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6.1 Introduction

Studies of brain morphometry have been carried out by many researchers on a number of di�er-

ent populations, including patients with schizophrenia, autism, dyslexia and Turner's syndrome.

Often, the morphometric measurements used in these studies have been obtained from brain

regions that can be clearly de�ned, resulting in a wealth of �ndings pertaining to these partic-

ular measurements. The measures are typically volumes of unambiguous structures such as the

hippocampi or the ventricles. However, there are a number of morphometric features that may

be more diÆcult to quantify by inspection, meaning that many observable structural di�erences

may be overlooked. This chapter describes morphometric approaches that are not biased to one

particular structure or tissue and give even-handed and comprehensive assessments of anatomical

di�erences throughout the brain.
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Morphometric methods have a number of di�erent aims. They can be used for localising

signi�cant structural di�erences among populations, or for showing that overall brain structure is

related to some e�ect of interest. When testing the overall brain structure, multivariate statistical

methods are used to analyse groups of parameters for the whole brain (e.g., the deformation-based

morphometry described in this chapter). The result of the forms of morphometry that localise

structural di�erences would typically be a statistical parametric map (Friston et al., 1995d) of

regional di�erences. Statistical parametric maps (SPMs) can be derived from uni-variate data

where there is a single variable at each voxel (e.g., the voxel-based morphometrymethod described

here), or from multi-variate data, where there are several di�erent variables at each voxel (e.g.,

tensor-based morphometry).

Another use for morphometric methods is for characterising essential di�erences, or for pro-

ducing some form of classi�cation. Linear methods such as canonical correlation analysis, or

nonlinear classi�cation methods can be used for these purposes. This chapter will be restricted

to simple linear classi�cation methods, which model data as multivariate normal distributions.

Nonlinear classi�cation methods can assume more complex distributions for the data, but they

tend to be much more computationally expensive.

Statistical tests generally involve disproving a null hypothesis with a particular level of con-

�dence. In morphometry, the null hypothesis is usually that there are no signi�cant structural

di�erences among a number of populations, or due to particular covariates, such as age. The

objective of the tests is to demonstrate improbability of the null hypothesis. For example, if p

values of less than 0.01 are deemed to be signi�cant, then false positive results would be expected

only about once out of a hundred tests.

SPMs of univariate statistical measures often allow relatively simple questions to be addressed,

such as where is there signi�cantly more of a particular measure, that happens to correlate with a

particular e�ect of interest. Standard parametric statistical procedures (t-tests and F-tests) can

be used to test the hypotheses within the framework of the general linear model (LM), whereby

a vector of observations is modelled by a linear combination of user speci�ed regressors (Friston

et al., 1995d). The LM is a exible framework that allows many di�erent tests to be applied,

ranging from group comparisons and identifying di�erences that are related to speci�ed covariates

such as disease severity or age, to complex interactions between di�erent e�ects of interest.

Performing comparisons at each voxel results in many statistical tests being performed. With-

out any correction, the number of false-positive results would be proportional to the number of

independent tests. A Bonferroni correction would be applied if the tests were independent, but

this is not normally the case because of the inherent spatial smoothness of the data. In practice,

the e�ective number of independent statistical tests is determined using Gaussian Random Field

(GRF) theory (Friston et al., 1995b; Worsley et al., 1996). By using GRF theory, a correction

for multiple dependent comparisons can be made to produce the appropriate rate of false-positive

results.

SPMs can also be obtained from the results of voxel-wise multi-variate tests. Instead of one

image per subject, multivariate tests e�ectively involve two or more images, and use a statistic

such as Wilk's �. Following the tests, similar corrections based on GRF theory can be applied

as in the univariate case. GRF theory has not yet been worked out for Wilk's � �elds, so

approximations are made that involve transforming the resulting Wilk's � �elds to random �elds
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of other statistics, such as �2 or F �elds. Subsequent processing assumes that the transformed

�elds have the same properties as true �2 or F �elds.

There now follows a description of how multivariate statistical tests can be performed using

Multivariate Analysis of Covariance. These can be used to produce SPMs that localise structural

di�erences, or can be applied to sets of parameters describing whole brains. This is followed by a

brief description of how di�erences between groups can be characterised by multivariate methods.

The remainder of the chapter will describe three di�erent morphometric methods: voxel-based,

deformation-based and tensor-based morphometry.

6.1.1 Multivariate Analysis of Covariance

A multivariate analysis of covariance (MANCOVA) assumes that there are several dependent

variables for each observation, where an observation refers to a collection of data for a subject.

This data can be represented by an M � I matrix X, where M is the number of subjects in the

analysis, and I is the number of variables for each subject.

The columns of X are modelled by linear combination of basis functions. Some of these

basis functions represent e�ects that are not considered interesting in the study, but may still be

signi�cant. For example, linear age e�ects may confound a study of handedness. If a left-handed

group is not perfectly age matched with a right-handed group, then di�erences due to age could

be attributed to handedness di�erences. In addition, the inclusion of confounding e�ects (such as

age) in a model can result in a better �t to the data, and possibly make the test more sensitive

to the e�ects of interest.

Confounding e�ects are modelled by an M �K design matrixG. Each column of G can be a

vector of covariates (e.g., the age of each subject), or alternatively can be arranged in blocks (e.g.,

there may be a column containing ones for left-handed subjects, and zeros for right-handed). In

almost all cases, a column of ones is included in order to model a mean e�ect. First of all, any

variance in the data that could be attributed to the confounds is removed by:

Xa = X�G
�
GTG

�
�1
GTX (6.1)

Similarly, the e�ects of interest are modelled by an M � J design matrix Y. The columns

of Y can represent group memberships, where elements contain a one for subjects who are in

a particular group, or a zero if they do not. Alternatively, the columns may contain covariates

of interest such as disease severity for each subject. The columns in this design matrix are

orthogonalised with respect to matrix G:

Ya = Y �G
�
GTG

�
�1
GTY (6.2)

A MANCOVA involves assessing how the predictability of the observations change when the

e�ects of interest are discounted. This is based on the distributions of the residuals, which are

assumed to be multinormal. The statistic is related to the determinants of the covariance matrices

describing these distributions. In practice, the residual sum of squares and products (SSP) matrix

(W), is compared to the SSP matrix of the �tted e�ects (B). These matrices are obtained by:

T = Ya(Ya

TYa)�1Ya

TXa
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B = TTT

W = (Xa �T)T (Xa � T) (6.3)

The statistic is called Wilk's Lambda (�), and is based upon the ratios of the determinants:

� =
jWj

jB+Wj (6.4)

The Wilk's Lambda statistic can range between zero and one, where a value of one suggests no

relationship between the e�ects of interest and the data, and a value of zero indicates a perfect

relationship. This statistic is transformed to a �2 statistic (with IJ degrees of freedom under the

null hypothesis) using the approximation of Bartlett 1:

�
2 � �(M �K � (I + J + 1)=2)loge(�) (6.5)

Finally, the cumulative �2 distribution function is used to make inferences about whether the

null hypothesis (that there is no di�erence between the distributions) can be rejected.

This multivariate approach fails when the number of variables approaches the number of

subjects (M � K � (I + J + 1)=2 approaches zero, or becomes negative). In many situations,

it is necessary to regularise the problem by reducing the number of variables with respect to

the number of subjects. One way of doing this involves using singular value decomposition to

decompose the original data matrix X into unitary matrices U and V, and diagonal matrix S,

such that X = USVT . The diagonal elements of S are arranged in decreasing importance, so

it is possible to reconstruct an approximation of X using only the �rst L diagonal elements of

S and the �rst L columns of U and V, such that X ' U�S�V�T . The MANCOVA would be

performed using U� (the �rst L columns of U).

6.1.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is used to measure the strength of association between

two sets of variables. In this case, the variables are Xa and Ya, which are the data and design

matrix from Section 6.1.1 after having been orthogonalised with respect to a set of confounding

e�ects. The �rst canonical variate pair is the linear combination of columns of Xa and the

linear combination of columns of Ya, that has the maximum correlation. The second canonical

variate pair consists of linear combinations that maximise the correlation subject to the constraint

that they are orthogonal to the �rst pair of canonical variables. Similarly, all subsequent pairs

maximise the correlations and are orthogonal to all the previous pairs.

The weights used to determine the linear combinations are derived from the unitary matrices

(U and V) obtained by singular value decomposition:

USVT =
�
Xa

TXa

�
�

1

2

�
Xa

TYa

��
Ya

TYa

�
�

1

2

(6.6)

Then the weights (A and B) are derived by:

A =
�
Xa

TXa

�
�

1

2

U and B =
�
Ya

TYa

�
�

1

2

V (6.7)

The canonical variate pairs are obtained from the columns of XaA and YaB.
1This is true providing the matrices do not contain any redundant columns, otherwise matrix pseudo-inverses

are required in the computations, and the numbers of columns replaced by the matrix ranks.
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Figure 6.1: This �gure illustrates canonical correlation analysis using simulated data. The two

matrices on the left are a 600 � 10 data matrix (Xa) and a 600 � 2 design matrix (Ya) after

centering by orthogonalising with respect to a column of ones as described in Equations 6.1 and

6.2. The design matrix represents a partitioning of the data into three groups. The canonical

variates for Xa and Ya are shown in the third and fourth matrices (XaA and YaB). The left-

hand columns of these two matrices contain the �rst canonical variate pair, whereas the second

pair are in the right-hand columns. The graph on the right shows the two columns of XaA

plotted against each other, where the di�erent symbols used represent memberships of the three

di�erent groups.

When the number of variables approaches the number of observations, the problem needs to

be regularised. This can be done by computing the canonical variates from data that has been

compacted using singular value decomposition as in Section 6.1.1. If X has been decomposed such

that it can be approximated by X ' U�S�V�T , and canonical correlation analysis performed on

U� and Y to give weight matrices A� and B�, then the weights to be applied to the original data

(X) can be reconstructed by V�S��1A�.

Figure 6.1 shows CCA as it would be used to graphically describe the di�erential features

of three groups. However, it can also be used to aid classi�cation. Once derived, the same

weighting matrix (A) can be applied to new data-sets that were not involved in its derivation.

If there are only two groups involved in a study, then CCA can be used directly to assign group

memberships to new observations2. With more groups, CCA serves as a graphical aid for assigning

new observations to the groups.

6.2 Voxel-Based Morphometry

A number of studies have already demonstrated structural brain di�erences among di�erent

patient populations using the technique of voxel-based morphometry (VBM) (Wright et al., 1995),

or a related method that involves parcelling the images into di�erent regions (Goldszal et al.,

1998). This section summarises the procedures involved in VBM, and provides evaluations of its

statistical component.

2Providing that the signs of the canonical variates are adjusted accordingly.
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6.2.1 Methods

Voxel-based morphometry of MRI data involves spatially normalising all the the subjects' images

to the same stereotactic space, extracting the grey matter from the normalised images, smoothing,

and �nally performing a statistical analysis to localise, and make inferences about, group di�er-

ences. The output from the method is an SPM showing regions where grey matter concentration

di�ers signi�cantly among the groups.

Spatial Normalisation

Spatial normalisation involves transforming all subjects' data to the same stereotactic space. This

is achieved by registering each image to the same template image by minimising the residual sum

of squared di�erences between them according to the methods described in Chapter 3. It should be

noted that this method of spatial normalisation does not attempt to match every cortical feature

exactly, but merely accommodates di�erences in global brain shape. If the spatial normalisation

was perfectly exact, then all the segmented images would appear identical and no signi�cant

di�erences could be detected: VBM tries to detect di�erences in the regional concentration of

grey matter at a local scale, having discounted global shape di�erences.

It is important that the quality of the registration is as high as possible, and that the choice

of template image does not bias the �nal solution. An ideal template consists of the average

of a large number of MR images that have been registered to within the accuracy of the spatial

normalisation technique. The spatially normalised images should have a relatively high resolution

(1mm or 1.5mm isotropic voxels), so that the grey matter extraction method is not excessively

confounded by partial volume e�ects, where voxels contain a mixture of di�erent tissue types.

Image Partitioning

The spatially normalised images are then partitioned into grey matter (GM), white matter (WM),

cerebro-spinal uid (CSF), and three other background classes, using the tissue classi�cation

technique described in Chapter 5.

Smoothing the Grey Matter Segments

The grey matter images are now smoothed by convolving with an isotropic Gaussian kernel. This

makes the subsequent voxel by voxel analysis comparable to a region of interest approach, because

each voxel in the smoothed images contains the average concentration of grey matter from around

the voxel (where the region around the voxel is de�ned by the form of the smoothing kernel). This

is often referred to as \grey matter density", but should not be confused with cell packing density

measured cytoarchitectonically. It will be referred to as \concentration" to avoid confusion. By

the central limit theorem, smoothing also has the e�ect of rendering the data more normally

distributed, thus increasing the validity of parametric statistical tests. Whenever possible, the

size of the smoothing kernel should be comparable to the size of the expected regional di�erences

between the groups of brains. The smoothing step also helps to compensate for the inexact nature

of the spatial normalisation.
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Logit Transform (optional)

In e�ect, each voxel in the smoothed image segments represents the local GM concentration

(between zero and one). Often, prior to performing statistical tests on measures of concentration,

the data are transformed using the logit transformation in order to render them more normally

distributed. The logit transformation of a concentration p is given by:

logit(p) = log
e

�
p

1� p

�
(6.8)

For concentrations very close to either one or zero, it can be seen that the logit transform

rapidly approaches in�nite values. Because of this instability, it is advisable to exclude voxels

from subsequent analyses that are too close to one or other extreme. An alternative method of

analysis involves using logistic regression within the framework of the generalised linear model

(GLM) (Taylor et al., 1998), but this is beyond the scope of this chapter as it requires iterative

re-weighted least-squares methods. Whether or not the logit transform is a necessary processing

step for VBM will be addressed later.

Statistical Analysis

Statistical analysis using the general linear model (LM) is used to identify regions of grey matter

concentration that are signi�cantly related to the particular e�ects under study (Friston et al.,

1995d). The LM is a exible framework that allows many di�erent tests to be applied, ranging

from group comparisons and identi�cation of regions of grey matter concentration that are related

to speci�ed covariates such as disease severity or age, to complex interactions between di�erent

e�ects of interest. Standard parametric statistical procedures (t-tests and F-tests) are used to

test the hypotheses, so they are valid providing the residuals, after �tting the model, are inde-

pendent and normally distributed. If the statistical model is appropriate there is no reason why

the residuals should not be independent, but there are reasons why they may not be normally

distributed. The original segmented images contain values between zero and one, where most of

the values are very close to either of the extremes. Only by smoothing the segmented images

does the behaviour of the residuals become more normally distributed.

Following application of the LM, the signi�cance of any di�erences is ascertained using GRF

theory (Friston et al., 1995b; Worsley et al., 1996). A voxel-wise statistical parametric map

(SPM) comprises the result of many statistical tests, so it is necessary to correct for multiple

dependent comparisons.

6.2.2 Evaluations

A number of assumptions need to hold in order for VBM to be useful. Confounding e�ects must

be eliminated or modelled as far as possible. For example, it is not appropriate to compare two

di�erent groups if the images are acquired on di�erent scanners, or with di�erent MR sequences.

In cases such as this, any group di�erences may be attributable to scanner di�erences rather than

to the subjects themselves. Subtle but systematic di�erences in image contrast or noise can easily

become statistically signi�cant when a large number of subjects are entered in a study. An issue

of validity concerns the assumptions required by the statistical tests. For parametric tests, it is
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often important that the data are normally distributed. If the data are not well behaved, then

it is useful to know what e�ects there may be on the statistical tests. If there is doubt about

the validity of the assumptions, it is better to use a non-parametric statistical analysis (Holmes

et al., 1996; Bullmore et al., 1999).

Evaluation of the Assumptions About Normally Distributed Data

The statistics used to identify structural di�erences make the assumption that the residuals

after �tting the model are normally distributed. Statistics cannot prove that data are normally

distributed { they can only be used to disprove the hypothesis that they are normal. For normally

distributed data, a Q-Q plot of the data should be a straight line. A signi�cant deviation from a

straight line can be identi�ed by computing the correlation coeÆcient of the plot as described in

Johnson and Wichern (1998).

A Q-Q plot is a plot of the sample quantile versus the sample quantile that would be expected

if the residuals were normally distributed. Computing the sample quantile involves �rst sorting

the J residuals (after applying the appropriate corrections derived from residual forming matrix)

into increasing order (x1; x2; : : :xJ ). The inverse cumulative distribution of each of the J elements

is then computed as:

qj =
p
2erf�1

�
2
j � 3

8

J + 1
4

� 1

�
(6.9)

where erf�1 is the inverse error function. A Q-Q plot is simply a plot of q versus x, and should

be a straight line if the data in x are normally distributed. To test normality, the correlation

coeÆcient for the Q-Q plot is used to identify any signi�cant deviation from a straight line.

A lookup table is used to reject the null hypothesis if the correlation coeÆcient falls below a

particular value, given a certain sample size. However in this work, the correlation coeÆcient is

simply used as a \normality statistic", and its distribution is examined over voxels.

The data used to test the assumptions were T1 weighted MRI scans of 50 normal male

right handed subjects aged between 17 and 62 (median 26, mean 29). The structural scans

had been acquired as part of an ongoing programme of functional imaging research. The scans

were performed on a Siemens MAGNETOM Vision scanner operating at 2 Tesla. An MPRAGE

sequence was used with a 12o tip angle, 9.7ms repeat time, 4ms echo time and 0.6ms inversion

time, to generate sagittal images of the whole brain with voxel sizes of 1�1�1.5mm. The images

were spatially normalised, segmented and smoothed using a Gaussian kernel of 12mm full width

at half maximum (FWHM).

Voxel-by-voxel correlation coeÆcients of the Q-Q plots were computed over all voxels where

the mean intensity over all images was greater than 0.05. Voxels of low mean intensity were

excluded from the computations, because they would not be included in a VBM analysis. This

is because it is known that these low intensity voxels are most likely to deviate strongly from the

assumptions about normality. Q-Q plots were computed using two di�erent linear models. The

�rst model involved looking at the residuals after �tting the mean, whereas the second was more

complex, in that it also modelled the confounding e�ect of the total amount of grey matter in

each volume. Q-Q plots were computed both with and without the logit transform. Histograms

of the correlation coeÆcients were computed over the whole image (717191 voxels), along with

histograms generated from simulated Gaussian noise. These are plotted in Figure 6.2, and show
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Figure 6.2: Histogram of correlation coeÆcients taken over the whole image volumes (using a total

of 717191 voxels where the mean intensity over all images was greater than 0.05). The dotted

line is the histogram that would be expected if the data were perfectly normally distributed. The

solid line shows the histogram of the data without the logit transform, and the dashed line shows

the histogram obtained using the logit transformed data. The plot on the left is based on the

model that does not include global grey matter as a confound, whereas that on the right does

model this confounding e�ect.

that the data does deviate slightly from a normal distribution. The logit transform appeared to

make the residuals slightly more normally distributed. The normality of the residuals was also

improved by modelling the total amount of grey matter as a confounding e�ect.

Testing the Rate of False Positives using Randomisation

The previous section showed that the data are not quite normally distributed, but it does not

show how the non-normality inuences any subsequent statistics. Ultimately, we wish to protect

against false-positive results, and in this section, the frequency with which they arise is tested

(Bullmore et al., 1999). The statistics were evaluated using the same pre-processed structural

brain images of 50 subjects as were used in the previous section. The subjects were randomly

assigned, with replacement, to two groups of 12 and 38, and statistical tests performed using

SPM99 (Wellcome Department of Cognitive Neurology, London, UK) to compare the groups.

The particular numbers in the groups were chosen as many studies typically involve comparing

about a dozen patients with a larger group of control subjects. This was repeated a total of 50

times, looking for both signi�cant increases and decreases in the grey matter concentration of

the smaller group. The end result is a series of 100 statistical parametric parametric maps of the

t-statistic.

Within each of these SPMs, the local maxima of the t-statistic �elds were corrected for the

number of dependent tests performed, and a p value assigned to each (Friston et al., 1995b;

Worsley et al., 1996). Using a corrected threshold3 of p=0.05, one would expect about �ve

3A suÆciently smooth random �eld can be thresholded to reveal a number of distinct blobs, (more technically

known as connected components of the excursion set, and often referred to as clusters). The number of clusters

in the �eld minus the number of holes is the Euler characteristic of the excursion set. For high thresholds, the
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clusters containing p values below this threshold by chance alone. Over the 100 SPMs, there

were six clusters containing corrected p values below 0.05. The same 50 subjects were randomly

assigned to either of the two groups and the statistics performed a further 50 times, but this time

modelling the total amount of grey matter as a confounding e�ect. The results of this analysis

produced four signi�cant clusters with corrected p values below 0.05. These results suggest that

the inference procedures employed are robust to the mild deviations from normality incurred by

using smooth image partitions.

Another test available within SPM99 is based on the number of connected voxels in a cluster

de�ned by a pre-speci�ed threshold (extent statistic) (Friston et al., 1995b). In order to be valid,

this test requires the smoothness of the residuals to be spatially invariant, but this is known not

to be the case by virtue of the highly nonstationary nature of the underlying neuro-anatomy. As

noted by Worsley (1999), this nonstationary smoothness leads to inexact p values:

\The reason is simple: by chance alone, large size clusters will occur in regions where

the images are very smooth, and small size clusters will occur in regions where the

image is very rough. The distribution of cluster sizes will, therefore, be considerably

biased towards more extreme cluster sizes, resulting in more false positive clusters in

smooth regions. Moreover, true positive clusters in rough regions could be overlooked

because their sizes are not large enough to exceed the critical size for the whole region."

Corrected probability values were assigned to each cluster based on the number of connected voxels

exceeding a t value of 3.27 (spatial extent test). Approximately �ve signi�cant clusters would

be expected from the 100 SPMs if the smoothness was stationary. Eighteen signi�cant clusters

were found when the total amount of grey matter was not modelled as a confound, and fourteen

signi�cant clusters were obtained when it was. Assuming Poisson statistics, the probabilities of

obtaining this many signi�cant clusters, under the null hypothesis that the extent statistic is

valid, are 0.000001 and 0.000226 respectively. These tests con�rmed that the voxel-based extent

statistic should not be used in VBM.

Under the null hypothesis, repeatedly computed t-statistics should assume the probability

density function of the Student's t distribution. This was veri�ed using the computed t-�elds,

where each t-�eld contains 717191 voxels. Plots of the resulting histograms are shown in Figure

6.3. The top row presents distributions when global di�erences in grey matter are not removed

as a confound. Note that global variance biases the distributions of t values from any particular

comparison.

Further experiments were performed to test whether false positives occurred evenly throughout

the brain, or were more speci�c to particular regions. The tests were done on a single slice through

the same 50 subjects pre-processed brain images, but used the total count of grey matter in the

brains as a confound. Each subject was randomly assigning to two groups of 12 and 38, pixel

by pixel two-tailed t-tests were done, and locations of t-scores higher than 3.2729, or lower than

-3.2729 were recorded (corresponding to an uncorrected probability of 0.002). This procedure was

repeated 10000 times, and Figure 6.4 shows an image of the number of false positives occurring

number of holes becomes negligible, so the Euler characteristic is approximately equal to the number of clusters.

Therefore, it is possible to control the expected number of false-positive clusters arising in an SPM by choosing

an appropriate threshold. For example, a particular threshold on the random �eld could predict �ve false positive

clusters in every 100 �elds. The threshold can therefore be equated with a particular \corrected probability value"

of 0.05. Similarly, any reasonably high value in the �eld can have a corrected p value associated with it.
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Figure 6.3: Histograms of t-scores from randomly generated tests. Above: Not modelling mean

e�ect (48 degrees of freedom). Below: Modeling a mean e�ect as a confound (47 degrees of

freedom). Left: 50 histograms of t-scores testing randomly generated e�ects of interest. Centre:

the mean (i.e., cumulative distribution over all voxels and volumes) of the 50 histograms is plotted

as a solid line, and the probability density function of the Students t distribution for 47/48 degrees

of freedom is shown by the dotted line. Right: The same as centre, except plotted on a logarithmic

scale.
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Figure 6.4: Left: Mean of 50 subjects pre-processed brain images. Right: Number of false

positives occurring at each voxel at the uncorrected 0.002 level, after 10000 randomisations.

at each of the 10693 pixels. Visually, the false positives appear to be uniformly distributed.

According to the theory, the number of false positives occurring at each pixel should be 20

(10000�0.002). An average of 20.171 false positives were found, showing that the validity of

statistical tests based on uncorrected t statistics are not severely compromised.

The results from randomisation have involved comparisons between two groups of subjects.

Further evaluations are required in order to assess the rate of false positive results arising from

comparisons between single subjects and whole groups. It is expected that non-normally dis-

tributed errors may have a much more detrimentel e�ect on these types of parametric tests (see

Section 6.4).

6.3 Deformation Based Morphometry

This section introduces a di�erent technique for characterising di�erences among structural or

anatomical brain images. The anatomical di�erences between any two brains can be expressed at

a microscopic scale (e.g., di�erences in cytoarchitectonics or myeloarchitectonics), at a mesoscopic

scale (e.g., cortical dysplasia) or at a macroscopic level (e.g., ventricular enlargement or abnormal

temporal lobe asymmetry). From the perspective of neuroimaging, di�erences at a mesoscopic

and macroscopic level are amenable to measurement. The technique described here characterises

global di�erences in macroscopic anatomy that complements voxel-based morphometry, allowing

one to examine di�erences at both mesoscopic and macroscopic scales.

Deformation-based morphometry (DBM) is a characterisation of the di�erences in the vector

�elds that describe global or gross di�erences in brain shape. These vector �elds are the defor-

mation �elds used to e�ect nonlinear variants of spatial normalisation, when one of the images is

a template that conforms to some standard anatomical space. In what follows, the deformation

�elds that map a series of images onto the same template are compared to see if there are any

systematic di�erences. Because the deformation �elds are multivariate, standard multivariate

statistical techniques are employed to estimate the nature of the di�erences and to make infer-
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ences about them. The endpoint of DBM is a p value pertaining to the signi�cance of the e�ect

and one or more canonical vectors, or deformations, that characterise their nature. These results

are obtained using multivariate analysis of covariance (MANCOVA) and canonical correlation

analysis (CCA) respectively.

In order to demonstrate the technique, a study of dimorphism in relation to handedness and

sex has been chosen. This should be seen as a vehicle to explain and illustrate how to do these

analyses.

6.3.1 Methods

High resolution structural T1 MR images were collected from 61 normal healthy volunteers. These

were all acquired on the same 2 Tesla Siemens Magnetom Vision scanner, using an MPRAGE

sequence. The resolution of the images was 1mm � 1mm � 1:5mm. The data consisted of 15

female right-handed subjects, 5 female left-handed subjects, 30 male right-handed subjects and

11 male left-handed subjects, all between the ages of 20 and 37. The scans were all acquired

as part of ongoing functional imaging projects within the department, and all subjects had no

neurological or psychiatric history.

The data were spatially normalised to the same template, and their shapes extracted from the

estimated deformations. The shapes were compacted into their most signi�cant \eigen-warps",

before multi-variate statistical analysis was performed.

Spatial Normalisation

The images were spatially normalised using the methods described in Chapter 3. The template

image consisted of an average of twelve 12-parameter aÆne registered T1 MR images of the head,

and was rendered symmetric (so it could be used to examine brain asymmetry) by averaging with

itself reected across the sagittal midplane. The MRI sequence used to generate the images that

constituted the template, was identical to that used for all the other images, thus ensuring that

more accurate registrations could be achieved.

The �rst step of the normalisation was to determine the optimum 12-parameter aÆne trans-

formation. Initially, the registration was performed by matching the whole of the head (including

the scalp) to the template. Following this, the registration proceeded by only matching the brains

together, by appropriate weighting of the template voxels (see Figure 6.5). This is a completely

automated procedure that largely discounts the confounding e�ects of skull and scalp di�erences.

The aÆne registration was followed by estimating nonlinear deformations. Each of the de-

formation �elds was described by 1176 parameters, where these represent the coeÆcients of the

deformations in three orthogonal directions. The mean of the spatially normalised images is

shown for each group in Figure 6.6. It can be seen that in terms of gross anatomy, following

normalisation, they are virtually indistinguishable.
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Figure 6.5: The template (left) and weighting image (right) used by the registration. Note that

the images have been smoothed using an 8mm FWHM isotropic Gaussian kernel in order to

facilitate the registration.

Figure 6.6: The mean of the spatially normalised images for each group: left handed females

(above left), right handed females (above right), left handed males (below left) and right handed

males (below right).
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Extracting Shape Information

Each set of spatial normalisation parameters (aÆne and nonlinear) encodes a deformation �eld

relating to the position, size and shape of the brain. For the analysis presented here, only the

information relating to the shapes of the brains was used, by removing the e�ects of size and

position.

The deformation �elds are de�ned by both nonlinear and aÆne components. In order to

proceed, it is necessary to decompose the transformation into components relating to position

and size (uninteresting components), and shape (the components of interest). In order to e�ect

this decomposition, each deformation �eld was reconstructed from its parameters. Each �eld

provides a mapping from points in the template to points in the source image, allowing the

landmark methods described by Bookstein (1997b) to be used to extract the size and positional

information. The extracted measures were such that the remaining shapes minimised the squared

Procrustes distance between the template and images. Rather than basing the procedure on a few

landmarks, all the elements of the deformation �eld corresponding to voxels within the brain were

considered (by weighting with the image shown in Figure 6.5). This involved �rst determining

translations by computing centres of mass:

�x =

PI

i=1 xiwiPI

i=1wi

�y =

PI

i=1 yiwiPI

i=1wi

(6.10)

where xi is the co-ordinate of the ith voxel of the template, yi is the location that it maps to,

and wi is the weighting for that element. The rotations were computed from the cross-covariance

matrix (C) between the elements and deformed elements (after removing the e�ects of position):

cjk /
IX

i=1

wi(xij � �xj)(yik � �yk) (6.11)

The 3� 3 matrix C was decomposed using singular value decomposition to give three matrices,

U, S and V (such that C = USVT , where U and V are unitary, and S is a diagonal matrix).

The rotation matrix (R) could then be reconstituted from these matrices by R =UVT . Finally,

moments around the centres were used to correct for relative size di�erences (z):

z =

vuutP3
j=1

P
I

i=1(xij � �xj)2wiP3
j=1

PI

i=1(yij � �yj)2wi

(6.12)

After removing the e�ects of translation, rotation and scaling from the deformation �elds, they

were then reparameterised by the lowest frequency coeÆcients of their three dimensional DCTs.

Statistical Analysis

Following this, a data matrix was generated, where each row contained the coeÆcients of the non-

linear basis functions describing the di�erence in shape between the template and each image.

For the multivariate analysis that followed, it was necessary to reduce the number of these coeÆ-

cients relative to the number of images. Singular value decomposition was used to compact this

information, such that about 96% of the variance of the nonlinear deformations was represented

by 20 parameters for each image.
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MANCOVA was used to make inferences about the e�ects of interest (i.e. provide p values). In

the simplest case of comparing two groups, the MANCOVA becomes the special case of Hotelling's

T2 test. MANCOVA does not simply tell one what the di�erence is. To characterise these

di�erences, one usually uses CCA based upon the parameters estimated by the MANCOVA.

CCA is a device that �nds the linear combination of the dependent variables (in this case the

deformations) that is maximally correlated with the explanatory variables (e.g., male vs. female).

In the simple case of one categorical explanatory variable (e.g., sex) this will be the deformation

�eld that best discriminates between males and females. Note that this is not the same as simply

subtracting the deformation �elds of two groups. This is because (i) the MANCOVA includes

the e�ects of confounds that are removed and (ii) some aspects of the deformations may be less

reliable than others (CCA gives deformations that explicitly discount error in relation to predicted

di�erences). The canonical deformations can either be displayed directly as deformation �elds,

or can be applied to some image to \caricature" the e�ect detected. In this section, both are

combined in order to illustrate the deformations more clearly.

6.3.2 Results

Tests for signi�cant di�erences between groups of subjects were performed using a MANCOVA

on the deformation parameters. A number of tests were performed, including tests relating to the

handedness of the subjects, of sexual dimorphism, looking at brain asymmetry, and interactions

among these factors.

Handedness, Sex and the Interaction Between Them

A MANCOVA testing for the e�ects of both handedness and sex simultaneously, suggested ex-

tremely signi�cant e�ects (p = 2:1�10�7). Because there were two e�ects of interest, CCA could

be used to generate a scatter-plot representing the optimum separation of the groups (see Figure

6.7) in terms of the two corresponding canonical variates. It can be seen that the �rst canon-

ical variate is mainly sensitive to the di�erences between men and women, whereas the second

discriminates between handedness.

The e�ects of sex and handedness were then tested individually, both showing signi�cant dif-

ferences (p = 0:00014 and p = 0:00020 respectively). The test for sex di�erences used handedness

as a confound and that for handedness used sex as a confound. A further test failed to show any

interaction between handedness and sex (p = 0:90). Di�erences between the groups were charac-

terised using CCA, the results of which are illustrated in Figure 6.8. These can be compared to

the di�erence between the brain shapes (after removing confounding e�ects) as shown in Figure

6.9.

The e�ect of sex can be most clearly seen in the sagittal view and suggests that men have a

more protruding occipital pole, whereas women have more prominent frontal poles. The e�ect of

handedness involves more asymmetric di�erences a�ecting predominantly the right frontal lobe

(transverse section, middle row of Figure 6.8).
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Figure 6.7: Separation of subjects using canonical correlation analysis. Right handed females

(�lled circles), left handed females (�lled squares), right handed males (empty circles) and left

handed males (empty squares).

Brain Asymmetry

Because the template used by the spatial normalisation was symmetric, it was possible to look at

left/right brain asymmetry. The coeÆcients of the DCT can be divided into those that account for

nonlinear deformations that are symmetric, and those that relate to anti-symmetric deformations.

Very signi�cant brain asymmetries were detected (p < 0:001) by testing that the coeÆcients of

the anti-symmetric warps di�ered from zero. Geschwind & Galaburda (1987) discuss many of the

asymmetries found by a number of researchers. These include the fact that the left occipital lobe

is broader and longer than that on the right, which is con�rmed in Figure 6.9. However, because

of the large amount of variability in the occipital lobes, this is not a feature of brain asymmetry

that is strongly characterised by CCA (see Figure 6.8). Another asymmetry (that was not really

con�rmed in Geschwind & Galaburda) is that the right frontal lobe is usually larger than that

on the left. However, the results obtained here contradict this �nding, in that the left frontal

lobe appears to be the larger of the two. From Figure 6.9 one can see that the magnitude of

the di�erence is relatively small, but it is still a feature that is strongly characterised by CCA.

Di�erences in asymmetry between males and females and between left and right handed subjects

were both found to be signi�cant (p = 0:026 and p = 0:0076 respectively).

In short, reliable features of asymmetry and dimorphism may not necessarily be the biggest

or most obvious. Furthermore, the approach presented here gives estimates of dimorphism that

explicitly discount di�erences due to other factors.

6.4 Tensor-Based Morphometry

The objective of tensor-based morphometry (TBM) is to localise regions of shape di�erences

among groups of brains, based on deformation �elds that map points in a template (x1; x2; x3) to

equivalent points in individual source images (y1; y2; y3). In principle, the Jacobian matrices of the

deformations (a 2nd order tensor �eld relating to the spatial derivatives of the transformation)
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Figure 6.8: Nonlinear warps that caricature a male brain (above), a right-handed brain (centre),

and natural brain asymmetry (below). These have been characterised by canonical correlation

analysis. The images of grey matter show the caricature of the deformations. Superimposed on

this is a contour from the undeformed image. The arrows show the direction of the nonlinear

warps characterised by CCA (from undeformed to deformed). In this �gure, the deformations

have been arbitrarily scaled for better visualisation. These are not the mean di�erences between

the brain shapes, but rather the di�erences that most clearly distinguish them. In it's most

general form, CCA produces a set of vectors that best partition the data according to the design

matrix. If there are multiple e�ects of interest, then there is no simple relationship between these

e�ects and the canonical variates, but with only one factor of interest (as in these examples), the

canonical variates can be directly related to the factor. In the transverse and coronal sections,

the left side of the brain is on the left side of the �gure.
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Figure 6.9: The deformation required to map from a female to male brain (above), left-handed

to right-handed brain (centre), and antisymmetric deformations from a symmetric template to

an asymmetric brain (below), all multiplied by a factor of 5. The deformations were computed

after �rst removing the e�ects of confounds, and are a direct characterisation of the parameter

estimates without referring to the errors or reliability of the di�erences (c.f., CCA).
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should be more reliable indicators of local brain shape than absolute deformations. Absolute

deformations represent positions of brain structures, rather than local shape, and need to be

quanti�ed relative to some arbitrary reference position.

6.4.1 Theory

A Jacobian matrix contains information about the local stretching, shearing and rotation involved

in the deformation, and is de�ned at each point by:

J =

2
64
@y1=@x1 @y1=@x2 @y1=@x3

@y2=@x1 @y2=@x2 @y2=@x3

@y3=@x1 @y3=@x2 @y3=@x3

3
75 (6.13)

A simple form of TBM involves comparing relative volumes of di�erent brain structures, where

the volumes are derived by taking Jacobian determinants at each point (see Figures 6.10 and 6.11).

Simple uni-variate statistics (t- or F- tests) can then be used to make inferences about regional

volume di�erences among populations. This type of morphometry is useful for studies that have

speci�c questions about whether growth or volume loss has occurred.

When many subjects are included in a study, a potentially more powerful form of TBM can

be attained using multi-variate statistics on other shape measures derived from the Jacobian

matrices. This use of multivariate statistics does not explicitly test for growth or shrinkage, but

indicates whether there is any shape di�erence. It is therefore useful when there is no clear

hypothesis about the nature of the di�erences, as may be the case when studying the e�ects of

maturation on the human brain. This form of morphometry should be able to identify shape

di�erences even when volumes are the same.

Because a Jacobian matrix encodes both local shape (zooms and shears) and orientation, it

is necessary to remove the latter before making inferences about shape. According to the polar

decomposition theorem (Ogden, 1984), a non-singular Jacobian matrix can be decomposed into

a rotation matrix (R) and a symmetric positive de�nite matrix (U or V), such that J = RU =

VR. Matrices U and V (called the right and left stretch tensors respectively) are derived by

U =
�
JTJ

�1=2
and V =

�
JJT

�1=2
. Matrix R is then given by R = JU�1 or R = V�1J.

For a purely rigid body transformation,U = V = I (the identity matrix). Similarly, if R = I,

then the deformation can be considered as pure strain. Deviations ofU or V away from I indicate

a shape change, which can be represented by a strain tensor E. Depending upon the reference

co-ordinate system, the strain tensor is referred to as either a Lagrangean or an Eulerian strain

tensor. When the strain tensor is derived from U, it is referred to as a Lagrangean strain tensor,

whereas when it is derived from V, it is Eulerian. Spatial normalisation of a series of source

images involves determining a mapping from each point in the template image, to corresponding

points in the source images. In order to compare image shapes, it is necessary to derive measures

of shape within the co-ordinate system of the template image, rather than within the di�erent

co-ordinate systems of the individual source images. Therefore, the Lagrangean framework should

be used.

For any deformation, there is a whole continuum of ways of de�ning strain tensors, based

on a parameter m. When m is non-zero, the family of Lagrangean strain tensors E are given

by E(m) = m�1 (Um � I). For the special case when m is zero, the strain tensor is given by
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Figure 6.10: This �gure illustrates warping together a pair of serial scans of the same Alzheimers

subject, using the three dimensional method presented in Chapter 4. The data were provided

by the Dementia Research Group, National Hospital for Neurology and Neurosurgery, London,

UK. From left to right, the top row shows a slice from the late scan (used as the template),

the early scan after rigid body registration followed by warping, and the early scan after rigid

registration only. The bottom row shows the di�erence between the late and early scan, with

and without warping. All images are displayed with the same intensity scaling. With only rigid

registration, the di�erence between the early and late scan exhibits a di�erence at the edges of

the ventricles (among other regions). This di�erence is greatly reduced by including warping

in the spatial transformation. The information contained in the di�erence image is transferred

to the deformation �elds. One informative feature of the deformation �elds are the Jacobian

determinants, which reect volume changes. These are shown in Figure 6.11.
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Figure 6.11: This �gure illustrates the volume changes estimated by warping together the images

shown in Figure 6.10. The relative volumes are the Jacobian determinants of the deformation

�eld. Smaller determinants are obtained when a region of the template maps to a smaller region

in the source image. In this example, they represent regions that have expanded between the

early and late scans. Regions where there are no measurable volume changes have Jacobian

determinants with a value of one.
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Figure 6.12: This �gure illustrates polar decomposition, whereby the regular shape in the left-

hand panel is transformed via shears and zooms to give the shape in the centre, before being

rotated to give the right-hand shape.
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E(0) = ln (U), where the ln refers to a matrix logarithm. When m assumes values of -2, 0, 1 or

2, then the tensors are called the Almansi, Hencky, Biot or Green strain tensors respectively.

For deformations derived using the methods in Chapter 44, the Hencky tensor may be the

most appropriate measure of local shape, providing the priors exert enough inuence on the

resulting deformation �elds. One advantage of basing measures on the Hencky tensor is that

it allows relative changes in length, volume and area to be modelled using similar log-normal

distributions. This would not be possible if the measures were modelled by normal distributions,

since if a variable l is normally distributed, then l3 is not. Also, it would not make sense to

assume distributions that allow negative lengths or volumes, if these are explicitly prohibited by

the warping algorithm.

In three dimensions, a strain tensor has six unique elements (as it is a symmetric 3�3 matrix).

Multivariate statistics on these elements can model their means, and also their distribution about

the mean via a variance-covariance matrix. Such a covariance matrix is able to describe many

properties of the warps. The simplest of these are modelled by the diagonal elements of the

variance-covariance matrix, which are able to characterise di�erent amounts of warping in di�erent

directions. The o� diagonal elements show correlations between the strains in di�erent directions,

allowing more complex material properties to be modelled. For example, a covariance matrix that

enforces the trace of the Hencky tensor to equal zero would model transformations where volumes

are preserved (isochoric transformations). In two dimensions, such a covariance matrix could take

the following form:

C =

2
64
t1 �t1 �t3
�t1 t1 t3

�t3 t3 t2

3
75 (6.14)

where t1, t2 and t3 are arbitrary values, and the Hencky tensor has been parameterised by p

which has been drawn from a multi-normal distribution of zero mean and variance-covariance C:

E(0) =

"
p1 p3

p3 p2

#
(6.15)

6.4.2 Data for Evaluations

The data used for the evaluation were MR scans of 58 male right-handed subjects. Sagittal images

of the whole brain with voxel sizes of 1�1�1.5mm were acquired on a Siemens MAGNETOM

Vision scanner operating at 2 Tesla using an MPRAGE sequence with a 12o tip angle, 9.7ms

repeat time, 4ms echo time and 0.6ms inversion time.

The images were all approximately warped to the same stereotactic space using the methods

described in Chapter 3. Following this, a 41� 67� 59mm region around the right hippocampus

was identi�ed, and the deformation �elds re�ned for this region using a similar procedure to that

described in Section 4.3.3. First of all, the approximately spatially normalised images were used

to create an average image for this region. This average was used as a template for subsequent

high-dimensional registrations, but was modi�ed every four iterations to reect the new warped

4It should be noted that the sum of squares of the Hencky tensor elements is equivalent to the sum of squares

of the logs of the singular values of J, meaning that the priors described in Chapter 4 are e�ectively minimising

the squares of the Hencky tensor.
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Figure 6.13: Orthogonal views through the mean of 58 warped hippocampus images.

average. A value of 4 was used for � (the regularisation parameter), and a total of approximately

220 iterations were performed for each image. The resulting deformation �elds had an isotropic

resolution of 1mm, meaning that each of the 58 deformation �elds was de�ned by 486219 pa-

rameters. Figure 6.13 shows orthogonal views through the mean of the normalised images. Six

randomly chosen warped images from the dataset are shown in Figure 6.14.

A number of evaluations were performed using this dataset, both in the context of comparing

Jacobian determinants between the groups, and also in the context of using multivariate methods

to compare strain tensors. No evaluation of the validity of using GRF theory for correcting for

multiple dependent comparisons was performed. This was partly because a solid theory for Wilk's

Lambda �elds has not yet been formulated. Also, some of the transforms applied to the �elds

involved smoothing, followed by taking logs, which would lead to violations of the GRF theories

as they currently stand.

6.4.3 Morphometry on Jacobian Determinants

One form of TBM involves identifying structure volume di�erences among groups, based on the

Jacobian determinants of the deformation �elds. Generally, simple voxel-by-voxel t or F tests

would be used to produce an SPM of signi�cant volume di�erences among the groups.

The Jacobian determinant �elds from the deformations described in Section 6.4.2 were written.

Each element in the �eld was considered a node in a tetrahedral mesh. A Jacobian determinant

was computed at each node from the average volume of the tetrahedra with which it formed a

vertex. For half the elements, the value was the average of 8 tetrahedral volumes, whereas it was

the average of 24 volumes for the other half (see Section 4.2.4). Images of six determinant �elds
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Figure 6.14: A selection of orthogonal views through randomly chosen warped images of hip-

pocampi (see also Figure 6.15).
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are shown in Figure 6.15.

Distributions of Jacobian Determinants

A number of assumptions are required in order to perform statistical tests, and when parametric

tests are used within the framework of the general linear model, one of the requirement is that the

residuals from the model are normally distributed. Section 6.2.2 described a method of testing

normality based on correlation coeÆcients from Q-Q plots. A similar procedure is used here

in order to examine the distributions of the residuals. A number of di�erent transformations

were also applied to the Jacobian determinants in order to assess their e�ects on the residuals.

The transformations include spatial smoothing by an isotropic 8mm FWHM Gaussian kernel,

and taking logs of the Jacobians both before and after smoothing. Histograms of the correlation

coeÆcients over all voxels were computed as described in Section 6.2.2.

The data used in the analysis were derived from 42 of the subjects, the results of which

are plotted in Figure 6.16. The �rst conclusion to be drawn from this �gure is that when the

warping scheme of Chapter 4 is used, the logs of the Jacobian determinants show more normally

distributed residuals than the Jacobian determinants themselves. Smoothing also rendered the

residuals more normally distributed, both with and without taking logs of the determinants.

Whether logs were taken before or after smoothing appeared to make little di�erence to the

behaviour of the residuals, but this still has implications for the analysis. When logs are taken

before smoothing, any analysis is based on logs of the geometric mean of the relative volumes

(integrated under the smoothing kernel), and therefore does not directly relate to arithmetic mean

volumes. If logs are taken after smoothing, then any corrections for multiple comparisons made

using GRF theory are likely to be compromised.

False Positive Rates from T-Tests

The previous section showed that the Jacobian determinants were not normally distributed, but

that the normality can be improved by taking logs of the determinants, and also by smoothing.

This section evaluates the rate of false positives that are likely to be encountered when performing

voxelwise t tests on the logs of the smoothed Jacobian determinant �eld.

Voxelwise t tests were performed 1000 times over all 58 logged, 8mm smoothed determinant

�elds. The tests involved randomly assigning the �elds to two groups, where one group contained

12 subjects and the other contained 46. The results are histograms of 162073000 t values, which

are plotted in Figure 6.17. As hoped for, the resulting t values appear to be distributed reasonably

well according to a t distribution with 56 degrees of freedom, implying that voxelwise t tests should

produce the appropriate rate of false positive results when comparing groups containing several

subjects.

Further tests were performed that involved comparing Jacobian determinants from each single

subject with those of the remaining 57. The evaluations were done on the original determinant

�elds, on the �elds after 8mm smoothing and after taking logs of the smoothed and unsmoothed

data. Higher t-scores indicate larger Jacobian determinants in the deformation �eld of the single

subject. The results (shown in Figure 6.18) suggest that parametric tests may be less valid for

comparing single subjects with groups. Many of the e�ects of non-normally distributed data are
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Figure 6.15: A selection of orthogonal views through the Jacobian determinant �elds from the

same images shown in Figure 6.14.
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Figure 6.16: Histogram of correlation coeÆcients taken over the whole volume volumes (144495

voxels). The dotted line in both panels is a histogram obtained from simulated random data,

and represents the histogram that would be expected if the Jacobian determinants were perfectly

normally distributed. The left panel shows histograms of Q-Q plot correlation coeÆcients ob-

tained from the unsmoothed Jacobian determinants, both without (solid line) and with taking

logs. The panel on the right shows histograms of Q-Q plot correlation coeÆcients after taking

8mm FWHM Gaussian smoothing the Jacobian determinants. The solid line is for the smoothed

determinants, the dot-dash line represents determinants that were smoothed before taking logs,

and the dash-dash line was generated by taking logs and then smoothing.
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Figure 6.17: Histograms of t-scores from randomly generated tests involving comparing a group

of 12 subjects with a group of 46. Left: the histogram resulting from 1000 random voxelwise t

tests is plotted as a solid line, and the probability density function of the Students t distribution

for 56 degrees of freedom is shown by the dotted line. For each test, a group of 12 subjects

was compared with the remaining 46. Right: The same data plotted as a cumulative histogram

against the theoretical cumulative histogram.
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hidden when making group comparisons, because the group averages tend to be more normally

distributed because of the central-limit theorem. This does not apply when comparing single

subjects, so the validity of the results is strongly inuenced by any non-normality of the data.

The least valid results were obtained from t-tests on the original determinant �elds. Slight

improvements in the validity of the tests were obtained after smoothing the �elds or taking logs.

However, closer examination of the cumulative histograms showed that much higher rates of false

positive results than expected would occur, even after these transformations.

6.4.4 Morphometry on Strain Tensors

TBM based on Jacobian determinants has just been illustrated. Although this method identi�es

relative volume di�erences, there are some shape di�erences that it can not identify. A potentially

more powerful approach may involve using multivariate statistics on strain tensors derived from

the deformation �elds.

Again, the deformation �elds from Section 6.4.2 were used in the evaluations. Hencky and

Biot strain tensors �elds were derived from the deformations and written to disk. These tensor

�elds were computed from the deformations in much the same way as the Jacobian determinants

used previously. Each element in a tensor �eld was computed from the average of the strain

tensors of the neighbouring tetrahedra.

Distribution of Tensor Field Elements

Ideally, the tensor elements on which subsequent multivariate analysis is performed should be

multi-normally distributed. The parameterisation of the distribution should be related to the

registration scheme used to estimate the deformations. Because the schemes in Chapter 4 attempt

to enforce log-normal distributions on the relative lengths, areas and volumes, then it should bias

the elements of the Hencky tensor �elds derived from the deformations to be multi-normally

distributed.

This section examines the distributions of various tensor �elds derived from the deformations,

by looking at histograms of the correlation coeÆcients obtained from Q-Q plots. For the analysis,

the tensor �elds can be considered as consisting of six scalar �elds. Univariate normality of each

scalar �eld was assessed by the correlation coeÆcients of Q-Q plots, and the results combined into

single histograms. First of all the the distributions of unsmoothed Biot and Hencky strain tensors

were examined. This was followed by convolving the the Biot strain tensor �elds with an 8mm

FWHM Gaussian kernel, to identify any increases in normality that would be expected because

of the central limit theorem. Finally, the smoothed Biot strain tensor �elds were converted to

Hencky tensors, and their distributions examined. All the resulting histograms are plotted in

Figure 6.19.

As expected, smoothing made the data more normally distributed. Similarly, taking logs

of the unsmoothed data also increased normality. However, one unexpected result is that the

smoothed Hencky tensor data and the smoothed Biot tensor data transformed to Hencky tensors

appears to be slightly less normally distributed than the smoothed Biot tensor data.
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Figure 6.18: Histograms of t-scores from comparing single subjects with a group of 57. The top

row shows histograms of the computed t-statistics, whereas the centre and bottom rows show

plots of theoretical versus measured cumulative histograms. In all plots, the dotted line shows

the theoretical t-distribution for 56 degrees of freedom. Left: Statistics derived from Jacobian

determinants (solid line), and logged determinants (dashed line). Right: Statistics derived from

8mm smoothed Jacobian determinants (solid line), logged smoothed determinants (dash-dash

line) and smoothed logged determinants (dot-dash line).
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Figure 6.19: Histogram of Q-Q plot correlation coeÆcients taken over tensor �elds. The dotted

line in both panels is a histogram obtained from simulated random data, and represents the

histogram that would be expected if the tensor elements were perfectly normally distributed.

The left panel shows histograms of Q-Q plot correlation coeÆcients obtained from the all six

unsmoothed sets of strain tensor elements. Histograms from Biot (solid line) and Hencky tensors

(dashed line) are shown. The panel on the right shows histograms of Q-Q plot correlation coeÆ-

cients of 8mm FWHM smoothed tensor �elds. The solid line is derived from the Biot tensor �eld,

the dot-dash line is from Hencky tensors that were derived from smoothed Biot tensors, and the

dash-dash line was generated from 8mm smoothed Hencky tensor �elds.

False Positive Rates from MANCOVA

This section assesses the rate of false positives that are likely to occur when multivariate methods

are used to compare strain tensors among groups. The tests were for the worst case scenario,

and involved comparing each of the 58 tensor �elds with the remaining 57. A voxelwise Wilk's �

statistic was computed at each point in the tensor �elds. The same transformations of the tensor

�elds were used for the analysis as were used in Section 6.4.4, and the results are presented in

Figure 6.20.

The plots of cumulative histograms show that a much higher rate of false positives than the-

oretically predicted would be obtained when comparing single subjects with groups. Smoothing

the �elds slightly reduces this rate of false positives, but smoothing by more than 8mm FWHM

would be needed to bring the rate of false positive results to an acceptable rate.

6.5 Discussion

The morphometric methods developed here all attempt to automatically identify neuroanatomical

di�erences, either from features of spatially normalised images, or from deformation �elds that

encode information about image shapes. Rather than focusing on particular structures, one

important aspect of these methods is that the entire brain can be examined in a balanced way.

Two di�erent types of results are obtained from the methods. One form localises structural

di�erences among groups of brains (VBM and TBM) by producing SPMs of local shape di�er-
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Figure 6.20: Histograms of Wilk's � statistics from comparing single subjects with a group of

57. The top row shows histograms of the computed Wilk's � statistics, whereas the centre and

bottom rows show di�erent parts of the cumulative histograms. In all plots, the dotted line shows

the theoretical Wilk's � distributions. Left: Wilk's � statistics derived from Biot strain tensors

(solid line), and Hencky strain tensors (dashed line). Right: Wilk's � statistics derived from 8mm

smoothed Biot strain tensor �eld (solid line) and smoothed Biot strain tensor �eld converted to

Hencky tensor �eld (dashed line).
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ences. The other form performs a single, global multivariate test to compare the images (DBM).

In principle, the di�erence between these approaches need not be quite so distinct. Rather than

basing the tests either on information at each voxel, or on information from the whole brain, it is

easy to see that forms of morphometry could be based on regional analyses. For example, DBM

could be done region by region (after factoring out positional information), or TBM could be ap-

plied such that the tests include information from surrounding voxels. Both of these approaches

should produce very similar results. The regions could be based on pre-de�ned structures on the

template image. Alternatively, they could involve some weighted combination of information from

the neighbourhood of each voxel, with weights based on a function such as a Gaussian kernel, or

some other windowing function.

The di�erent forms of morphometry have their own advantages and disadvantages, and the

optimum approach may depend on the types of structural di�erence expected among the data.

Where there are global patterns of di�erence, then the global approaches (that do not produce a

SPM) may be more powerful, as they can model covariances between shapes of di�erent structures.

In contrast, the SPM approaches may be preferable where discrete focal di�erences are expected.

The main disadvantages of global testing methods (as opposed to SPM methods), is that there

are generally far more variables for each brain than there are brains in a study. This implies that

covariances between all variables can not be computed, so some form of dimensionality reduction

(or regularisation) is required, leading to inevitable data loss.

The most powerful forms of morphometry may ultimately depend on how well covariances

can be modelled using as few parameters as possible. The current implementation of DBM

e�ectively models covariance matrices by their most prominent eigenvectors, whereas the VBM

implementation (and the univariate TBM) models a diagonal covariance matrix5. Voxelwise and

regionwise multivariate approaches model banded covariance matrices.

A related issue is about how to normalise morphometric measures in order to produce the

most useful results. This is particularly true for voxelwise approaches, because relationships

between other, more global, factors are not modelled. For example, consider a group of subjects

with smaller hippocampi, but also smaller brains. Should the reduced hippocampi be considered

signi�cantly di�erent if they correlate with a smaller brain? This size di�erence could also relate

to lengths or volumes of temporal lobe, or to a whole number of other measurements.

Another problem concerns visualising and communicating the results of morphometric tests.

Three dimensional volumes are quite diÆcult to visualise, especially within the limited space of

most journals. However, the results of morphometric tests are often vector or tensor �elds. These

are quite diÆcult to visualise in two dimensions, but in three dimensions the problem becomes

much worse. The more useful results of global morphometric methods are the canonical variates

that characterise the di�erences, and these are often some form of three dimensional vector or

tensor �eld. In comparison, di�erences localised by voxelwise methods can be relatively easily

presented as a SPM. Although the reasons may appear trivial, voxelwise approaches will probably

come to dominate because their results can be explained and presented much more easily.

A potential future application for these approaches may be to automatically identify and locate

unusual or abnormal brain regions in single subjects. This may involve comparing single subject

images with images derived from a large group of controls. If the objective is to �nd anything

5With a few assumptions about some of the o�-diagonal elements, which are modelled by Gaussian random

�eld theory
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unusual, then the most powerful methods may involve multivariate methods that combine VBM

and TBM. Provided that the database of controls is suÆciently large, then the more variables

that are included in a multivariate voxelwise test, then the more powerful the tests should be at

localising di�erences.

When parametric statistical methods are used, comparisons between single subjects and whole

groups may not be as reliable as comparisons between groups containing several subjects. It

may be necessary to resort to non-parametric methods for such cases. The alternative may

involve developing suitable transforms for the data that render them more normally distributed.

The distributions of estimated deformation �elds can be partially controlled by the amount of

regularisation imposed on the warping model used. For example, approaches similar to those

described in Section 7.3 would attempt to �nd the optimal amount of regularisation such that the

distribution of the residuals is as close to normal as possible. This not only includes the residual

di�erence between image and template, but also the distributions of the parameter estimates

around their expected mean.

Other factors also inuence the validity and sensitivity of the di�erent morphometric ap-

proaches. In particular, the warping method, used to register the images to the same stereotactic

space, has a signi�cant inuence on the results. For DBM and TBM, the statistical tests are based

entirely on the deformation �elds produced by the warping methods. The warping methods de-

veloped in this thesis are all nonlinear optimisation procedures, and therefore can be susceptible

to reaching local minima, and hence non-optimal solutions. These local minima have negative

consequences for subsequent statistical tests, as the estimated shapes do not reect the true

shapes of anatomical structures. Other problems occur when warping brains containing severe

pathologies. For example, if a brain contains features that are not present in the template image,

then an accurate match can not be achieved. The e�ects of this mismatch may also propagate

to other brain regions because of the inherent smoothness of the deformation �elds. Much more

work is necessary in order to develop warping methods that can model the various forms of severe

pathology that may be encountered.

In VBM, nonlinear spatial normalisation results in the volumes of certain brain regions increas-

ing, whereas others decrease (Goldszal et al., 1998). This has implications for the interpretation

of what VBM actually tests. The objective of VBM is to identify regional di�erences in the con-

centration of a particular tissue (grey or white matter). In order to preserve the actual amounts

of grey matter within each structure, a further processing step can be incorporated that mul-

tiplies the partitioned images by the relative voxel volumes. These relative volumes are simply

the Jacobian determinants of the deformation �eld. VBM can be thought of as comparing the

relative concentration of grey matter (i.e., the proportion of grey matter to other tissue types

within a region). With the adjustment for volume change, VBM compares the absolute amount

of grey matter in di�erent regions. As mentioned in Section 6.2.1, if spatial normalisation was

perfect, then no grey matter di�erences would be observed if a volume change adjustment was

not applied. In this instance, all the information would be in the deformation �elds and would

be tested using TBM. However, if the spatial normalisation is only removing global di�erences in

brain shape, the results of VBM show relative grey matter concentration di�erences. As faster

and more precise registration methods emerge, then a TBM volume change adjustment may be-

come more important. It is envisaged that, by incorporating such a correction, a continuum will

arise with simple VBM (with low resolution spatial normalisation) at one end of the methodolog-
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ical spectrum, and statistical tests based on Jacobian determinants (with high resolution spatial

normalisation) at the other.

Another perspective on what VBM compares can be obtained by considering how a similar

analysis would be done using volumes of interest (VOIs). To simplify the analogy, consider that

the smoothing kernel is the shape of a sphere (values of one inside, and zero outside) rather

than a 3D Gaussian point spread function. After convolving an image with this kernel, each

voxel in the smoothed image will contain a count of the grey matter voxels from the surrounding

spherical VOI. Now consider the e�ects of spatial normalisation, and where the voxels within each

VOI come from in the original grey matter images. The spheres can be thought of as projected

on to the original anatomy, but in doing so, their shapes and sizes will be distorted. Without

multiplying by the relative voxel sizes, what would be measured would be the proportion of grey

matter within each projected VOI (relative to other tissue types). With the multiplication, the

total amount of grey matter within the VOI is measured.


