectral

T1 T2 PD T2/PD T1/T2 T1/PD T1/T2/PD

0%RF - uncorreced 0.95 0.90 0.90 0.93 0.94 0.96 0.94

0%RF - corrected 0.95 0.90 0.90 0.93 0.94 0.96 0.95

40%RF - uncorreced 0.92 0.88 0.79 0.90 0.93 0.95 0.94

40%RF - corrected 0.95 0.90 0.90 0.93 0.94 0.96 0.94

100%RF - uncorrected 0.85 0.85 0.67 0.87 0.92 0.94 0.93

100%RF - corrected 0.94 0.90 0.88 0.92 0.93 0.95 0.94

Table 5.1: This table shows the di�erent � statistics that were computed after classifying the

simulated images.
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Figure 5.8: Top Left: The true intensity non-uniformity �eld of the simulated T1 image. Top

Right: The non-uniformity recovered by the classi�cation algorithm. Below Left: The recovered

divided by the true non-uniformity. Below Right: A scatter-plot of true intensity non-uniformity

versus recovered non-uniformity, derived from voxels throughout the whole volume classi�ed as

either white or grey matter. Note that the plot is a straight line, but that its gradient is not one

because it is not possible to recover the absolute scaling of the �eld.
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Figure 5.9: Segmentation accuracy with respect to misregistration with the a priori images.

are almost indistinguishable from that of white matter, so the tissue classi�cation is not always

very accurate in these regions. Another related problem is that of partial volume. Because the

model assumes that all voxels contain only one tissue type, the voxels that contain a mixture of

tissues may not be modelled correctly. In particular, those voxels at the interface between white

matter and ventricles will often appear as grey matter. This can be seen to a small extent in

Figures 5.6 and 5.7. Each voxel is assumed to be of only one tissue type, and not a combination

of di�erent tissues, so the model's assumptions are violated when voxels contain signal from more

than one tissue type. This problem is greatest when the voxel dimensions are large, or if the

images have been smoothed, and is illustrated using simulated data in Figure 5.10. The e�ect

of partial volume is that it causes the distributions of the intensities to deviate from normal.

Some authors have developed more complex models to describe the intensity distributions of

the classes. For example, each non-Gaussian distribution could be modelled by a mixture of

Gaussians. An alternative approach is to use logistic discriminant analysis to parameterise a

function that best distinguishes between the classes (Bullmore et al., 1995). In this approach, a

training set consisting of voxels belonging to each class is �rst identi�ed. From this training set,

the discriminant functions are optimised so that they best distinguish between the classes, before

being applied to the whole image. In theory, it may be possible to extend the method so that it

uses an EM approach similar to that described in this chapter.

The incorporation of prior probability images into the clustering algorithm produces a much

more robust solution when segmenting brains from a similar population to those from which the

spatial priors were derived (refer to Section 5.3.1). However, for severely abnormal brains, the

priors may not be representative, and this can lead to problems. For example, if a subject has

very large ventricles, then CSF may appear where the priors suggest that tissue should always be

WM. These CSF voxels are forced to be misclassi�ed as WM, and the intensities of these voxels

are incorporated into the computation of the WM means and variances. This results in the WM

being characterised by a very broad distribution, so the algorithm is unable to distinguish it
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Figure 5.10: Simulated data showing the e�ects of partial volume on the intensity histograms. On

the upper left is a simulated image consisting of three distinct clusters. The intensity histogram

of this image is shown on the lower left and consists of three Gaussian distributions. The image

at the top right is the simulated image after a small amount of smoothing. The corresponding

intensity histogram no longer shows three distinct Gaussian distributions.
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from any other tissue. For young healthy subjects, the classi�cation is very good, but caution is

required when the method is used for severely pathological brains.

MR images are normally reconstructed by taking the modulus of complex images. Normally

distributed complex values are not normally distributed when the magnitude is taken. Instead,

they obey a Rician distribution. This means that any clusters representing the background are

not well modelled by a single Gaussian, but it makes very little di�erence for most of the other

clusters.

The segmentation is normally run on unprocessed brain images, where non-brain tissue is

not �rst removed. This results in a small amount of non-brain tissue being classi�ed as brain.

However, by using morphological operations on the extracted GM andWM segments, it is possible

to remove most of this extra tissue. The procedure begins by eroding the extracted WM image,

so that any small specs of misclassi�ed WM are removed. This is followed by conditionally

dilating the eroded WM, such that dilation can only occur where GM and WM were present in

the original extracted segments. Although some non-brain structures (such as part of the sagittal

sinus) may remain after this processing, most non-brain tissue is removed. Figure 5.11 shows

how the GM and WM partitions can be cleaned up using this procedure, and surface rendered

images of brains automatically extracted this way are shown in Figure 4.18. When applied to

the segmented simulated T1 weighted image with 3% noise and no nonuniformity artifact, this

cleanup procedure increased � by 0.001.
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Figure 5.11: Example of automatically cleaned up segmented images. The top row shows the

original T1 weighted MR image, next to an automatically generated mask of brain derived from

the initial grey and white matter partitions. The second row shows the initial extracted grey and

white matter. The bottom row shows the grey and white matter partitions after cleaning up by

multiplying with the brain mask.


